配网故障快速定位,隔离及恢复探析

合集下载

配电网故障定位的方法

配电网故障定位的方法

配电网故障定位的方法快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。

配电网故障定位快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。

那么,如何对配电网进行快速,准确的故障定位呢?一、配电网故障处理特点配电网络馈线上一旦发生单相、相间、三相等短路时,设备上的F1U及时将故障信息卜传至主站系统。

即变电站SCADAS系统,若变电站运行人员处理不了,再次将信息上传至上一级调度,经调度SCADAS系统分析进行定位、隔离、恢复。

一般来说,配电网故障处理有以下几个特点:(1)配电网不仪有集中在变电站内的设备,而且还有分布于馈线沿线的设备,如柱上变压器、分段开关、联络开关等。

信号的传输距离较远,采集相对比较困难,而且信号具有畸变的可能性,如继电器节点松动。

开关检修过程中的试分/合操作及兀’U本身的误判断等都会干扰甚至淹没有用信号,导致采集到的信号产生畸变。

(2)配电网设备的操作频度及故障频度较高,因此运行方式具有多变性,相应的网络拓扑也具有自身的多变性。

(3)配电网的拓扑结构和开关设备性能的不同。

对故障切除的方式也不同。

如多分段干线式结构多采用不具有故障电流开段开关和联络线开关,故障由变电站的断路器统一切断,这种切除方式导致了停电范围的扩大。

配电网故障定化是配电网故障隔离、故障恢复的前提,它对于提高配电网的运行效率、改善供电质量、减小停电范围有着重要作用。

二、配电网故障定位的方法1、短路故障定位技术方法配电网系统中短路故障是指由于某种原因,引起系统中电流急剧增大、电压大幅下降等不利运行工况,同时该故障发生后会进一步引发配电网系统中变配电电气设备损坏的相与相、相对地间的大电流短接故障。

按照短路发生部位,可以分为三相短路、两相短路、两相对地短路、以及单相对地短路故障。

由于配电网发生短路故障后,其电流、电压等特征故障参量较为明显,故障定位技术方法的实现相对较为简单,工程中最常用的是“过电流法”。

配电网故障诊断及处理措施

配电网故障诊断及处理措施

配电网故障诊断及处理措施摘要:配电网的安全运行与人们的生产、生活关系密切,也对电网公司的经营效益有直接的关系。

因此,我们需要通过对配电网常见故障进行分析,进一步提高电力工作者的运维技术,采取相应措施降低配电网故障率,保证电力供应的可靠性与安全性。

本文就配电网目前存在的故障简要的进行了分析,并提出了响应的处理措施,希望给相关人士一些建议。

关键词:配电网;故障诊断;处理措施1配电网的特点(1)一般情况下为了能够使得供电可靠性得到显著提升,对于目前的配电系统而言,在进行设计的过程中,都会使用一种闭环结构,对于配电馈线而言,都是利用联络开关来实现连接。

同时为了能够便于定位故障点以及整定继电保护,通常情况下,对于配电网的结构而言,均是呈现出严格的辐射状。

(2)在配电系统中,包含有很多类型的线路,对于这些线路而言,相比于输电线路来说,电阻和电抗之间的比值要大,同时并联电导以及容纳的大小较小,通常来说都被忽略掉。

(3)在配电系统里面,包含有很多的重合器以及环网开关等设备,同时这些设备是沿着配电馈线进行分布的,一般来说,这些设备都是处于比较恶劣的环境下进行工作。

(4)对于配电系统而言,其密切关联着用户的用电情况,所以配电系统一般都是处在一种三相不平衡运行状态。

(5)对于配电系统而言,其无需对电力系统的暂态稳定性进行过多的考虑,同时针对于负荷的动态特性也无需过多考虑。

(6)对于目前所使用的配电网而言,其还具备一个特点就是,针对于6~66KV这个等级范围的配电网来说,通常情况下所使用的接地方式主要存在两种,其中一种是中性点不接地,另外一种就是经消弧线圈接地。

