《冶金热工基础》复习提纲湖工大
热工基础复习提纲

第一章小结1、平衡状态2、状态参数及其性质(掌握压力表与真空度测量的使压力的差值)3、准平衡过程4、可逆过程5、热力过程6、功和热量(过程参数)7、热力循环(重点掌握正向循环的热效率计算)重点:例题1-3,图1-13,公式1-17第二章小结1、热力学第一定律的实质热力学第一定律的实质就是能量守恒。
表明当热能与其他形式的能量相互转换时,能的总量保持不变。
2、储存能系统储存的能量称为储存能,包括内部储存能和外部储存能。
(1)内部储存能——热力学能(2)外部储存能(3)系统的总储存能(简称总能)系统的总储存能为热力学能、宏观动能和重力位能的总和。
3、转移能——功量和热量功量和热量是系统与外界交换的能量,其大小与系统的状态无关,而是与传递能量时所经历的具体过程有关。
所以功量和热量不是状态参数,而是与过程特征有关的过程量,称为转移能或迁移能。
4、闭口系能量方程热力学第一定律应用于(静止的)闭口系时的能量关系式即为闭口系能量方程。
其表达式有以下几种形式,它们的使用条件不同:=∆+Q U W(适用条件:任意工质、任意过程)5、热力学第二定律的实质热力过程只能朝着能量品质不变(可逆过程)或能量品质降低的方向进行。
一切自发过程的能量品质总是降低的,因此可以自发进行,而自发过程的逆过程是能量品质升高的过程,不能自发进行,必须有一个能量品质降低的过程作为补偿条件才能进行,总效果是能量品质不变或降低。
6、卡诺循环、卡诺定理及其意义卡诺循环是为方便热力循环分析而提出的一种循环,实际上无法实现,但是利用卡诺循环分析得到的提高循环经济性的方法却具有普遍实用意义。
卡诺定理提供了两个热源间循环经济性的最高界限,给一切循环确定了一个判断其热、功转换完善程度的基础,因而具有普遍的指导意义。
而且利用卡诺定理可判断循环是否可以进行以及是否可逆。
掌握卡诺循环的热效率计算公式:211C T T η=-1:C η<η,则此热机不能实现2:C η>η则此热机可以实现5、孤立系统的熵增原理(重点理解)重点:例题2-1,图2-11,公式2-28,例题2-4,习题2-2。
工热复习提纲(第3稿)

工 热 复 习 提 纲 (第 3 稿)第一章1. 基本概念:热力系统、平衡状态、准静态过程、可逆过程等(掌握;书上相关黑体字描述) 2. 状态参数 (1) 压力p :①b gb v p p p p p p =+⎧⎨=-⎩要熟练掌握,记住其中Pb 可理解为压力表所处环境的压力!②计算气体状态时一定要用绝对压力!③压力单位 1mmHg =133.3Pa ,1mmH 2O =9.81Pa1atm=1.01325×105 Pa(2) 温度T: T(k)= 273.15 + t (℃) 熟练掌握9()32()5o t F t =+℃ 或记住:1atm 下,纯水凝固点32o F ,沸点212 oF(3) 比体积v Vm=(m 3/kg ) (4) 简单可压缩热力系统的状态由两个相互独立的状态参数决定。
3. 可逆过程体积膨胀功:21W pdV =⎰4. 正向循环:(T-S 图或P-V 图上 顺时针)热能→机械能1221111net t w q q q q q q η-===-收益=代价 逆向循环:(逆时针)机械能→热能制冷系数 2212net q q w q q ε==- 热泵系数(供暖系数)1112'net q q w q q ε==-=这一组公式适用于任何工质任何循环,不论可逆不可逆补充:国际单位制(SI) :基本单位:m, kg, s, K, mol, A, cd(发光强度) 导出单位:1N=1 kg ·ms -2 1Pa=1N/m 2= 1 kg ·m -1s -2 1J=1N ·m =1 kg ·m 2s -21W=1J/s =1 kg ·m 2s -3第二章 热一定律1. 