食品分析实验

合集下载

食品分析实验 面粉中灰分含量的测定

食品分析实验 面粉中灰分含量的测定

食品分析实验面粉中灰分含量的测定面粉是制作面食、面包等食品的常用原料之一。

面粉的质量直接关系到食品的口感和营养。

其中,面粉中的灰分含量是评价面粉质量的重要指标之一。

灰分含量是指将样品在高温下燃烧后残留的无机物质的质量与样品质量的百分比。

本实验旨在通过标准方法测定样品面粉中的灰分含量。

1. 实验仪器和试剂仪器:恒温干燥箱、电子天平、烘托瓶、高温炉、瓷坩埚及钳子、热手套、玻璃纤维滤纸。

试剂:硝酸银、氢氧化钠、无水乙醇、过硫酸铵。

2. 实验步骤2.1 准备样品将面粉样品取精确称量,称取1g到0.0001g的面粉样品,记录称量重量,标记编号。

2.2 灰分含量的测定先把玻璃纤维滤纸加入恒温干燥箱中烘干至180℃,取出冷却后称重,记录质量。

将取好的样品倒入加盖的烘托瓶中,放入恒温干燥箱,在105℃下干燥约2小时,待干燥至恒重。

2.2.2 烧灼样品将烘干后的烘托瓶取出,立即盖好,倒入瓷坩埚,用钳子夹住瓷坩埚,在高温炉中烧至550℃±25℃,保持2小时以上,直至灰色均匀。

2.2.3 冷却、称重及计算将烧灼后的瓷坩埚在高温炉中冷却,取出后放入干燥箱中冷却至室温,待样品完全冷却,倒出瓷坩埚中的残留物,将瓷坩埚、钳子及残留物一起称重,称重精度至0.0001g,记录质量。

计算公式:灰分含量(%)=(残留物质量-烘托瓶质量)/ 样品质量×100。

3. 实验注意事项3.1 样品的称量应精确,称量时应置于恒温与恒湿的环境中。

3.2 烧灼后瓷坩埚必须经过充分的冷却才能进行称量,否则称量有误。

3.3 在高温炉中加热时,要压紧瓷坩埚盖,以避免样品在高温下飞溅。

4. 结果与分析本实验的结果应该得出样品中的灰分含量。

根据行业标准,面粉中的灰分含量应该在0.5%至1.8%之间,不同品种的较为严格的灰分含量要求不同。

本实验能够直接测定面粉样品中的灰分含量,对面粉质量的评价具有相当重要的指导意义。

食品分析与检验重要实验讲解

食品分析与检验重要实验讲解

实验一:食品中亚硝酸盐的测定一、实验目的1. 掌握盐酸萘乙二胺比色法测定亚硝酸盐的原理2. 掌握分光光度计的使用、标准曲线的绘制及计算方法3. 了解分光光度计的构造二、实验原理样品经沉淀蛋白质,除去脂肪后,在弱酸条件下,亚硝酸盐与对氨基苯磺酸重氮化,再与盐酸萘乙二胺偶合形成紫红色染料,其最大吸收波长为538 nm,可测定吸光度并与标准比较定量。

三、仪器与试剂1. 仪器(1)分光光度计(2)小型胶肉机(3)恒温水浴锅2.试剂(1)亚铁氰化钾溶液(106g/L):称取106.0g亚铁氰化钾,用水溶解,并稀释至1000 mL。

(2)乙酸锌溶液(220g/L):称取220.0 g乙酸锌,先加30mL冰醋酸溶解,用水稀释至1000 mL。

(3)饱和硼砂溶液(50g/L):称取5.0g硼酸钠,溶于100mL热水中,冷却后备用。

(4)对氨基苯磺酸溶液(4g/L):称取0.4g对氨基苯磺酸,溶于100mL20 %(V/V)盐酸中,置棕色瓶中混匀,避光保存。

(5)盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶于100mL水中, 混匀后,置棕色瓶中,避光保存。