对于该系统而言,严格的说其为小电流接地系统。

对于这种接地系统而言,所出现的故障大部分均为单相接地短路故障,这种故障最大的一个特点就是当出现单相接地故障的时候,并不会构成一个低阻抗短路回路,具有较小的故障电流,也就会使得电网线电压还是处于对称,可以实现一段时间的供电,能够看得出来系统的可靠性很高。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析随着信息技术的迅猛发展,智能配电网自愈控制技术成为了电力系统领域的研究热点。

智能配电网自愈控制技术可以对电力系统进行快速故障识别、定位和恢复,提高了电力系统的可靠性和安全性。

本文将就智能配电网自愈控制技术的技术原理、关键技术和发展趋势进行分析。

一、技术原理智能配电网自愈控制技术是指在配电网中通过实时监测和分析系统运行状态,自动识别故障点以及对故障点进行快速定位和隔离的技术。

其核心原理是利用先进的传感器和智能控制算法,对配电网中的各个节点进行实时监测,并根据监测数据进行分析和处理,快速响应并自动对故障进行处理,以实现故障自愈的目的。

具体来说,智能配电网自愈控制技术主要包括以下几个方面的技术原理:1. 实时监测:利用先进的传感器和监测设备对配电网中的电压、电流、功率等参数进行实时监测,并将监测到的数据传输至中心控制系统。

2. 数据分析:中心控制系统利用先进的数据分析算法对监测数据进行处理和分析,识别出故障点并给出相应的控制命令。

3. 快速定位:一旦发生故障,中心控制系统能够快速定位故障点所在位置,并告知配电网中的开关设备进行相应操作。

4. 隔离恢复:中心控制系统通过远程操控配电网中的开关设备,将故障点进行隔离,并恢复其他正常运行的回路,以实现故障自愈。

二、关键技术智能配电网自愈控制技术的实现离不开一系列关键技术的支持,包括传感技术、通信技术、数据处理技术、控制算法等。

这些关键技术的发展和创新直接影响着智能配电网自愈控制技术的性能和应用效果。

1. 传感技术:智能配电网自愈控制技术需要大量的传感器来实现对配电网运行状态的实时监测,因此传感技术的发展和应用至关重要。

高精度、低成本的传感器技术能够有效提高系统的监测性能和可靠性。

2. 通信技术:配电网中各个设备之间需要进行实时通信,以便中心控制系统能够迅速响应并下达控制命令。

因此通信技术的稳定性和高效性对智能配电网自愈控制技术来说至关重要。

10kV配电线路故障快速定位隔离装置的探究

10kV配电线路故障快速定位隔离装置的探究

10kV配电线路故障快速定位隔离装置的探究摘要:目前一些供电企业的配电系统的运行方式都是利用中性点不接地或者是经消弧线圈接地运行方式,若是在线路中发生故障,那么将会很难查找到故障所在,从而影响配电系统的运转。

所以必须要采取相关措施进行改进处理。

关键词:10kV;配电线路;快速定位隔离装置1快速定位隔离装置1.1快速定位隔离装置的特点对于10kV配电线路中,快速隔离装置的主要功能是,在10kV配电线路中若是出现了单相接地故障,那么便可及时的对其进行检测,迅速确定故障发生的位置,从而来对发生故障的区域进行隔离处理,这样能够有效的保证一些非故障区域能够正常供电运行。

若是在10kV配电线路中出现了永久性的相间短路,那么隔离装置将会自动寻找出故障点所在,并能够及时的对故障带进行隔离,同时能够恢复非故障带的正常用电。

另外,在10kV配电线路柱上的开关以及环网柜的开关能够实现远程遥控。

若是线路发生了停电的现象,但是其线路监测系统可以照常工作,可以切断或闭合线路柱上的开关以及环网柜的开关。

快速隔离装置同时也能够进行线路电流的实时监测与显示,对于线路中运行环境及温度等状况进行监控。

1.2快速定位隔离装置构成对于10kV配电线路快速隔离装置的构成主要是由主机、软件、监测系统以及线路电压互感器等部分组成。

若是相应的中性点非直线接地配电系统出现了单相接地故障,或者是出现短路事故,那么监测控制终端将会利用线路柱上的开关采集到相应的电流数据,主要是在线路柱上开关中含有相应的电流互感器,以此能够对采集短路的电流以及零序电流。

