2017年山东省莱芜市中考数学试卷

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

山东中考数学试题汇总2017年山东各地中考数学试卷汇编精校Word版含答案(二)

山东中考数学试题汇总2017年山东各地中考数学试卷汇编精校Word版含答案(二)

2017年山东省各地中考数学试题精校Word版含答案(二)目录本文档共两部分,包含山东省十四个地市的中考数学试题,本文档为第一部分,其它地市试题请下载《2017年山东省各地中考数学试题精校Word版含答案(一)》。

烟台市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²烟台市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²淄博市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²淄博市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²泰安市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²泰安市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²潍坊市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²潍坊市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²日照市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²日照市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²威海市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²威海市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²枣庄市2017年初中学业水平考试数学试题Word版精校版²²²²²²²²²²²²²²²²枣庄市2017年初中学业水平考试数学试题Word版精校答案²²²²²²²²²²²²²²绝密★启用前试卷类型:A 山东省烟台市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中的无理数是()A.B.πC.0 D.2.(3分)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A.4.6³109B.46³108 C.0.46³1010D.4.6³10104.(3分)如图所示的工件,其俯视图是()A.B.C.D.5.(3分)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°6.(3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为()A.B.C.D.7.(3分)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+38.(3分)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是()A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定9.(3分)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A.πB.πC.πD.π10.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.﹣1或2 B.1或﹣2 C.﹣2 D.111.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④12.(3分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,()已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)A.34.14米 B.34.1米C.35.7米D.35.74米二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)30³()﹣2+|﹣2|=.14.(3分)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.15.(3分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是.16.(3分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O 为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.17.(3分)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.18.(3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.三、解答题(本大题共7小题,共66分)19.(6分)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.21.(9分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?22.(9分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:(1)通过分析发现,冷柜中的温度y是时间x的函数.①当4≤x<20时,写出一个符合表中数据的函数解析式;②当20≤x<24时,写出一个符合表中数据的函数解析式;(2)a的值为;(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.23.(10分)【操作发现】(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.24.(11分)如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA 以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t为何值时,线段EN与⊙M相切?(3)若⊙M与线段EN只有一个公共点,求t的取值范围.25.(13分)如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.2017年山东省烟台市中考数学试卷参考答案与标准答案一、选择题(本大题共12小题,每小题3分,共36分)1-5.BAABD 6-10.CDCBD 11-12.CC二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)614.(3分)15.(3分)x<816.(3分)(﹣2,)17.(3分)318.(3分)36π﹣108三、解答题(本大题共7小题,共66分)19.(6分)解:(x﹣)÷===x﹣y,当x=,y=﹣1时,原式==1.20.(8分)解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50³0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有4种,所以选中观点D(合理竞争,合作双赢)的概率==.21.(9分)解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200³(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100³=≈90.91(个),在A商城需要的费用为162³91=14742(元),在B商城需要的费用为162³100³=14580(元).14742>14580.答:去B商场购买足球更优惠.22.(9分)解:(1)①∵4³(﹣20)=﹣80,8³(﹣10)=﹣80,10³(﹣8)=﹣80,16³(﹣5)=﹣80,20³(﹣4)=﹣80,∴当4≤x<20时,y=﹣.故答案为:y=﹣.