概念:热力学能(U ),焓(H ),膨胀功(W ),技术功(W t )热量(Q ),熵(S )2. 公式 熟练掌握:焓的定义:H U pV =+;h u pv =+闭口系能量方程Q U W q u w q du pdv δ=∆+⎧⎪=∆+⎨⎪=+⎩ 开口系能量方程t t Q H W q h w q dh vdp δ=∆+⎧⎪=∆+⎨⎪=-⎩☆☆☆(第一解析式)(第二解析式)膨胀功:21W pdV =⎰;技术功:21t w vdp =-⎰掌握:技术功的定义:22112211()2ti i t w w c g z w w w p v p v vdp ⎧=+∆+∆≈⎪⎨⎪=+-=-⎩⎰技术上可资利用的功212t i q h w h w c g z =∆+=∆++∆+∆3. 热量:Q dS T Q TdSδδ⎧=⎪⎨⎪=⎩ 可逆过程!!4. 典型过程:①绝热节流:0h ∆=,但不能说是等焓过程,因为绝热节流是典型的可逆过程 ②汽机、燃气透平:12i t w w h h h ==-∆=-③压气机:21c i t w w w h q h h q =-=-=∆-=-- 2121c c w h h w h h q=-⎧⎨=--⎩轴流式活塞式④喷管:22112201122h c h c h +=+= (滞止焓) 遇到单位时间流率、加热率之类的问题的两种分析思路:1.规定一个时间段(如1小时、1分钟等),然后在后面的计算中就计算这一个时间段内的能量传递情况,而不考虑时间因素;等计算出结果后再在结果的基础上处以这个时间段即可获得最终结果。
热工基础复习资料

热工基础复习资料对于学习热力学的学生来说,热工基础是非常重要的一门课程。
热工基础是热力学、传热学和流体力学等学科的基本理论和实践基础。
这门课程的学习要求我们掌握热学基本概念、热学方程、热力学循环以及热力学系统等基本知识。
因此,我们需要认真复习这门课程,为后面的学习打下坚实的基础。
首先,我们需要复习热学基本概念。
热学基本概念包括热力学量、状态方程、热力学性质等,这些是热力学分析的基础。
通过学习这些概念,我们可以了解热力学中所涉及的物理量和表达式,掌握这些基本概念可以帮助我们理解热力学的其他知识点,如热平衡、热传导和热传递等。
其次,我们需要复习热学方程。
热学方程包括热力学第一定律、热力学第二定律、热力学第三定律等。
其中热力学第一定律是能量守恒定律,它表明热能可以被转化为其他形式的能量,而不会减少。
热力学第二定律是热力学循环的基础,它描述了能量在热机中的转化和传输。
热力学第三定律与热力学系统的熵有关,它帮助我们理解系统能量趋向熵增的规律。
复习这些方程可以加深我们对热力学理论的认识和理解。
此外,我们还需要复习热力学循环。
热力学循环是热力学在实际应用中的体现,如汽轮机、内燃机、制冷机等等。
掌握热力学循环可以帮助我们更好地理解热力学中的第二定律,并将理论知识应用到实际工程中去。
最后,我们还需要复习热力学系统。
热力学系统是指在一定条件下,内部组分和能量的交换受到控制的物质系统。
对热力学系统的了解,可以帮助我们对物质在不同状态之间的转化、物质内能等概念进行更深入的理解,同时也可以帮助我们更好地理解实际问题的本质,为我们在工程中的设计提供帮助。
小结起来,复习热工基础需要我们掌握热学基本概念、热学方程、热力学循环以及热力学系统等基础知识。
