无损变换和无迹Kalman滤波算法

合集下载

卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。

它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。

在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。

卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。

卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。

通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。

卡尔曼滤波算法包括两个主要步骤:预测和更新。

在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。

在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。

卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。

此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。

尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。

因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。

通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。

本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。

希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。

1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。

首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。

卡尔曼滤波器分类及基本公式

卡尔曼滤波器分类及基本公式

式上,卡尔曼滤波器是5条公式。
对于解决很大部分的问题,他是最优,效率最高甚至 是最有用的。他的广泛应用已经超过了30年,包括机器人 导航、控制,传感器数据融合甚至在军事方面的雷达系统 以及导弹追踪等等。而近年来更被应用于计算机图像处理,
例如头脸识别、图像分割、图像边缘检测等等。
卡尔曼滤波的特点
卡尔曼滤波的特点
你从温度计那里得到了 k时刻的温度值,假设是25 度,同时该
值的偏差是 4 度。
卡尔曼滤波的基本方程
例子
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值
23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信 温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。
52 因为, 2 2 H 0.78(*公式三),所以我们可以估算出K时 H 5 4 刻的最优温度值为:23 0.78* (25 23) 24.56 度(*公式四)。
度。
卡尔曼滤波的基本方程
例子
假如我们要估算 k 时刻的实际温度值。首先你要根据 k-1 时刻
的温度值,来预测 k 时刻的温度(K时刻的经验温度)。因为 你相信温度是恒定的,所以你会得到 k 时刻的温度预测值是跟 k-1 时刻一样的,假设是 23 度(*公式一),同时该值(预测 值)的高斯噪声的偏差是 5 度(5 是这样得到的:如果 k-1 时 刻估算出的最优温度值的偏差是 3,你对自己预测的不确定度 是 4 度,他们平方相加再开方,就是 5(*公式二)) 。然后,
Qk
为过程噪声的协方差,其为非负定阵; 为测量噪声的协方差,其为正定阵。
Rk
1 基于离散系统模型的卡尔曼滤波的基本公式 1.3 离散型卡尔曼滤波方程的一般形式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。

2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。

3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。

4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。

5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。

卡尔曼滤波原理

卡尔曼滤波原理

卡尔曼滤波原理卡尔曼滤波(Kalman Filtering)是一种用于估计、预测和控制的最优滤波方法,由美国籍匈牙利裔数学家卡尔曼(Rudolf E. Kalman)在1960年提出。

卡尔曼滤波是一种递归滤波算法,通过对测量数据和系统模型的融合,可以得到更准确、更可靠的估计结果。

在各种应用领域,如导航、机器人、航空航天、金融等,卡尔曼滤波都被广泛应用。

1. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于状态空间模型,将系统的状态用随机变量来表示。

它假设系统的状态满足线性高斯模型,并通过线性动态方程和线性测量方程描述系统的演化过程和测量过程。

具体而言,卡尔曼滤波算法基于以下两个基本步骤进行:1.1 预测步骤:通过系统的动态方程预测当前时刻的状态,并计算预测的状态协方差矩阵。

预测步骤主要是利用前一时刻的状态和控制输入来预测当前时刻的状态。

1.2 更新步骤:通过系统的测量方程,将预测的状态与实际测量值进行融合,得到最优估计的状态和状态协方差矩阵。

更新步骤主要是利用当前时刻的测量值来修正预测的状态。

通过不断迭代进行预测和更新,可以得到连续时间上的状态估计值,并获得最优的估计结果。

2. 卡尔曼滤波的优势卡尔曼滤波具有以下几个优势:2.1 适用于线性系统与高斯噪声:卡尔曼滤波是一种基于线性高斯模型的滤波方法,对于满足这些条件的系统,卡尔曼滤波能够给出最优的估计结果。

2.2 递归计算:卡尔曼滤波是一种递归滤波算法,可以在每个时刻根据当前的测量值和先前的估计结果进行迭代计算,不需要保存过多的历史数据。

2.3 最优性:卡尔曼滤波可以通过最小均方误差准则,给出能够最优估计系统状态的解。

2.4 实时性:由于卡尔曼滤波的递归计算特性,它可以实时地处理数据,并及时根据新的测量值进行估计。

3. 卡尔曼滤波的应用卡尔曼滤波在多个领域都有广泛的应用,以下是一些典型的应用例子:3.1 导航系统:卡尔曼滤波可以用于导航系统中的位置和速度估计,可以结合地面测量值和惯性测量传感器的数据,提供精确的导航信息。