②当20≤x<24时,设y关于x的函数解析式为y=kx+b,将(20,﹣4)、(21,﹣8)代入y=kx+b中,,解得:,∴此时y=﹣4x+76.当x=22时,y=﹣4x+76=﹣12,当x=23时,y=﹣4x+76=﹣16,当x=24时,y=﹣4x+76=﹣20.∴当20≤x<24时,y=﹣4x+76.故答案为:y=﹣4x+76.(2)观察表格,可知该冷柜的工作周期为20分钟,∴当x=42时,与x=22时,y值相同,∴a=﹣12.故答案为:﹣12.(3)描点、连线,画出函数图象,如图所示.23.(10分)解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.24.(11分)解:(1)连接MF.∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OA=OC=6,OB=OD=8,在Rt△AOB中,AB==10,∵MB=MF,AB=AD,∴∠ABD=∠ADB=∠MFB,∴MF∥AD,∴=,∴=,∴BF=t(0<t≤8).(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,∴=,∴=,∴t=.∴t=s时,线段EN与⊙M相切.(3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点.②当F与N重合时,则有t+2t=16,解得t=,关系图象可知,<t<8时,⊙M与线段EN只有一个公共点.综上所述,当0<t≤或<t<8时,⊙M与线段EN只有一个公共点.25.(13分)解:(1)∵矩形OBDC的边CD=1,∴OB=1,∵AB=4,∴OA=3,∴A(﹣3,0),B(1,0),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2﹣x+2;(2)在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,∴E(﹣2,2),∴直线OE解析式为y=﹣x,由题意可得P(m,﹣m2﹣m+2),∵PG∥y轴,∴G(m,﹣m),∵P在直线OE的上方,∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+,∵直线OE解析式为y=﹣x,∴∠PGH=∠COE=45°,∴l=PG=[﹣(m+)2+]=﹣(m+)2+,∴当m=﹣时,l有最大值,最大值为;(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则∠ALF=∠ACO=∠FNM,在△MFN和△AOC中∴△MFN≌△AOC(AAS),∴MF=AO=3,∴点M到对称轴的距离为3,又y=﹣x2﹣x+2,∴抛物线对称轴为x=﹣1,设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,当x=2时,y=﹣,当x=﹣4时,y=,∴M点坐标为(2,﹣)或(﹣4,﹣);②当AC为对角线时,设AC的中点为K,∵A(﹣3,0),C(0,2),∴K(﹣,1),∵点N在对称轴上,∴点N的横坐标为﹣1,设M点横坐标为x,∴x+(﹣1)=2³(﹣)=﹣3,解得x=﹣2,此时y=2,∴M(﹣2,2);综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).绝密★启用前 试卷类型:A山东省淄博市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.23-的相反数是( ) A .32 B .32- C .23 D .23- 3.下列几何体中,其主视图为三角形的是( )A .B .C .D .4.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109a a a ÷=(a ≠0)D .4222()()bc bc b c -÷-=-5.若分式||11x x -+的值为零,则x 的值是( ) A .1 B .﹣1 C .±1 D .26.若a +b =3,227a b +=,则ab 等于( )A .2B .1C .﹣2D .﹣17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A .2(3)2y x =+-B .2(3)2y x =++C . 2(1)2y x =-+D .2(1)2y x =--8.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k >﹣1且k ≠0C .k <﹣1D .k <﹣1或k =09.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF ∥BC交AC于点F,则EF的长为()A .52B .83C . 103D .154 二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:328x x -= .14.已知α,β是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 .16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF = .17.设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S = .三、解答题(本大题共7小题,共52分)18.解不等式:2723x x--≤.19.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数kyx(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.如图1,经过原点O的抛物线2y ax bx=+(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC ∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.2017年山东省淄博市中考数学试卷参考答案与评分标准一、选择题(本大题共12小题,每小题4分,共48分)1-5.CADCA 6-10.BDBAB 11-12.DC二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)2x(x﹣2)(x+2)14.(4分)015.(4分)95916.(4分)217.(4分)三、解答题(本大题共7小题,共52分)18.(5分)解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.19.(5分)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.20.(8分)解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.21.(8分)解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30³360=36°,良所占的圆心角的度数为:15÷30³360=180°,轻度污染所占的圆心角的度数为:12÷30³360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30³365=219天.22.(8分)解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3³1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.23.(9分)(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P 重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM==2.∵BM=MP=2OE,∴2=2³(4﹣a),解得:a=,∴DP=2a=3.24.(9分)解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∴S△OBC∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,).