(6)亚硝酸钠标准溶液(200μg/mL):准确称取0.1000g于110℃~120℃干燥恒重的亚硝酸钠,加水溶解移入500mL容量瓶中,加水稀释至刻度,混匀。

(7)亚硝酸钠标准使用液(5.0 μg/mL):临用前,吸取亚硝酸钠标准溶液5.00mL,置于200mL容量瓶中,加水稀释至刻度。

四、实验步骤1. 提取称取2.50g经绞碎混匀的样品,于50mL烧杯中,加硼砂饱和溶液12.5mL饱和硼砂溶液,搅拌均匀,以70℃左右的水约300 mL 将试样洗入500mL容量瓶中,于沸水浴中加热15min,取出置冷水浴中冷却,并放置至室温。

2. 提取液净化在振荡上述提取液时加入5 mL 亚铁氰化钾溶液, 摇匀, 再加入5mL乙酸锌溶液,以沉淀蛋白质。

加水至刻度, 摇匀, 放置30min, 除去上层脂肪, 上清液用滤纸过滤, 弃去初滤液30mL,滤液备用。

食品分析实验报告

食品分析实验报告

食品分析实验报告食品分析实验报告引言:食品安全一直是人们关注的焦点,食品分析实验是确保食品安全的重要手段之一。

本实验旨在通过对食品样品的分析,了解其成分、质量和安全性,为食品生产和消费提供科学依据。

一、实验目的本实验的主要目的是通过食品分析技术,检测食品样品中的成分、营养素含量、添加剂和污染物,评估食品的质量和安全性。

二、实验方法1. 样品准备选择不同类型的食品样品,如牛奶、饼干、果汁等,分别进行采样和样品制备,确保样品的代表性和可靠性。

2. 成分分析利用化学分析方法,测定样品中的水分、蛋白质、脂肪、碳水化合物等成分的含量,以了解食品的基本组成。

3. 营养素分析通过色谱、质谱等技术,测定食品样品中的维生素、矿物质、氨基酸等营养素的含量,以评估食品的营养价值。

4. 添加剂检测采用色谱、液相色谱等方法,检测食品样品中的防腐剂、色素、甜味剂等添加剂的种类和含量,以确保食品的合法性和安全性。

5. 污染物检测使用质谱、气相色谱等技术,检测食品样品中的农药残留、重金属、真菌毒素等污染物,以评估食品的卫生质量和安全性。

三、实验结果与分析通过对不同食品样品的分析,得到了以下结果:1. 成分分析结果表明,牛奶样品中含有较高的蛋白质和脂肪,而饼干样品中主要是碳水化合物。

这些成分的含量与产品标签上的声明基本一致,符合食品质量标准。

2. 营养素分析结果显示,果汁样品中富含维生素C和矿物质,而牛奶样品中含有丰富的钙和维生素D。

这些营养素的含量与产品宣传中的营养成分表相符,符合食品的营养需求。

3. 添加剂检测结果表明,饼干样品中含有食品着色剂和甜味剂,而果汁样品中则未检测到添加剂。

这些添加剂的含量符合国家食品安全标准,不会对人体健康造成明显影响。

4. 污染物检测结果显示,食品样品中未检测到农药残留、重金属和真菌毒素等污染物。

这说明样品在生产和加工过程中得到了有效的控制和监测,具备较高的食品安全性。

四、实验结论通过食品分析实验,我们得出以下结论:1. 所选食品样品的成分和营养素含量基本符合产品标签和宣传中的声明,具备较高的质量和营养价值。

食品分析实验报告_3

食品分析实验报告_3

食品安全分析技术实验报告学院专业学号姓名实验日期:2012 年10 月25 日成绩教师签字实验名称气相色谱分析一、实验目的:了解色谱分析的原理和仪器结构,掌握气相色谱仪的启动、参数选择、仪器的用途和定性、定量分析方法。