这些基础知识是后续热力学、传热学、流体力学等学科的基础,因此我们必须认真对待复习。
希望能在复习中发现自己的不足之处,及时补上,为后面的学习打下坚实的基础。
热工基础复习题

热工基础复习题热工基础是工程学科中的重要组成部分,它涉及到能量的转换和传递,对于理解和掌握热力学和流体力学的基本原理至关重要。
以下是一些热工基础的复习题,可以帮助学生巩固和检验学习成果。
1. 热力学第一定律:描述能量守恒的基本原理。
请解释热力学第一定律的含义,并给出一个实际应用的例子。
2. 热力学第二定律:阐述热的自发流动方向。
请解释热力学第二定律,并讨论其在制冷系统中的应用。
3. 熵的概念:熵是热力学中描述系统无序程度的物理量。
请解释熵的概念,并说明在一个封闭系统中熵如何变化。
4. 理想气体状态方程:\( PV = nRT \) 是描述理想气体状态的基本方程。
请推导该方程,并解释各变量的含义。
5. 卡诺循环:卡诺循环是理想化的热机循环,其效率最高。
请描述卡诺循环的过程,并计算在给定高温和低温下循环的效率。
6. 热传导、热对流和热辐射:这三种是热能传递的基本方式。
请分别解释这三种方式,并给出每种方式的一个实际应用实例。
7. 流体静力学:涉及流体在静止状态下的压力分布。
请解释流体静力学的基本方程,并说明如何计算不同深度下的流体压力。
8. 伯努利方程:描述在理想流体流动中能量守恒的方程。
请推导伯努利方程,并解释其在实际工程中的应用。
9. 雷诺数:是流体力学中描述流动特性的一个重要无量纲数。
请解释雷诺数的定义,并讨论它如何影响流体的流动状态。
10. 热交换器的工作原理:热交换器是工业中常用的设备,用于两种或多种流体之间的热能交换。
请描述热交换器的工作原理,并讨论不同类型的热交换器。
通过这些复习题的学习和解答,学生可以更好地理解热工基础的理论知识,并能够将其应用于解决实际问题。
希望这些题目能够帮助学生在热工基础的学习中取得进步。
热工基础复习重点

《热工学基础》复习摘要学院:机械工程学院班级:姓名:学号:热工基础✧导热:✓温度场:温度场是标量场,在直角坐标系中表示为其中式中r 表示时间,单位为s (秒)。
✓温度梯度:温度场内等温面法线方向的温度变化率称为温度梯度,即✓导热基本定律:在导热体内进行单纯导热的现象中,通过垂直于热流方向的微元面积dA的热流量dQ,与该处温度梯度的绝对值成正比,而指向温度降低的方向;即写成矢量形式为:对于各向同性材料,各个方向的导热系数A都相同,方程改写成物体中的热流密度也是空间点的函数,形成热流密度场。
导热热流密度的大小与温度梯度的绝对值成正比,方向与温度梯度刚好相反,即同线反向。
✓导热系数:导热系数λ是表征物质导热能力的物性参数。
由傅里叶定律的数学表达式,有上式是导热系数的定义式,导热系数主要取决于材料的成分、内部结构、密度、湿度和含湿量等,通常由实验测定。
✓导热微分方程:以傅里叶定律和能量守恒原理为基础而建立的导热微分方程式该式就是导热微分方程,也就是没有物质输运条件下的能量微分方程。
它建立了导热过程中物体内的温度分布随时间和空间变化的函数关系。
导热方程可改为:在一些特殊情况下,上式改为:如果研究对象是圆柱状物体,则采用圆柱坐标比较方便。
采用和直角坐标系相同的办法,分析圆柱坐标系中微元体在单纯导热过程中的热平衡,可以导出如下圆柱坐标系中的导热微分方程式:如果研究对象为球状物体,则可以采用球坐标系中的导热微分方程:✓导热微分方程的单值性条件:导热问题的单值性条件一般包括几何条件、物理条件、初始条件和边界条件四个方面。