在采集电流数据之后便会利用GPRS无线通信系统将其输送到主机,主机会对采集的数据进行分析,从而来查找到具体的故障位置,并且会下达切断线路支线或者分线段柱开关的命令,主要是利用GPRS 无线通信方式向监测控制终端下达一些命令,以此来切除并且对故障区域进行隔离,保证非故障区域的可靠稳定供电。

在故障隔离的过程中,最为主要的便是对10kV配电线路运行状况的监测,因此必须要加强相关调度人员的责任心,使其能够认真严谨的工作。

配电网故障定位方法的探讨

配电网故障定位方法的探讨

配电网故障定位方法的探讨摘要:随着社会的不断发展,对电能质量以及供电可靠性的要求越来越高,确保供电的经济性、安全性以及可靠性成为当前电力企业面临的重要问题。

配电网的结构更为复杂,分支线众多,容易发生各种类型的故障,定位较为困难。

本文就配电网现阶段故障定位的方法进行对比,提出适合于配网自身性质的定位方法,供同行参考和借鉴。

关键词:配电网;故障定位;简述1.引言随着社会的不断发展,用电用户对电能质量以及供电可靠性的要求越来越高,当配电网线路发生故障后,供电部门需要快速对故障进行查找、隔离并恢复供电。

相对于输电网,配电网的结构更加复杂,分支线众多,所处环境较为恶劣,容易发生各种类型的故障,准确定位较为困难,据统计,用户停电事故中有近80%是由于配电网的故障引起,因此,实现配电网故障后的快速定位,对于提高配电网供电可靠性指标有着重要的意义。

2 配电网故障定位分类和方法现有的配电网故障定位的方法可分为两大类:一类是配电网故障区段定位,另一类是配电网故障精确定位。

其中,配电网故障区段定位是利用配网的自动化装置来监测网络各项参数的变化来进行故障判断的,其定位结果限定在两个自动化装置之间,而具体的故障点还需要其他定位方法或人工巡线确定。

配电网故障精确定位指的是不局限于现有的自动化装置的监测信息,而利用其他方法或安装相应定位装置来实现故障的精确定位,定位结果的误差较小,往往在百米级。

2.1 配电网故障定位分类(1)分布控制式定位配电网的分布控制式定位,该模式的系统较为独立,不依赖于配电自动化主站的统一调配,当线路发生故障时,各个分段开关之间依靠设定好的整定动作顺序来对故障线路进行隔离,以及恢复非故障线路的供电,或者通过配电自动化终端设备之间的相互通讯,对线路进行监控,实现故障区段的定位。

(2)集中控制模式定位由各配电终端单元采集配网各电压电流等数据信息后上传至配调中心(配电网主站),然后经由主站系统进行综合分析,判断出故障区段后,由自动化中心统一调度处理,对故障线路两端的开关下达动作指令,断开故障区段完成故障隔离。

2024电网故障定位与隔离配网自动化

2024电网故障定位与隔离配网自动化

电网故障定位与隔离配网自动化目录•配网自动化概述•电网故障类型及原因分析•电网故障定位技术与方法•电网故障隔离技术与策略•配网自动化在故障定位与隔离中应用•电网故障定位与隔离技术发展趋势PART01配网自动化概述配网自动化定义与发展配网自动化定义利用现代电子技术、通讯技术、计算机及网络技术,将配电网实时信息、离线信息、用户信息、电网结构参数、地理信息进行集成,构成完整的自动化管理系统,实现配电系统正常运行及事故情况下的监测、保护、控制和配电管理。