二、实验内容:1气相色谱仪结构气象色谱仪一般由载气系统;进样系统;色谱柱和柱箱,包括恒温控制装置;检测系统;记录系统。

2气相色谱仪启动打开载气;设定均样,色谱柱和检测器的温度;将相关气体打开,点火;基线平稳则色谱仪启动完成。

3气相色谱仪的参数选择载气的流速(1ml/min,一般用分流装置控制);色谱柱温度;进样气的温度;检测器的温度;辅助气体(氢气,空气)的流速。

一般设置流速:尾吹气(N2):H2:空气=1:1:10等作为气象色谱仪选择的参数。

4气相色谱仪的用途适用于沸点在400度以下,能汽化,热稳定性好的所有有机物。

5气相色谱仪的定量方法:面积内标法、面积外标法、绝对标准曲线法、峰面积百分率法三、白酒中醇酸酯的测定(一)实验目的:学习气相色谱内标定量分析白酒中醇酸酯的方法(二)实验步骤:1、仪器:日本岛津气相色谱仪GC-2010,FID检测器,聚乙二醇2000色谱柱,柱长 30m 内径0.25mm 膜厚0.25μm2、溶液配制:用50%的乙醇溶液,分别配制2%的乙酸乙酯,异丁醇,乙酸,乙酸正戊酯溶液。

3、仪器操作条件:色谱柱温度:60℃以每分钟5度的速度升温到150度进样器温度:180℃检测器温度:180℃氮气流速:1mL/min分流比:1:204、组分定性分析:见图一(1)取白酒1μL注入色谱仪进行分离分析。

(2)取2%的乙酸乙酯,异丁醇,乙酸,乙酸正戊酯各100μL分别放入4个离心管中,再分别加入900μL50%的乙醇水溶液。

(3)分别取上述液体1μL注入色谱仪进行定性分析。

5、白酒中乙酸乙酯,异丁醇,乙酸的定量分析(1)取2%的乙酸乙酯,异丁醇,乙酸,乙酸正戊酯各100μL放入一个离心管中,加入600μL50%的乙醇水溶液。

食品分析基本测定的十二个实验

食品分析基本测定的十二个实验

实验一食品中水分含量的测定(常压干燥法)二、实验原理在一定温度(100~105℃)和压力(常压)下,将样品放在烘箱中加热干燥,蒸发掉水分,干燥前后样品质量之差即为样品的水分量。

三、实验仪器1.常压恒温干燥箱2.玻璃称量皿或带盖铝皿3.电子天平4.干燥器四、实验步骤1.将称量皿洗净、烘干,置于干燥器内冷却,再称重,重复上述步骤至前后两次称量之差小于2mg。

记录空皿中m1。

2.称取2.00~3.00g样品于已恒量的称量皿中,加盖,准确称重,记录重量m2。

3.将盛有样品的称量皿置于100~105℃的常压恒温干燥箱中,盖斜倚在称量皿边上,干燥2小时(在干燥温度达到100℃以后开始计时)。

4.在干燥箱内加盖,取出称量皿,置于干燥器内冷却0.5小时,立即称重。

5.重复步骤3、4,直至前后两次称量之差小于2mg。

记录重量m3。

六、注意事项1.固态样品必须磨碎,全部经过20~40目筛,混合均匀后方可测定。

水分含量高的样品要采用二步干燥法进行测定。

2.油脂或高脂肪样品,由于油脂的氧化,而使后一次的质量可能反而增加,应以前一次质量计算。

3.对于黏稠样品(如甜炼乳或酱类),将10g经酸洗和灼烧过的细海砂及一根细玻璃棒放入蒸发皿中,在95~105℃干燥至恒重。

然后准确称取适量样品,置于蒸发皿中,用小玻璃棒搅匀后放在沸水浴中蒸干(注意中间要不时搅拌),擦干皿底后置于95~105℃干燥箱中干燥4小时,按上述操作反复干燥至恒重。