其中主要考察以下三种边界条件:✓一维导热换热:如果多层平壁的两外表面温度维持均匀恒定,平壁足够大或侧面绝热,则也是一维稳态导热问题:多层换热情况下,各层之间紧密接触,相接触两表面的两表面温度相同,没有接触热阻,稳态时,有:将上式子整理后:对于多层圆筒壁的径向一维稳态导热,各层圆筒壁成为沿热流方向的串联热阻。
热工学基础复习大纲

热工学基础复习大纲第一篇工程热力学第一章工质及理想气体一、状态及状态参数识记:系统的状态。
状态参数。
理解:平衡状态。
状态参数只是状态的函数。
应用:基本状态参数:热力学温度、绝对压力和质量体积,它们的测量与单位。
二、理想气体及其状态方程式识记:理想气体的物理模型(假设)。
理想气体状态方程式。
气体常数。
理解:气体量分别用1kg、mkg和nmol表示的理想气体状态方程式。
应用:理想气体状态方程式的应用。
三、气体的比热容识记:质量热容、体积热容和摩尔热容,定压热容和定容热容。
比热容比。
理解:理想气体的比定压热容和比定热容只是温度的函数。
迈耶公式。
应用:利用热容计算热量。
用理想气体比热容随温度变化的关系式计算真实比热容和平均比热容。
用比热容表计算热量。
理想气体定值比热容的使用。
四、理想气体的热力学能、焓和熵识记:理想气体热力学能、焓和熵变化量的计算式。
温熵图理解:过程中气体热力学能、焓和熵的变化量决定于过程的初状态和终状态。
理想气体热力学能和焓都只是温度的函数;熵不仅与温度有关,还与压力有关。
应用:理想气体热力学能、焓和熵变化量的计算。
在温熵图上表示热量。
五、混合气体识记:混合气体的热力性质取决于各组成气体的性质及成分。
混合气体成分表示法:质量分数、体积分数和摩尔分数,它们之间的换算关系。
理解:处于平衡状态的理想气体混合物中,各组元气体互不影响,它们的行为像各自单独存在一样充满共同的体积。
分压力定律和分体积定律。
第二章热力学第一定律一、系统及其分类识记:系统、边界与外界、工质。
理解:系统与外界的相互作用:能量交换与物质交换。
系统的分类:闭口系统与开口系统、绝热系统、孤立系统二、系统热力学能是系统状态是函数,热量和功是系统与外界之间传递的两种形式的能量。
识记:系统的内部储存能(热力学能)和外部储存能。
理解:系统的状态、过程和过程量在压容图上的图示。
应用:系统体积变化功的计算。
三、热力学第一定律及其解析式识记:热力学第一定律的表述,解析式的各种书写形式。
《冶金热工基础》复习提纲湖工大解析

《冶金热工基础》复习提纲Ⅰ、基本概念一、动量传输1、流体;连续介质模型;流体模型;动力粘度、运动粘度、恩式粘度;压缩性、膨胀性2、表面力、质量力;静压力特性;压强(相对压强、绝对压强、真空度);等压面3、Lagrange 法、Euler法,迹线、流线4、稳定流、非稳定流,急变流、缓变流,均匀流、非均匀流5、运动要素:流速、流量,水力要素:过流断面、湿周、水力半径、当量直径6、动压、静压、位压;速度能头、位置能头、测压管能头、总能头;动能、动量修正系数7、层流、湍流;自然对流、强制对流8、沿程阻力、局部阻力;沿程损失、局部损失9、速度场;速度梯度;速度边界层二、热量传输1、温度场、温度梯度、温度边界层;热流量、热流密度2、导热、对流、辐射3、导热系数、对流换热系数、辐射换热系数、热量传输系数4、相似准数Fo、Bi、Re、Gr、Pr、Nu5、黑体、白体、透热体;灰体;吸收率、反射率、透过率、黑度6、单色辐射力、全辐射力、方位辐射力;角系数;有效辐射;表面网络热阻、空间网络热阻7、解析法、数值分析法、有限