绝密★启用前 试卷类型:A山东省泰安市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)第Ⅰ卷(选择题 共60分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数:-3,π-,-1,其中最小的数是( )A .π-B .-3C .-1D .2.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=-3.下列图案:其中,中心对称图形是( )A .①②B .②③ C. ②④ D .③④4.“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为( )A .14310⨯美元B .13310⨯美元 C. 12310⨯美元 D .11310⨯美元 5.化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x - 6.下面四个几何体:其中,俯视图是四边形的几何体个数是( )A .1B .2 C.3 D .47.一元二次方程2660x x --=配方后化为( )A .2(3)15x -=B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=8.袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516 C. 716 D .129.不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( ) A .1k > B .1k < C.1k ≥ D .1k ≤10.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10001470010(140%)x x -=+B .10001470010(140%)x x+=+ C.10001470010(140%)x x -=- D .10001470010(140%)x x +=- 11.为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A 、B 、C 、D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误....的是( )A .本次抽样测试的学生人数是40B .在图1中,α∠的度数是126C.该校九年级有学生500名,估计D 级的人数为80D .从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为0.212.如图,ABC ∆内接于O ,若A α∠=,则OBC ∠等于( )A .1802α-B .2α C. 90α+ D .90α-13.已知一次函数2y kx m x =--的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )A .2,0k m <>B .2,0k m << C. 2,0k m >> D .0,0k m <<14.如图,正方形ABCD 中,M 为BC 上一点,ME AM ⊥,ME 交AD 的延长线于点E .若12AB =,5BM =,则DE 的长为( )A .18B .1095 C. 965 D .25315.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x 的增大而增大;④方程20ax bx c ++=有一个根大于4.其中正确的结论有( )A .1个B .2个 C.3个 D .4个16.某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6 C.10,30.6 D .20,30.617.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若55ABC ∠= ,则ACD ∠等于( )A .20B .35 C.40 D .5518.如图,在正方形网格中,线段A B ''是线段AB 绕某点逆时针旋转角α得到的,点A '与A 对应,则角α的大小为( )A .30B .60 C.90 D .12019.如图,四边形ABCD 是平行四边形,点E 是边CD 上的一点,且BC EC =,CF BE ⊥交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分CBF ∠;②CF 平分DCB ∠;③BC FB =;④PF PC =.其中正确结论的个数为( )A .1B .2 C.3 D .420.如图,在ABC ∆中, 90C ∠= , 10AB cm =,8BC cm =,点P 从点A 沿AC 向点C 以1/cm s 的速度运动,同时点Q 从点C 沿CB 向点B 以2/cm s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( )A .219cmB .216m C. 215m D .212m第Ⅱ卷(非选择题 共60分)二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分)21.分式72x -与2x x-的和为4,则x 的值为 . 22.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 .23.工人师傅用一张半径为24cm ,圆心角为150的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .24.如图, 30BCA ∠= ,M 为AC 上一点, 2AM =,点P 是AB 上的一动点, PQ AC ⊥,垂足为点Q ,则PM PQ +的最小值为 .三、解答题 (本大题共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.如图,在平面直角坐标系中,Rt AOB ∆的斜边OA 在x 轴的正半轴上,90OBA ∠= ,且1tan 2AOB ∠=,OB =k y x=的图象经过点B .(1)求反比例函数的表达式;(2)若AMB ∆与AOB ∆关于直线AB 对称,一次函数y mx n =+的图象过点M A 、,求一次函数的表达式.26.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?27.如图,四边形ABCD 中, AB AC AD ==,AC 平分BAD ∠,点P 是AC 延长线上一点,且PD AD ⊥.(1)证明:BDC PDC ∠=∠;(2)若AC 与BD 相交于点E ,1AB =,:23CE CP =:,求AE 的长. 28.如图,是将抛物线2y x =-平移后得到的抛物线,其对称轴为1x =,与x 轴的一个交点为(1,0)A -,另一交点为B ,与y 轴交点为C .(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC NC ⊥,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数3322y x =+的图象上一点,若四边形OAPQ 为平行四边形,这样的点P Q 、是否存在?若存在,分别求出点P Q 、的坐标,若不存在,说明理由.29.如图,四边形ABCD 是平行四边形,AD AC =,AD AC ⊥,E 是AB 的中点,F 是AC 延长线上一点.(1)若ED EF ⊥,求证:ED EF =;(2)在(1)的条件下,若DC 的延长线与FB 交于点P ,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED EF =,ED 与EF 垂直吗?若垂直给出证明,若不垂直说明理由.绝密★启用前 试卷类型:A山东省潍坊市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答 题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列计算,正确的是( ).A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)( 2.如图所示的几何体,其俯视图是( ).3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ).A.3101⨯B.8101000⨯C.11101⨯D.14101⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ).A.()1,2-B.()1,1-C.()2,1-D.()2,1--。