4.液态样品需经低温浓缩后,再进行高温干燥。

5.根据样品种类的不同,第一次干燥时间可适当延长。

6.易分解或焦化的样品,可适当降低温度或缩短干燥时间。

实验二总灰分的测定二、实验原理一定量的样品炭化后放入高温炉内灼烧,使有机物质被氧化分解成二氧化碳、氮的氧化物及水等形式逸出,剩下的残留物即为灰分,称量残留物的质量即得总灰分的含量。

三、仪器与试剂1.实验仪器①电子天平②高温炉③电炉④瓷坩埚⑤坩埚钳⑥干燥器。

食品分析实验

食品分析实验

实验一食品中水分及干物质含量的测定1、目的通过本实验,学习并掌握食品水分及干物质测定的原理和操作方法。

2、原理食品中水分及干物质的测定方法很多,本实验主要介绍重量法中的烘干法。

食品水分系指在大气压100℃左右加热或在减压,于一定温度下加热后所失去的物质,即在一定温度和压力条件下,将样品加热干燥,其失去的重量即为水分的重量,剩余的重量即为干物质的量。

烘干法有常压干燥法,真空干燥法和红外线干燥法。

3、实验材料与仪器3.1材料苹果、土豆、辣椒、菠菜、海带、氯化钙。

3.2仪器扭力天平、培养皿、小刀、干燥器、常压干燥箱、真空干燥箱、红外线干燥箱。

4、操作步骤4.1常压干燥法(1)取称量瓶(培养皿)放入烘箱中以100--150℃烘干至恒重,放入干燥器中冷却,然后称重,记为W1(精确到小数点后两位数)(2)样品切碎混匀,取样品10.00-15.00g,放在培养皿中,称重,记为W2,将培养皿放入100--105℃烘箱中烘2-3小时,取出,放入干燥器中,冷却后称重,记为W3,再继续干燥0.5-1小时,冷却后称重直到两次重量之差小于2mg为止,最后重量记为Wn。

(3)计算样品含水量(%)=(W2-Wn)*100/(W2-W1)样品干物质含量(%)=(Wn-W1)*100/(W2-W1)4.2真空干燥法将样品置于真空干燥箱中,温度调至60-70℃,真空调到600mmHg柱,其它操作和计算同常压干燥法。

4.3红外线干燥法将样品置于红外线干燥箱中,其他操作和计算同常压干燥法。

实验二食品中总灰分及含铁量的测定1、目的通过本实验,掌握总灰分的测定方法及灰分测定后,测定微量元素的原理和方法,了解水溶性灰分与2、原理总灰分是指食品样品中矿物质和无机盐或其它混杂物质。

在一定的温度下把样品中的有机物质灼烧氧化后,将残余的白色物质称重,即得总灰分重量。

在酸性溶液中,灰分中的铁离子与硫氰酸钠作用,生成血红色的硫氰酸铁,溶液颜色的深浅与铁离子的浓度成正比,可以比色测定。

食品品质分析实验报告

食品品质分析实验报告

一、实验目的本次实验旨在通过一系列的化学和物理方法,对食品样品进行品质分析,评估其营养成分、安全性、卫生状况以及感官特性等,从而为食品的质量控制和市场监督提供科学依据。