kalman滤波器算法原理

kalman滤波器算法原理

卡尔曼滤波总结假设条件:系统的状态由图1所给出的模型决定。

假定),1(k k+Φ,),1(k k+Γ,)0(P 和)(k Q 是已知的,并且是确定性的。

而观测模型由图2给出,其中)1(+kH 和)(k R 也是已知的,并且是确定性的。

它们可以写为,1,0),(),1()(),1()1(=+Γ++Φ=+k k w k k k x k k k x 状态方程)1()1()1()1(++++=+k v k x k H k z 量测方程)1(+k w激励)1(+k图1 一个离散-时间线性系统的状态方程和输出方程的矢量结构图观测转移矩阵 )1(+k xv (k+1)矢量求和激励)1(+k观测矢量 观测误差新状态矢量图2 观测模型的矢量结构图卡尔曼滤波算法:滤波估计由Kalman 所给出的最优线性滤波估计)1|1(ˆ++k k x是由下面的递归矩阵公式决定的,即,0)0|0(ˆ)]|(ˆ),1()1()1()[1()|(ˆ),1()1|1(≥=+Φ+-++++Φ=++k xk k xk k k H k z k K k k xk k k k x 初始条件这里)1(+kK 称为卡尔曼增益卡尔曼增益卡尔曼增益的表达式为,1,0,)]1()1()|1()1([)1()|1()1(1=+++++⨯++=+-k k R k H k k P k H k H k k P k K TT其中)|1(k kP +表示单步预测误差协方差矩阵。

单步预测误差协方差矩阵(单步性能)1,0)0()0|0(),1()(),1(),1()|(),1()|1(==+Γ+Γ++Φ+Φ=+k P P k k k Q k k k k k k P k k k k P TT,初始条件滤波误差的误差协方差矩阵(协方差递归形式)1,0),|1()]1()1([)1|1(=+++-=+k k k P k H k K I k k P +性能评价(系统状态的卡尔曼滤波估计的协方差矩阵)1,0],))1|1(ˆ)1(ˆ))(1|1(ˆ)1([()1|1(=++-+++-+=+k k k x k x k k xk x E k k P T+11|11|----Γ+Φ=k k k k k k kW XXkkk k V XH Z +=式中:k X —— 是一个1⨯n 维矢量,称为k t 时刻的状态矢量。

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理

卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理所有滤波问题其实都是求感兴趣的状态的后验概率分布,只是由于针对特定条件的不同,可通过求解递推贝叶斯公式获得后验概率的解析解(KF、EKF、UKF),也可通过大数统计平均求期望的方法来获得后验概率(PF)。

1 KF、EKF、UKF1.1 定义KF、EKF、UKF 都是一个隐马尔科夫模型与贝叶斯定理的联合实现。

是通过观测信息及状态转移及观测模型对状态进行光滑、滤波及预测的方法。

而KF、EKF及UKF的滤波问题都可以通过贝叶斯估计状态信息的后验概率分布来求解。

Kalman在线性高斯的假设下,可以直接获得后验概率的解析解;EKF是非线性高斯模型,通过泰勒分解将非线性问题转化为线性问题,然后套用KF的方法求解,缺陷是线性化引入了线性误差且雅克比、海塞矩阵计算量大;而UKF也是非线性高斯模型,通过用有限的参数来近似随机量的统计特性,用统计的方法计算递推贝叶斯中各个积分项,从而获得了后验概率的均值和方差。

1.2 原理KF、EKF、UKF滤波问题是一个隐马尔科夫模型与贝叶斯定理的联合实现。

一般的状态模型可分为状态转移方程和观测方程,而状态一般都是无法直接观测到的,所以时隐马尔科夫模型。

然后,它将上一时刻获得的状态信息的后验分布作为新的先验分布,利用贝叶斯定理,建立一个贝叶斯递推过程,从而得到了贝叶斯递推公式,像常用的卡尔曼滤波、扩展卡尔曼滤波、不敏卡尔曼滤波以及粒子滤波都是通过不同模型假设来近似最优贝叶斯滤波得到的。

这也是滤波问题的基本思路。

所有贝叶斯估计问题的目的都是求解感兴趣参数的后验概率密度。

并且后验概率的求解是通过递推计算目标状态后验概率密度的方法获得的。

在贝叶斯框架下,通过状态参数的先验概率密度和观测似然函数来求解估计问题;在目标跟踪背景下(隐马尔科夫模型),目标动态方差决定状态转移概率,观测方程决定释然函数。

一般化的整个计算过程可以分为3步:01. 一步状态预测:通过状态转移概率及上一时刻的后验概率算出一步预测概率分布。

无迹卡尔曼滤波(UnscentedKalmanFilter)

无迹卡尔曼滤波(UnscentedKalmanFilter)

⽆迹卡尔曼滤波(UnscentedKalmanFilter)
⽆迹卡尔曼滤波不同于扩展卡尔曼滤波,它是概率密度分布的近似,由于没有将⾼阶项忽略,所以在求解⾮线性时精度较⾼。