山东省莱芜市2017中考数学试卷及答案

山东省莱芜市2017中考数学试卷及答案

山东省莱芜市2017中考数学试卷及答案1(已知在Rt?ABC中,?C=90?,如果BC=2,?A=α,则AC的长为( )A(2sinα B(2cosα C(2tanα D(2cotα【考点】锐角三角函数的定义(【分析】根据锐角三角函数的定义得出cotA=,代入求出即可(【解答】解:?在Rt?ABC中,?C=90?,cotA=,BC=2,?A=α,AC=2cotα,故选D(【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt?ACB中,?ACB=90?,则sinA=,cosA=,tanA=,cotA=(2(下列抛物线中,过原点的抛物线是( )A(y=x2,1 B(y=(x+1)2 C(y=x2+x D(y=x2,x,1【考点】二次函数图象上点的坐标特征(【分析】分别求出x=0时y的值,即可判断是否过原点(【解答】解:A、y=x2,1中,当x=0时,y=,1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2,x,1中,当x=0时,y=,1,不过原点;故选:C(【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键(3(小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( )A(45米 B(40米 C(90米 D(80米【考点】相似三角形的应用(【专题】应用题(【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度(【解答】解:?在相同时刻,物高与影长组成的直角三角形相似,1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米(故选A(【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同(4(已知非零向量,,,下列条件中,不能判定?的是 ( )A(?,? B( C( = D( =, =【考点】*平面向量(【分析】根据向量的定义对各选项分析判断后利用排除法求解(【解答】解:A、?,?,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B(【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题( 5(如图,在?ABCD中,点E是边BA延长线上的一点,CE交AD于点F(下列各式中,错误的是( )A( B( C( D(【考点】相似三角形的判定与性质;平行四边形的性质(【分析】根据平行四边形的性质和相似三角形的性质求解(【解答】解:?AD?BC=,故A正确;CDBE,AB=CD,CDFEBC=,故B正确;ADBC,AEFEBC=,故D正确(C错误(故选C(【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键(6(如图,已知在?ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么?AEF和?ABC的周长比为( )A(1:2 B(1:3 C(1:4 D(1:9【考点】相似三角形的判定与性质(【分析】由?AEF??ABC,可知?AEF与?ABC的周长比=AE:AB,根据cosA==,即可解决问题(【解答】解:?BE、CF分别是AC、AB边上的高,AEB=?AFC=90?,A=?A,AEBAFC,=,=,??A=?A,AEFABC,AEF与?ABC的周长比=AE:AB,cosA==,AEF与?ABC的周长比=AE:AB=1:3,故选B(【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型(二、填空题:(本大题共12题,每题4分,满分48分)7(已知,则的值为 (【考点】比例的性质(【分析】用a表示出b,然后代入比例式进行计算即可得解(【解答】解:? =,b=a,==(故答案为:(【点评】本题考查了比例的性质,用a表示出b是解题的关键(8(计算:(,3),(+2)= (【考点】*平面向量(【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算(【解答】解::(,3),(+2)=,3,,×2)=(故答案是:(【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型( 