二、实验材料与设备1. 实验材料:- 食品样品:大米、面粉、食用油、肉类、蔬菜、水果等。

- 标准试剂:酸碱指示剂、重金属检测剂、微生物检测剂等。

- 水分测定器、近红外光谱仪、高光谱成像分析系统、pH计、电子天平等。

2. 实验设备:- 磁共振成像仪(MRI)、核磁共振波谱仪(NMR)、近红外光谱仪(NIR)、高光谱成像系统(HSI)等。

三、实验方法1. 水分含量测定:- 使用水分测定器对样品进行直接测定。

- 使用近红外光谱仪对样品进行快速无损检测,建立水分含量模型。

2. 营养成分分析:- 使用核磁共振波谱仪分析样品中的脂肪、蛋白质、碳水化合物等成分。

- 使用近红外光谱仪分析样品中的蛋白质、脂肪、水分等成分。

3. 重金属含量检测:- 使用pH计检测样品的酸碱度。

- 使用重金属检测剂检测样品中的铅、汞等重金属含量。

4. 微生物检测:- 使用微生物培养方法检测样品中的细菌、霉菌等微生物数量。

- 使用荧光定量PCR技术检测样品中的特定病原微生物。

5. 感官评价:- 组织感官评价小组对样品的外观、口感、香气等进行评价。

- 使用评分系统对样品进行量化评价。

四、实验结果与分析1. 水分含量:- 通过水分测定器和近红外光谱仪检测,发现样品的水分含量在正常范围内。

2. 营养成分:- 核磁共振波谱仪和近红外光谱仪分析结果显示,样品中蛋白质、脂肪、碳水化合物等营养成分含量符合国家标准。

3. 重金属含量:- pH计检测显示,样品的酸碱度在正常范围内。

- 重金属检测剂检测结果显示,样品中的铅、汞等重金属含量低于国家标准。

4. 微生物检测:- 微生物培养方法检测结果显示,样品中的细菌、霉菌等微生物数量符合国家标准。

- 荧光定量PCR技术检测结果显示,样品中未检测到特定病原微生物。

食品分析实验报告

食品分析实验报告

食品分析实验报告摘要:本实验旨在使用一系列实验方法和技术,对食品样品进行分析并评估其品质和安全性。

采用了多种分析方法,包括质量分析、微生物检测和营养成分分析等。

通过分析结果,可以得出结论,从而对食品进行质量控制和安全监测,保障公众的食品安全。

引言:食品质量和安全一直是人们关注的重要问题。

随着食品供应链的延长和食品加工技术的不断创新,食品安全问题也日益凸显。

因此,开展食品分析实验以评估食品的质量和安全性就显得尤为重要。

实验方法:1. 质量分析:a. 外观检查:观察食品样品的外观,包括颜色、气味、形态等。

b. pH值测定:使用pH计测定食品样品的酸碱度,评估食品的酸度和碱性。

c. 残留农药检测:采用色谱法或质谱法,检测食品中可能存在的农药残留物。

2. 微生物检测:a. 总菌落计数:通过培养方法,对食品样品中存在的细菌进行定量检测。

b. 大肠菌群检测:使用MPN法检测食品样品中是否存在大肠杆菌等致病菌。

c. 霉菌和酵母菌检测:采用培养和显微镜观察的方法,检测食品中是否存在霉菌和酵母菌。

3. 营养成分分析:a. 水分含量测定:使用干燥法或卤素法测定食品样品的水分含量。

b. 蛋白质含量测定:通过Kjeldahl法或比色法测定食品样品中的蛋白质含量。

c. 脂肪含量测定:采用重量法或溶剂提取法测定食品样品中的脂肪含量。

d. 碳水化合物含量测定:通过差减法测定食品样品中的碳水化合物含量。

e. 维生素含量测定:使用高效液相色谱法或比色法测定食品样品中的维生素含量。

结果与讨论:经过一系列实验方法的分析后,得到了食品样品的多种质量和安全相关参数。

通过对外观、pH值和残留农药的检测,我们可以初步评估食品的质量和卫生状况。

微生物检测结果可以判断食品样品是否受到了细菌、霉菌和酵母菌的污染。

营养成分分析则可以了解食品样品中蛋白质、脂肪、碳水化合物和维生素等的含量,进一步评估其营养价值。

通过分析结果,可以得出结论,从而制定相应的食品质量控制和安全监测措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品比重的测定老师给的试题(答案是学生自己综合的。