差分法、集总参数法、网络元法三、质量传输1、质量传输;扩散传质、对流传质、相间传质2、浓度、速度、传质通量;浓度场、浓度梯度、浓度边界层3、扩散系数、对流传质系数4、Ar、Sc、Sh准数四、燃料与燃烧1、燃料;标准燃料;发热量(高发热量、低发热量)2、燃料组成成分及其换算(应用、干燥、可燃、有机成分;湿、干成分)3、空气消耗系数;燃烧温度(绝热燃烧温度、量热燃烧温度、理论燃烧温度、实际燃烧温度)4、闪点、燃点、着火点;着火;有焰燃烧、无焰燃烧Ⅱ、基本理论与定律一、动量传输1、Newton粘性定律2、N-S方程3、连续方程、能量方程、动量方程、静力学基本方程二、热量传输1、F-K方程2、Fourier定律3、Newton冷却(加热)公式4、Planck定律、Wien定律、Stefen-Boltzman定律、Kirchhoff定律、Beer定律、余弦定律5、相似原理及其应用三、质量传输1、传质微分方程、Fick第一、二定律2、薄膜理论、双膜理论、渗透理论、更新理论四、燃料与燃烧1、空气需要量、燃烧产物的计算2、空气消耗系数的确定3、燃烧温度的计算Ⅲ、基本理论与定律在工程中的应用一、动量传输1、连通容器2、连续方程、能量方程、动量方程的应用、烟囱计算3、流体阻力损失计算二、热量传输1、平壁、圆筒壁导热计算2、相似原理在对流换热中的应用3、网络单元法在表面辐射换热中的应用4、通过炉墙的综合传热、火焰炉炉膛热交换、换热器5、不稳态温度场计算:解析法;有限差分法三、质量传输1、平壁、圆筒壁扩散计算2、相似原理在对流传质中的应用3、炭粒、油粒的燃烧过程4、相间传质(气—固、气—液、多孔材料)四、燃料与燃烧1、固体燃料燃烧、液体燃料燃烧、气体燃料燃烧2、水煤浆燃烧、重油掺水乳化燃烧、HTACⅣ、主要参考题型一、填空1、当体系中存在着(、、)时,则发生动量、热量和质量传输,既可由分子(原子、粒子)的微观运动引起,也可以由旋涡混合造成的流体微团的宏观运动引起。
热工基础复习

点:系统 线: 热力过程 可逆过程与循环的功量、 面: 可逆过程与循环的功量、热量 热力学第一定律 热力学第二定律 理想气体的热力性质与过程 蒸气的热力性质与过程 湿空气的热力性质与过程
系 统 点:及 描 述
系统与工质:定义、 系统与工质:定义、分类 热力状态:平衡态及实现条件 ∆p ≡ 0 , ∆T ≡ 0 (∆µ ≡ 0) 热力状态: 定义、分类 定义、 2 dz = 0 , dz = z 2 − z1 数学特征: 数学特征: 1
一维 稳态 导热 圆 筒 壁
Φ= 1
δ λ
∆t d ln 2 2πλL d1
热阻: rλ , Rλ 热阻: 温度曲线
等截面肋片:套管温度计 等截面肋片: 牛顿冷却公式: 牛顿冷却公式: q = h∆t Φ = hA∆t 影响h的因素 影响 的因素 特征数与特征数方程:定性温度; 特征数与特征数方程:定性温度;特征长度 管槽内 强制对流 横掠 实验关联式 自然对流 玻定律: 斯—玻定律:黑体 玻定律 基本定律
热工基础
——复习与小结 复习与小结
西安交通大学热流中心
热工基础是研究热能利用的基 热工基础是研究热能利用的基 本原理和应用, 本原理和应用,以提高热能利 用经济性的一门学科。 用经济性的一门学科。 基础理论
热工基础与应用
工程应用
基
热 能 转 换 的 基 本 理 论
本 概 念 基 本 定 律 转 换 内 外 条 件
p = ∑ pi V =∑Vi
过 程 蒸气
计算公式:P81表3-3 计算公式: 表 图示 一点、 一点、二线
三区五状态 过程: 过程: 三步骤