配网自动化发展随着电力需求的不断增长和电网规模的扩大,配网自动化技术得到了快速发展。

从最初的就地控制、重合器时序整定配合,发展到基于馈线终端设备(FTU)的故障检测、定位、隔离和非故障区段恢复供电的馈线自动化(FA)系统,再到当前的配电自动化系统(DAS)与配电管理系统(DMS)一体化。

配网自动化系统功能负荷管理功能包括负荷监控、负荷控制、负荷预测等。

故障处理功能包括故障检测、定位、隔离和非故障区段恢复供电等。

配电SCADA功能实时数据采集、远程控制、越限报警、人工置数、事件顺序记录(SOE)等。

配电网络分析功能包括网络拓扑、状态估计、潮流计算、短路电流计算、电压/无功优化、负荷预测、故障定位和隔离等。

高级应用功能包括电能质量监测、分布式电源接入与控制、电动汽车充放电管理等。

配网自动化技术应用范围适用于10kV 及以下电压等级的配电网络,包括城市电网、农村电网及企业电网等。

可广泛应用于架空线、电缆、环网柜、开闭所、配电室、箱式变电站等配电设备。

适用于多种中性点接地方式:中性点不接地、经消弧线圈接地、经电阻接地等。

PART02电网故障类型及原因分析短路故障断线故障过载故障接地故障常见电网故障类型01020304包括单相接地短路、两相短路、两相接地短路和三相短路,是电网中最常见的故障类型。

输电线路因外力或自身原因断裂造成的故障,可能导致供电中断。

电网中设备或线路长时间超过额定负载运行,导致设备损坏或线路跳闸。

配电网故障区段定位综述

配电网故障区段定位综述

• 76•配电网网络结构复杂,较输电线路而言,配电线路供电路径较短,传统的故障测距方法难以用于配电网故障定位。

本文结合配电网特点,首先对常用配电网故障区段定位方法原理进行阐述,然后分析各故障区段定位方法优缺点及研究现状。

引言:配电网是输电网与电力用户之间的衔接枢纽,主要起电能分配作用,其安全可靠运行是保证用户供电可靠性、改善电能质量的关键。

与输电网相比,配电网主要涉及0.4~110kV 的中低压网络,单相接地是配电网出现概率最大的故障类型,占配电网总故障的70%以上。

当配电网发生故障时,要求尽快进行故障定位,进而完成故障隔离,提高供电可靠性。

目前,配电网故障定位包括精确定位(即故障测距)和故障区段定位两类,随着配电网自动化水平的不断发展,配电网故障区段定位方法可以确定故障馈线段,即故障处于哪两个开关之间,本文主要对配电网故障区段定位方法进行阐述。

故障区段定位方法主要包括两大类:集中控制模式和分布式控制模式。

关设备需要具有电动操作机构。

在线路故障断路器跳闸后,各馈线监控终端通过点对点通信进行信息交互,由馈线监控终端分析判断故障区段并下达开关动作指令。

以上两种控制模式由于没法掌握整个配电网的运行状态,故在故障后进行网络重构时不能从全局考虑,制定最优执行方案。

图2 开关动作顺序2 集中控制模式集中控制模式借助配调中心(主站)将从各配电终端单元采集过来的信息进行综合分析,确定故障区段,再由主站下达开关分合闸命令。

该模式能够掌握整个配电网运行状态,解决了就地控制模式下故障后网络重构不全局最优问题,备受好评。

集中控制模式下主站故障区段定位算法主要有两种,一种以神经网络、遗传算法等人工智能算法为主进行故障区段定位;另一种根据配网拓扑结构和故障电流信息进行故障区段定位的网络结构矩阵算法。

表2 集中控制模式下定位算法类 型人工智能算法网络结构矩阵算法 常用算法遗传算法、神经网络算法、Petri网理论等网基结构矩阵、网形结构矩阵等优点具有一定的容错性判据简单,计算时间段缺点判据复杂,计算时间长容错性差2.1 人工智能算法图3 基于智能算法的配电网故障区段定位原理图如图3所示,配电网各馈线终端单元(FTU )向配电主站上传故障信息,由主站对故障信息采用智能算法进行计算分析,判断故障区段,然后向相应馈线终端单元下达遥控命令。