):1、采用比重计测比重有哪些注意事项?①该法操作简便迅速,但准确性差.需要样液量多,且不适用于极易挥发的样品。

②操作时应注意不要让密度计接触量筒的壁及底部,待测液中不得有气泡。

③读数时应以密度计与液体形成的弯月面的下缘为准。

若液体颜色较深,不易看清弯月面下缘时,则以弯月面上缘为准。

2、真比重与视比重有何区别,实际应用中采用哪一种比重。

(相对密度:d)真比重是排除空隙的,测量时在水中量取体积;视比重也叫假比重或松散密度,包括空隙的体积,测量整体体积计算的。

一般采用视比重。

Ps:对于同一液体而言,真比重都是大于视比重的。

A.真比重(真密度):某一液体在20℃时的质量与同体积之水在4℃时的质量之比,称为真比重,以符号d420表示。

B.视比重(视密度):某一液体在20℃时的质量与同体积之水在20℃时的质量之比,称为视比重,以符号d2020表示。

此外,某一液体在t℃时的质量与同体积之水在t℃时的质量之比也称为视比重,以符号d t t表示。

视比重是在普通的密度瓶或密度计法测定中,以测定溶液对同温度水的相对密度比较方便,概而言之,表示某一液体在20℃时对同体积之水在20℃时的相对密度,实际应用中一般采用视比重。

3、比重计(糖锤度计、波美计、乳稠计)数据处理过程。

【测定温度不在(20℃),应对温度校正。

当测定温度高于20℃因液体积膨胀导致比重减小,即波美值(锤度)降低,故应加上相应的温度校正值(见下表),反之,则应减去相应的温度校正值。

】糖锤度计:例:在13℃时观测锤度为20.00查附表得校正值为0.38,则标准温度20℃时糖锤度为:20.00-0.38=19.62(°Bx)波美计:设观察波美计在23℃为18.84,23℃时温度改正数为0.15,则标准温度(20℃)0Be)时波美值为18.84+0.15=18.99('乳稠计:例1:16℃时20°/4°乳稠汁读数为3l°,则换算为20℃时应为:3l°- (20-16)×0.2=30.2°,即d420 = 1.0302或d1515 = 1.0302 + 0.002 = 1.0322例2:25℃时20°/4°乳稠汁读数为29.8°则换算为20℃时应为:29.8°+ ( 25 -20 ) ×0.2 =30.8°即d420 = 1.0308或d1515 = 1.0308 + 0.002 = 1.03284、折光计标尺上的百分数是以何种物质浓度标示的?可溶性固形物。

5、食品比重的测定采用密度瓶法的原理和操作步骤。

原理:20℃时分别测定充满同一密度瓶的水及试样的质量即可计算出相对密度,由水的质量确定密度瓶的容积即试样的体积,根据试样的质量及体积可计算密度。

操作步骤:①用水洗净比重瓶,再用乙醇、乙醚洗,烘干冷却后,精密称重。

②装满样液,加盖,置20℃水浴0.5小时,使内容物的温度达到20℃,用滤纸条吸去支管标线上的样液,盖上侧管帽后取出。

用滤纸把瓶外擦于,置天平室内30分钟后称重。

③将样液倾出,洗净比重瓶,装入煮沸30分钟并冷却到20℃以下的蒸馏水,按上法操作。

测出同体积20℃蒸馏水的质量。

6、食品比重的测定采用比重计的原理和操作步骤。

原理:根据阿基米德原理,物体在溶液中的失重(即受到的浮力)等于物体所排开的同体积液体重量。

(比重计的质量是一定的,液体的比重越大,比重计就浮得越高,从比重计的刻度可以直接读取比重数值或某种溶质的百分含量。

)操作步骤:①将均匀的样品倒入100ml 的干燥量筒中(样品的量大约为容器的80%,并用温度计测定样品温度)②将洗净擦干的比重计小心置入样品中,待静止后,再轻轻按下少许,待其浮起平衡为止,读取样品水平面与比重计相交处的刻度③校正为标准温度,必要时进行换算。