热力性质: 热力性质:
h = xh′′ + (1 − x)h′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《冶金热工基础》复习提纲Ⅰ、基本概念一、动量传输1、流体;连续介质模型;流体模型;动力粘度、运动粘度、恩式粘度;压缩性、膨胀性2、表面力、质量力;静压力特性;压强(相对压强、绝对压强、真空度);等压面3、Lagrange 法、Euler法,迹线、流线4、稳定流、非稳定流,急变流、缓变流,均匀流、非均匀流5、运动要素:流速、流量,水力要素:过流断面、湿周、水力半径、当量直径6、动压、静压、位压;速度能头、位置能头、测压管能头、总能头;动能、动量修正系数7、层流、湍流;自然对流、强制对流8、沿程阻力、局部阻力;沿程损失、局部损失9、速度场;速度梯度;速度边界层二、热量传输1、温度场、温度梯度、温度边界层;热流量、热流密度2、导热、对流、辐射3、导热系数、对流换热系数、辐射换热系数、热量传输系数4、相似准数Fo、Bi、Re、Gr、Pr、Nu5、黑体、白体、透热体;灰体;吸收率、反射率、透过率、黑度6、单色辐射力、全辐射力、方位辐射力;角系数;有效辐射;表面网络热阻、空间网络热阻7、解析法、数值分析法、有限差分法、集总参数法、网络元法三、质量传输1、质量传输;扩散传质、对流传质、相间传质2、浓度、速度、传质通量;浓度场、浓度梯度、浓度边界层3、扩散系数、对流传质系数4、Ar、Sc、Sh准数四、燃料与燃烧1、燃料;标准燃料;发热量(高发热量、低发热量)2、燃料组成成分及其换算(应用、干燥、可燃、有机成分;湿、干成分)3、空气消耗系数;燃烧温度(绝热燃烧温度、量热燃烧温度、理论燃烧温度、实际燃烧温度)4、闪点、燃点、着火点;着火;有焰燃烧、无焰燃烧Ⅱ、基本理论与定律一、动量传输1、Newton粘性定律2、N-S方程3、连续方程、能量方程、动量方程、静力学基本方程二、热量传输1、F-K方程2、Fourier定律3、Newton冷却(加热)公式4、Planck定律、Wien定律、Stefen-Boltzman定律、Kirchhoff定律、Beer定律、余弦定律5、相似原理及其应用三、质量传输1、传质微分方程、Fick第一、二定律2、薄膜理论、双膜理论、渗透理论、更新理论四、燃料与燃烧1、空气需要量、燃烧产物的计算2、空气消耗系数的确定3、燃烧温度的计算Ⅲ、基本理论与定律在工程中的应用一、动量传输1、连通容器2、连续方程、能量方程、动量方程的应用、烟囱计算3、流体阻力损失计算二、热量传输1、平壁、圆筒壁导热计算2、相似原理在对流换热中的应用3、网络单元法在表面辐射换热中的应用4、通过炉墙的综合传热、火焰炉炉膛热交换、换热器5、不稳态温度场计算:解析法;有限差分法三、质量传输1、平壁、圆筒壁扩散计算2、相似原理在对流传质中的应用3、炭粒、油粒的燃烧过程4、相间传质(气—固、气—液、多孔材料)四、燃料与燃烧1、固体燃料燃烧、液体燃料燃烧、气体燃料燃烧2、水煤浆燃烧、重油掺水乳化燃烧、HTACⅣ、主要参考题型一、填空1、当体系中存在着(、、)时,则发生动量、热量和质量传输,既可由分子(原子、粒子)的微观运动引起,也可以由旋涡混合造成的流体微团的宏观运动引起。
2、连续介质模型是指()。
3、温度升高、压强减少,则液体的粘度();气体的粘度()。
4、流体静压强的特性为()。
5、作用在流体上的力有(、)二种。
6、静止液体作用于平面壁上的压力P为(浸水面积)与(其形心的液体压强)的乘积。
它的方向为受压面的(内法线)方向。