配电网故障定位和隔离技术

配电网故障定位和隔离技术
North China Electric Power University
page13
小结
1、配电网自动化设备 2、基于重合器的配电网故障隔离技术 3、基于分段器的配电网故障隔离技术 4、基于终端和主站配合的故障隔离技术
North China Electric Power University page14
一、配电网自动化设备
配电自动化设备——重合器、分段器和馈线FTU 1、自动重合器 —— 一种能够检测故障电流、在给定时间内
断开故障电流并能够进行给定次数重合的具有“自具”能力的控 制开关。现有的重合器通常可以重合三到四次。
North China Electric Power University page3
配电网故障定位和隔离技术有三种 1、基于重合器的技术
vCB1为线路在变电站的出口断路器 B、C、D为线路上安装的重合器
North China Electric Power University page6
二、基于重合器的配电网故障隔离技术
v优点:不需要通信,节省通信成本 Ø配电线路短,重合器的定值很难整定 Ø没有通信,须到现场逐个查看,调度中心也无法控制重合器 Ø单相接地故障电流很小,重合器无法实现故障隔离
Ø配合变电站的选线装置解决单相接 地故障定位和隔离问题
North China Electric Power University page9
四、基于终端和主站配合的配电网故障隔离技术
North China Electric Power University page10
四、基于终端和主站配合的配电网故障隔离技术
谢谢!
配电网故障定位和隔离技术
North China Electric Power University
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】当前形势下人民对于电力的需求越来越大,随着社会的不断发展和进步,人们日常工作和生活对于电能的需求也在不断提升,现在我国科学技术不断发展,电网设施得到了改善和技术水平得到了进一步的提高,广大社会用户更加关注于供电的质量和可靠性。

在配网发生故障时应提高管理维修水平,及时的进行故障定位、隔离和供电恢复。

【关键词】配网故障定位隔离
配电系统比较复杂,在发生故障时需要提高配电的管理和维修水平,在出现配网故障时可以及时的对故障进行定位、隔离,并且恢复供电。

本文简要的探讨了对配网故障进行定位、隔离和恢复的工作,以提高供电的可靠性和质量。

1 处理配电网故障的三个过程
处理配网故障主要有三个过程,即定位故障、隔离故障和恢复供电。

首先定位故障,在出现故障时要及时的进行定位工作,这个程序一般是利用配网的继电自动化和断路器来完成,一般持续的时间只有几毫秒。

这种模式是网络式的保护程序,一般利用对等模式的网络系统,或者是主从模式的通信网络,来解决故障快速性和选择性的缺点,从而可以在出现故障时在离故障点比较近的位置来实施跳闸。

其次隔离故障。

随着近年来经济的发展,对配电网的要求也更高,其发展也更为复杂,大多数配电网是采用电源供电或环网供电模式,在发生故障时要及时的隔离故障,保证故障发生在最小的范围之内,其他的非故障区域可以保持正常的供电。

进行这项工作时持续的时间会稍微长一些,达到秒或分钟级。

最后恢复故障。

在对故障点进行准确的定位和隔离之后,要进行排除故障的工作。

这项工作所需要的时间会比较长,一般为十几分钟或者几个小时。

配电网的线路分支较多,结构也很复杂,恢复故障也需要采取更为有效的方法。

2 快速定位配电故障的主要方法
2.1 利用重合器和分段器来定位故障的方法
在发生配电故障的时候,即环网在辐射状或开环运行的故障时,通过重合器和分段器可以将故障进行定位。