UT变换的核⼼思想:近似⼀种概率分布⽐近似任意⼀个⾮线性函数或⾮线性变换要容易。

原理:
假设n维随机向量x:N(x均值,Px),x通过⾮线性函数y=f(x)变换后得到n维的随机变量y。

通过UT变换可以⽐较⾼的精度和较低的计算复杂度求得y的均值和⽅差Px。

UT的具体过程如下:
(1)计算2n+1个Sigma点及其权值:
根号下为矩阵平⽅根的第i列
依次为均值、⽅差的权值
式中:
α决定Sigma点的散步程度,通常取⼀⼩的正值;k通常取0;β⽤来描述x的分布信息,⾼斯情况下,β的最优值为2。

(2)计算Sigma点通过⾮线性函数f()的结果:
从⽽得知
由于x的均值和⽅差都精确到⼆阶,计算得到y的均值和⽅差也精确到⼆阶,⽐线性化模型精度更⾼。

卡尔曼滤波原理及其应用

卡尔曼滤波原理及其应用

卡尔曼滤波卡尔曼滤波公式推导及应用摘要:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

它能够从一系列的不完全及包含噪声的测量中,估计动态系统状态。

对于解决大部分问题,它是最优、效率最高甚至是最有用的。

它的的广泛应用已经超过30年,包括机器人导航、控制,传感器数据融合甚至在局势方面的雷法系统及导航追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

关键字:卡尔曼滤波导航机器人一Kalmanl滤波器本质上来讲,滤波就是一个信号处理与变换(去除或减弱不想要的成分,增强所需成分)的过程,这个过程既可以通过硬件来实现,也可以通过软件来实现。

卡尔曼滤波属于一种软件滤波方法,基本思想是:以最小均方差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方差的估计。

二Kalman滤波起源及发展1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。

斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与Kalman and Bucy (1961)发表.卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。

扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UT 变换
核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。

假设n 维向量x 经过一个非线性变换得到y ,即()y g x =,x 的均值为ˆx
,协方差矩阵为xx P 。

步骤1:根据x 的均值ˆx
和协方差矩阵xx P ,采用一定的采样策略(此处采用对称采样)得到sigma 点集{}i χ。

0ˆˆˆ1,2,...,i i i n i x
x
x i n χχχ+==+=-=
其中,i 表示矩阵的第i 列。

(0)(0)2()
()/()
/()(1)
1/2(),1,2,...,21/2(),
1,2,...,2m c i m i c W n W n W n i n
W n i n λλλλαβλλ=+=++-+=+==+= 注,这里sigma 点集{}i χ乘以对应的权重{}i m W ,可得sigma 点集的均
值为ˆx
,协方差为xx P 。

步骤2:对所采样的sigma 点集{}i χ中的每个sigma 点通过非线性变
换g(*),得到采样后的sigma 点集{}i y 。

()i i y g χ=
步骤3:对变换后的sigma 点集{}i y 进行加权处理,得到输出变量y
的均值ˆy
和协方差yy P 。

2()02()0ˆˆˆ()()n
i m i
i n i T yy c i i i y W y P W y y
y y ====--∑∑
UKF
非线性系统模型为: ()((1))(1)()(())()
x k f x k V k y k h x k W k =-+-=+ 1) 状态初始条件为 ˆ(0|0)((0|0))ˆˆ(0|0)(((0|0)(0|0))((0|0)(0|0)))T xx x
E x P E x x x x ==--
2) Sigma 点采样
ˆˆ(1|1)[(1|1)(1|1)ˆ(1|1)k k x
k k x k k x k k χ--=----+--
3) 时间更新
202020(|1)((1|1))
ˆ(|1)(|1)
(|1)((|1))
ˆ(|1)(|1)
ˆˆ(|1)(((|1)(|1))((|1)(|1)))(1)n
i m i i n i m i i n
i T xx c i i i k k f k k x k k W k k k k h k k y k k W k k P k k W k k x
k k k k x k k Q k χχχμχμχχ===-=---=--=--=--=------+-∑∑∑
4) 测量更新
20
20
1ˆˆ(|1)((|1)(|1))((|1)(|1))ˆˆ(|1)((|1)(|1))((|1)(|1))()(|1)*(|1)ˆˆˆ(|)(|1)()(()(|1))(|)n i T xy c i i i n i T yy c i i i xy yy xx P k k W k k x
k k k k y k k P k k W k k y
k k k k y k k K k P k k P k k x
k k x k k K k y k y k k P k k χμμμ==--=-------=------=--=-+--∑∑(|1)()(|1)()T xx yy P k k K k P k k K k =---。

相关文档
最新文档