7、流体动力学的研究方法主要有()、()二种。
8、流体运动要素不随时间而变化,只随空间位置不同而变化的流动称为( ).非稳定流是指()。
9、迹线是( );流线为()。
.10、流量是(单位时间内通过过流断面的液体数量),有()、()、()三种。
11、对于圆管中的流体,流动状态的判据依据是()。
12、层流是();湍流是指()。
13、对于圆管中的流体,其流动状态为层流时的沿程阻力系数为()。
14、时均速度是();时均压强是()。
15、过流断面突然缩小、突然扩大的沿程阻力系数分别为(、)。
16、温度梯度、速度梯度、浓度梯度分别是指(、、)。
17、热量传输的三种基本方式为(、、)。
18、单色辐射力是指(),全辐射力又是()。
19、黑体、白体、透明体分别是指()、()、()。
20、热辐射中的Planck定律、Wien定律、Stefan-Boltzman定律、Kirchhoff定律分别为(、、、)。
21、角系数是指(),两相距很近的平行大平面的角系数分别为()、()。
22、有效辐射是指(),表面辐射热阻、空间热阻分别为()、()。
23、质量传输的三种基本方式为(、、)。
24、二元混合体系中,两组分的质量分数关系为();摩尔分数关系为()。
25、传质通量是()。
26、Fick第一、二定律分别为(、);Fourier定律为();Newton粘性定律()。
27、导温系数a=( );动力粘度μ=()。
28、速度场、温度场、浓度场分别是指()、()、()。
29、Fo=( ) ,Bi=( ),Re=( ), Nu=( ), Pr=( ),Gr=( )。
30、Sh=( ), Sc =( ), Ar=( )。
31、燃料是指();标准燃料是指()。
32、固、液燃料的元素分析(),工业分析()。
33、高炉煤气、焦炉煤气、转炉煤气的主要可燃成分分别为()、()、()。
34、空气消耗系数是指n=( )。
35、燃烧温度是指()。
36、有焰燃烧是指();无焰燃烧是指()。
37、干空气中氧、氮的体积、质量百分比分别为()、()。
38、测得某燃料燃烧的烟气中氧的含量为1%,这样可估算其燃烧时空气消耗系数为()。
39、水煤浆燃烧是指();重油掺水乳化燃烧是指();HTAC是指()。
40、燃料燃烧计算是根据燃烧反应的()和()确定燃烧反应的有关参数(燃烧空气消耗量、烟气生成量、燃烧温度等)。
二、计算1、一滑动轴承,轴与轴承的间隙0.1cm,轴的转速2980r/min,轴的直径D=15cm,轴承宽度b=25cm。
求轴承所消耗的功率。
润滑油的粘度为0.245Pa.s。
2、一沿着涂有润滑油的倾角为300的斜面等速向下运动的木板,其底面积为50×50cm,其质量为5千克,速度为1m/s,平板与油斜面的距离为δ=1mm。
求润滑油的动力粘度系数。
3、如图1为水管路系统,已知D1,D2,L1,L2,H,λ1,λ2,ξ1,ξ2。
求出口流速υ,并绘出其总水头线和测压管水头线示意图。
4、如图2为一喷嘴,出口直径D1=10 cm,管端直径D2=40 cm,流量Q=0.4 m3/s,喷嘴和管以法兰盘连接,共用12个螺栓,不计水和管嘴的重量,水流水平射向一垂直壁面,试求壁面所承受的水平推力及每个螺栓受力。
图1 图25、如图3 小管直径D 1=0 .2 m ,大管直径D 2=0.4 m 。
P 1=70 KN/ m 2,P 2=40 KN/m 2 ,2-2断面流速为1 m/s 。
1、2断面高度差为1 m 。
试判断水在管中的流动方向,并求水流经两断面间的水头损失。