这种方法原理比较简单。

重合器安装在配网线路上,在检测的过程中如果出现了故障电流,导致发生了自动跳闸的问题,而重合器在一段时间之后会自动的重合。

分段器如果没有达到预期的次数,故障会尽快的被解除,重合器需要一直稳定在合闸状态。

并且在经过一定时间之后会恢复到预定状态,从而为下次出现故障做好准备。

采用这种方法对设备的要求很高,并且还需要分清是变电所还是分段重合器出现的故障。

2.2 利用scada以及ftu 配合法来定位故障
scada 系统是信息数据的监控和采集系统。

这项系统对于电力行业具有重要的作用,相关的技术发展也很成熟,对于现场运行的很多设备可以进行管理和控制,并且有效的采集、测量数据信息并进行调节。

其工作的原理是通过数据的采集系统把取得的参数和系统运行的状况来做结果比较,通过调节气动或是电动机的自动调节系统,来纠正一些偏离了设计的运行参数。

使用ftu的参数并且经过实际的运算,可以准确的定位故障,被称为ftu故障定位方法。

对于辐射状网和树状网以及其他一些开环运行的环网结构,在分析发生故障的区域时要根据沿线的电流是否存在故障,以此来判断故障的位置。

如果是环网的运行状态,如果发生了断路故障,会从不同电源点流向故障点。

2.3 根据故障指示器和智能故障定位仪来定位故障
故障指示器安装在线路上,当故障发生时,线路电路发生突变,引起故障指示器翻牌。

抢修人员在查找线路故障时,查找距离变电站最远的一个翻牌的故障指示器,即可定位故障在该指示器的后端。

智能故障定位仪的原理和故障指示器的原理类似,安装在线路上。

该定位仪加装了通信模块,当故障发生时,将第一个发生电流突变的故障定位仪的安装位置以手
机短信的方式发送给抢修人员,抢修人员即可定位到故障发生的大概位置。

定位仪的通信电源通过太阳能电池板供电。

笔者所在单位这两者使用较多,并且取得了较好的效果。

特别是智能故障定位仪的应用,大幅地提升了故障定位的精度,缩短了复电时间。

3 对配电系统进行隔离故障、恢复供电的措施
在配电网发生故障的时候,按照发生故障的电子系统中的功率传输方向,也就是根据和电源干线的远近距离,可以将整个系统分成三个部分,即故障的上游区、发生故障区和故障的下游区。

对于故障上游区域,在干线支路上找到电源干线,将电源干线上的断路器合上,这样就可以将故障上游区的供电恢复。

对于发生故障的区域,可以将故障线路两边的开关拉开,隔离故障区域,并且通知专业的电路修理人员来处理。

在故障下游区域即使合上了电源干线的断路器,依然不会将非故障区域的供电恢复,仍然需要联络开关来将供电区域恢复,在故障之后将供电恢复的措施主要是针对故障的下游区域,常见的方法是在隔离故障之后,尽可能少的操作开关次数,并且控制尽短的恢复时间,为非故障区域尽快尽多的恢复供电。

我们提倡线路间进行末端环网并对线路进行合理分段,在故障发生时,进行环网供电,断开故障点两端的第一个开关,即可对故障进行快速的隔离。

在实际的运用中vsp5馈线自动化开关可以进行线路改造,通过配电线路的自动开关和接地保护开关可以实现两回线路之间的供电自动化,可以自动的隔离配网故障,并且自动的恢复非故障段的供电,缩小了故障线路的停电范围,提高了供电质量和可靠性。

馈线自动化由三部分组成,即真空负荷开关、电源变压器和故障搜查控制器。

这套系统是以线电压和零序电压的时限为判断依据,和变电站的出线开关相配合,将短路故障和单相接地故障等问题自动的隔离。

4 结语
经过大量的实际操作,配网的安装故障检测技术也得到了很多改进,可以在发生故障时迅速的进行判断,将故障区域进行隔离,尽快的将无故障线路的供电恢复,减少停电的面积,将线路巡检人员的工作强度降低,在发生故障时可以加快处理速度,提高配电的管理水平,有效的提高供电的可靠性和质量。

相关文档
最新文档