酱油总酸度的测定1、 酸度的概念。

总酸度、有效酸度、挥发酸度。

酸度测定的具体意义。

总酸度:食品中所有酸性成分总量。

包括未离解和已离解酸的浓度,可用标准碱滴定来测定,总酸度又称可滴定酸度。

有效酸度:被测溶液中H +浓度,准确地说应是溶液中H +的活度,所反映的是已离解酸的浓度,常用pH 值表示。

用酸度计(即pH 计)来测定。

挥发酸:食品中易挥的有机酸如甲酸、醋酸及丁酸等低碳链的直链脂肪酸。

通过蒸馏法分离,再用标准碱滴定来测定。

酸度测定的具体意义:①有机酸影响食品的色、香、味及其稳定性;②食品中有机酸是判断其质量的一个重要指标;③利用有机酸的含量与糖的含量之比,可判断某些果蔬的成熟度。

2、 酱油中总酸度测定原理。

根据酸碱中和原理,用碱液滴定试液中的酸,以酚酞为指示剂确定滴定终点,按碱液的消耗量计算食品中的总酸含量,反应式如下RCOOH + NaOH --→RCOONa + H 2O3、 酱油总酸度测定步骤。

【简述】样品处理—样品测定—空白试验【详述】样品处理:20mL 酱油+30ml 80℃蒸馏水+1克活性碳(于烧杯)→容量瓶→沸水浴——→冷却→定容→过滤→收集滤液样品测定(平行测定三次):5.00mL 滤液+30mL 水+2~3滴酚酞(于三角瓶) →滴定————→微红色30s 不褪色→记录NaOH 消耗量 空白试验:5.00mL 水+30mL 水+2~3滴酚酞(于三角瓶)→滴定————→微红色30s 不褪色→记录NaOH 消耗量4、 酱油中总酸度的测定试验中为什么滴定时要至出现微红色保持30s 不褪色?因为可能滴下的还没有与锥形瓶内的酸混合均匀,有些地方碱过量会显红色,看反应是否彻底进行,经过30s 的观察,若30s 不褪色,说明反应完全了。

或:因为氢氧化钠易吸收二氧化碳,生成碳酸钠,终点也许会提前变色但容易反色,所以要等30秒不退色即为终点。

或:因为醋酸是弱酸,等30s 是为了确保弱酸反应完毕。

还原糖的测定9、还原糖的定义。

直接滴定法测定还原糖原理。

定义:具有还原性的糖类称为还原糖。

【能够还原斐林试剂或托伦斯试剂(银氨溶液)的糖称为还原糖。

】原理:【讲义版】在沸腾条件下,用还原糖溶液滴定一定量的费林试剂,将费林试剂中的二价铜还原为一价铜,以亚甲基蓝为指示剂,稍为过量的还原糖立即使蓝色的氧化型亚甲基蓝还原为无色的还原型亚甲基蓝。

【ppt 版】将一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀; 这种沉淀很快与酒石酸钾反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。

在加热条5min NaOH NaOH件下,以次甲基蓝作为指示剂,用样液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀;这种沉淀与亚铁氰化钾络合成可溶的无色络合物;二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由兰色变为无色,即为滴定终点;根据样液消耗量可计算出还原糖含量。

P.S.:①碱性酒石酸铜甲液:硫酸铜+次甲基蓝.②碱性酒石酸铜乙液:酒石酸钾钠+ NaOH + 亚铁氰化钾10、直接滴定法测定还原糖,滴定必须在沸腾条件下进行,其原因是为什么?【ppt版】滴定不离开热源,保持沸腾。