6、水箱侧面壁接出一直径D=0.20m 的管路,如图4所示,已知H 1=2.0m ,H 2=3.0m ,不计任何损失,求A 点的压强及出流流速。
7、某冶金炉墙分别由耐火砖、硅藻土砖、保温板、金属薄板组成,厚度分别为125, 125, 60, 4 mm ,导热系数分别为0.4, 0.14, 0.10, 45 W/m.℃。
已知炉内、外侧壁温分别为600℃,50℃,求炉墙单位面积上的热损失及炉墙的温度分布。
8、某热风管道的内、外径分别为200、220mm ,管外包扎厚度为50mm 的隔热材料,管壁与隔热材料的导热系数分别为50.6 , 0.2 W/m.℃。
已知管内、外表面温度分别为250℃,50℃,求通过管道的单位长度上的热损失及两层接触界面的温度。
图3 图49、空气流以3.1 m/s 的速度平行于水的表面流动,水的温度为15 ℃,其饱和蒸气压为1705 Pa ,空气温度为20 ℃,求表面长为0.1米范围内水的蒸发速率。
已知空气中的水汽分压为777 Pa ,总压为98070 Pa ,空气粘度系数为15.5×10-6 m 2/s ,水汽在空气中的扩散系数为7.25×10-2 m 2/h 。
提示:)(Re 036.0)(Re664.0318.03121湍流层流Sc Sh Sc Sh ==10、由组分A (O 2)和组分B (CO 2)组成的二元一维稳态扩散体系,c A =0.0207kmol/m 3,c B =0.0622 kmol/m 3,u A =0.0017m/s,u B =0.0003m/s,试计算其主流速度和传质通量。
11、某炉气温度为1627℃,炉气在标准状态下的密度为1.3Kg/m 3,炉外大气温度为30℃,试求 当距炉门坎高2.0m 处,炉膛相对压强为12Pa 时,炉门坎处是冒烟还是吸冷风?12、烟气平均温度为1300℃,烟气在标态下的密度为1.3kg/m 3,烟囱底部要求的负压为100Pa ,周围大气温度15℃,试求烟囱高度(不考虑烟气的流动)。
13、两块平行放置的大钢板,其间距远小于长和宽。
已知钢板的温度分别为727℃、27℃,黑度均为0 .8。
若视钢板为灰体,试计算其自身辐射、有效辐射及净传热量。
14、有一管径为10 mm ,长为10m 的小水平直管,管中水流速为0.131m/s ,室温下水的粘度为1.31×10-6 m 2/s ,试判定其管中水的流态并求其能量损失?15、已知空气流动速度场v x =6(x+y 2),v y =2y+z 3,v z =x+y+4z,试分析此流动状态是否连续?试计算(取n=1.1):燃料的应用成分;燃料的发热量;空气需要量;烟气生成量、成分、密度。
17、某气体燃料由CO 、CO 2和H 2组成,其中CO 占30%,CO 2占30%,H 2占40%,求1m 3该燃料燃烧时所需的空气量和产生的烟气量。
(不考虑空气中的水分,n=1.2)18、直径为d 1圆管经过两次突然扩大,直径放大到d 2。
问中间断面直径为何值时,局部阻力损失最小?此时损失为多少?三、 问答与分析1、 试述三种传输现象的普遍规律。
2、 简述流线的特点.3、 试说明串联、并联管路的特点,并分析减少流体阻力损失的途径4、 试分析影响对流换热、对流传质的主要因素。
5、 试分析某平壁炉墙的综合传热情况。
6、 简述对流传质中的薄膜理论。
7、 试比较相似原理在对流换热、对流传质中的应用。
8、 试简单说明速度边界层、温度边界层和浓度边界层。
9、 简单分析自然排烟烟囱的工作原理。
10、利用传质有关理论,分析炭粒、油粒的燃烧过程。
11、简单陈述影响燃烧温度的因素。