9(已知抛物线y=(k,1)x2+3x的开口向下,那么k的取值范围是 k,1 (【考点】二次函数的性质(【分析】由开口向下可得到关于k的不等式,可求得k的取值范围(【解答】解:y=(k,1)x2+3x的开口向下,k,1,0,解得k,1,故答案为:k,1(【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键(10(把抛物线y=x2向右平移4个单位,所得抛物线的解析式为 y=(x,4)2 ( 【考点】二次函数图象与几何变换(【分析】直接根据“左加右减”的原则进行解答即可(【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x,4)2(故答案为:y=(x,4)2(【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键(11(已知在?ABC中,?C=90?,sinA=,BC=6,则AB的长是 8 (【考点】解直角三角形(【专题】计算题;等腰三角形与直角三角形(【分析】利用锐角三角函数定义求出所求即可(【解答】解:?在?ABC中,?C=90?,sinA=,BC=6,sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键(12(如图,已知AB?CD?EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= (【考点】平行线分线段成比例(【分析】根据平行线分线段成比例定理即可得到结论(【解答】解:?AC:CE=3:5,AC:AE=3:8,ABCDEF,,BD=,DF=,故答案为:(【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理(13(已知点A(2,y1)、B(5,y2)在抛物线y=,x2+1上,那么y1 , y2((填“,”、“=”或“,”)【考点】二次函数图象上点的坐标特征(【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可( 【解答】解:当x=2时,y1=,x2+1=,3;当x=5时,y2=,x2+1=,24;,3,,24,y1,y2(故答案为:,【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式(也考查了二次函数的性质(14(已知抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,那么该抛物线的对称轴是直线 x=2 (【考点】二次函数的性质(【分析】根据函数值相等的点到对称轴的距离相等可求得答案(【解答】解:抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,对称轴为x==2,故答案为:x=2(【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键(15(在?ABC中,AB=AC=5,BC=8,AD?BC,垂足为D,BE是?ABC 的中线,AD与BE相交于点G,那么AG的长为 2 (【考点】三角形的重心;等腰三角形的性质;勾股定理(【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为?ABC的重心,然后根据三角形重心的性质来求AG的长(【解答】解:?在?ABC中,AB=AC,AD?BC,AD==3,中线BE与高AD相交于点G,点G为?ABC的重心,AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键(16(在一个距离地面5米高的平台上测得一旗杆底部的俯角为30?,旗杆顶部的仰角为45?,则该旗杆的高度为 5+5 米((结果保留根号)【考点】解直角三角形的应用-仰角俯角问题(【分析】CF?AB于点F,构成两个直角三角形(运用三角函数定义分别求出AF 和BF,即可解答(【解答】解:作CF?AB于点F(根据题意可得:在?FBC中,有BF=CE=5米(在?AFC中,有AF=FC×tan30?=5米(则AB=AF+BF=5+5米故答案为:5+5(【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形([1][2]下一页。