让上升的蒸汽阻止空气侵入溶液中。

防止无色的四甲基蓝与空气中的氧结合,又变为蓝色。

【网络版】滴定必须在沸腾条件下进行,其原因一是可以加快还原糖与Cu2+的反应速度;二是次甲基蓝变色反应是可逆的,还原型次甲基蓝遇空气中氧时又会被氧化为氧化型。

此外,氧化亚铜也极不稳定,易被空气中氧所氧化。

保持反应液沸腾让上升的蒸汽阻止空气进入,避免次甲基蓝和氧化亚铜被氧化而增加耗糖量。

11、测定还原糖中注意事项有哪些?【版本一】①滴定必须在沸腾条件下进行,其原因一是可以加快还原糖与Cu2+的反应速度;二是次甲基蓝变色反应是可逆的,还原型次甲基蓝遇空气中氧时又会被氧化为氧化型。

此外,氧化亚铜也极不稳定,易被空气中氧所氧化。

保持反应液沸腾让上升的蒸汽阻止空气进入,避免次甲基蓝和氧化亚铜被氧化而增加耗糖量。

②滴定时不能随意摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防止空气进入反应溶液中。

③碱性酒石酸铜甲液和乙液应分别贮存,用时才混合,否则酒石酸钾钠铜络合物长期在碱性条件下会慢慢分解析出氧化亚铜沉淀,使试剂有效浓度降低。

【版本二】a、每批试样测试前必须做空白滴定,二次平行测定误差不得超过0.1mL。

b、空白滴定、预备滴定及正式滴定操作条件应保持一致。

滴定速度应以每秒1~2滴为宜。

热源要稳定,在正式滴定时,待试样沸腾后,标准糖液的滴定量必须控制在0.5~1mL之内,否则要重做。

整个滴定过程必须始终保持沸腾状态。

c、凡样品含糖量在6%以上时,应适当增加稀释倍数,否则会加大误差。

d、某些样品如酿造酱油在制品中常含有非糖还原物质,所以用本法测定结果略为偏高。

12、直接滴定法测定还原糖在样品处理时,可否能用铜盐作为指示剂?在样品处理时,不能用铜盐作为澄清剂,以免样液中引入Cu2+,得到错误的结果。

13、直接滴定法测定还原糖,在酒石酸铜乙液中为什么要加入少量亚铁氰化钾?为消除氧化亚铜沉淀对滴定终点观察的干扰,在碱性酒石酸铜乙液中加入少量亚铁氰化钾,使之与Cu2O生成可溶性的无色络合物,而不再析出红色沉淀,其反应如下:Cu2O + K4Fe(CN) +H2O=K2Cu2Fe(CN)6 +2KOHPs:碱性酒石酸铜乙液中的酒石酸钾钠的作用:既然实验得在碱性条件下进行,那么硫酸铜遇碱生成氢氧化铜沉淀后,不能使实验正常进行,必需使其(铜离子)在可溶状态下才行,酒石酸钾钠与铜离子络合就达到了目的。

14、直接滴定法测定还原糖,滴定时不能随意摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,其原因是为什么?滴定时不能随意摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防止空气进入反应溶液中。

(详细答案:滴定必须在沸腾条件下进行,其原因一是可以加快还原糖与Cu2+的反应速度;二是次甲基蓝变色反应是可逆的。

还原型次甲基蓝遇空气中氧时,又会被氧化为氧化型。

此外,氧化亚铜也极不稳定,易被空气中的氧所氧化。

保持反应液沸腾可防止空气进入。

避免次甲基蓝和氧化亚铜被氧化而增加耗糖量。

所以不能摇动锥形瓶以免氧气进入。

)15、直接滴定法测定还原糖,样品溶液预测的目的是什么?样品溶液预测的目的;一是本法对样品溶液中还原糖浓度有一定要求(0.1%左右),测定时样品溶液的消耗体积应与标定葡萄糖标准溶液时消耗的体积相近,通过预测可了解样品溶液浓度是否合适,浓度过大或过小应加以调整,使预测时消耗样液量在10 ml 左右;二是通过预测可知道样液大概消耗量,以便在正式测定时,预先加入比实际用量少1 ml 左右的样液,只留下1 ml 左右样液在续滴定时加入,以保证在1 分钟内完成续滴定工作,提高测定的准确度。

相关文档
最新文档