山东省莱芜市中考数学试卷

山东省莱芜市中考数学试卷

山东省莱芜市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)估算38×73,下列结果正确的是()A . 2774B . 2800C . 2100D . 22002. (2分) (2015高二上·昌平期末) 如图,已知△ABC为直角三角形,∠C=90° ,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 90°B . 135°C . 270°D . 315°3. (2分)(2017·黄冈模拟) “人间四月天,麻城看杜鹃”,2016年麻城市杜鹃花期间共接待游客约1200000人次,同比增长约26%,将1200000用科学记数法表示应是()A . 12×105B . 1.2×106C . 1.2×105D . 0.12×1054. (2分)下列计算中,正确的是()A . a+a11=a12B . 5a﹣4a=aC . a6÷a5=1D . (a2)3=a55. (2分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()A . 极差是7B . 众数是8C . 中位数是8.5D . 平均数是96. (2分)(2017·鄂州) 对于不等式组,下列说法正确的是()A . 此不等式组的正整数解为1,2,3B . 此不等式组的解集为﹣1<x≤C . 此不等式组有5个整数解D . 此不等式组无解7. (2分)如果x<y<﹣1,那么代数式的值是()A . 0B . 正数C . 负数D . 非负数8. (2分)分式方程的解是()A . x=﹣9B . x=9C . x=3D .9. (2分) (2018八下·桐梓月考) 正方形ABCD中,AC=4,则正方形ABCD面积为()A . 4B . 8C . 16D . 3210. (2分)已知,则直线y=kx+2k一定经过()A . 第1,2象限B . 第2,3象限C . 第3,4象限D . 第1,4象限二、填空题 (共8题;共8分)11. (1分)(2016·历城模拟) 分解因式:a2﹣2a+1=________.12. (1分)如图,菱形ABCD中,对角线AC=6,BD=8,M,N分别是BC,CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是________.13. (1分)(2017·含山模拟) 某校组织开展“迎新春长跑活动”,将报名的男运动员共分成4组,分别是:七年级组、八年级组、九年级组、教工组,各组人数所占比例如图所示,已知九年级组有60人,则教工组人数是________.14. (1分)在函数中,自变量的取值范围是________15. (1分)(2017·广州模拟) 已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0的两实数根为x1 , x2 ,则y=x1+x2+2x1x2的最小值为________.16. (1分)如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列说法:①PA=PB,②∠1=∠2,③OP 垂直平分AB,其中正确说法的序号是________17. (1分)(2018·嘉兴模拟) 如图所示,点A1 , A2 , A3在x轴上,且OA1=A1A2=A2A3 ,分别过点A1 ,A2 , A3作y轴的平行线,与反比例函数(x>0)的图象分别交于点B1 , B2 , B3 ,分别过点B1 , B2 ,B3作x轴的平行线,分别于y轴交于点C1 , C2 , C3 ,连接OB1 , OB2 , OB3 ,那么图中阴影部分的面积之和为________.18. (1分) (2017八下·东台期中) 在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,直角边AB=6,反比例函数y= (x>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为________.三、解答题 (共11题;共93分)19. (10分) (2019七下·端州期中) 计算:(1)(-3)2+(2)( +3)20. (10分) (2019七下·洛宁期中)(1)解方程组:;(2)解不等式: .21. (5分)先化简,再求值:,其中x=-1.22. (5分) (2017七上·闵行期末) 解方程:.23. (7分) (2016八下·凉州期中) 如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为________ s时,四边形ACFE是菱形;②当t为________ s时,以A、F、C、E为顶点的四边形是直角梯形.24. (10分)(2017·苏州模拟) 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.25. (10分) (2019九下·大丰期中) 如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈2.24)26. (10分)(2017·长宁模拟) 如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA= ,cot∠ABC= ,AD=8.(1)求⊙D的半径;(2)求CE的长.27. (6分)(2018·普宁模拟) 如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为________.28. (5分) (2017八下·西城期中) 己知:在中,,,,将绕点顺时针旋转得到,且满足,求的长.29. (15分)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共11题;共93分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、29-1、29-2、29-3、。

2017年山东省莱芜市中考数学试卷-答案

2017年山东省莱芜市中考数学试卷-答案

山东省莱芜市2017年初中学业水平考试数学答案解析第Ⅰ卷=︒⨯2)1803602)180︒,设这个多边形的边数是【考点】多边形的内角与外角和及对角线条数的求法故选D.【解析】解:如图,连接DP ,BD ,作DH BC ⊥于H216AP QM t =5sin 3AD A =,∴56AP QM t =;(利用解直角三角形求出20233+16AP QM =-选项中的图象符合题意D.AB ED AC EG=,224DM=⨯=,∴CDEF是菱形,∴,∵EF EDFD EC=⨯2=-1025=-1025360︒224DM=⨯,CDEF是菱形,先计算2E C=⨯-,计算可得结论1025【考点】正五边形的性质,相似的判定和性质,勾股定理第Ⅱ卷2(2)如图:tan3131tan3118.60AB ︒=︒≈M ,在Rt GMF △中,tan19GM FM ︒,在tan 40CD ︒,设甲乙两楼之间的距离为(1)在直角三角形45EDC∠=︒,∴45FAD∠=︒,∴90AND∠=︒,即DE AF⊥5315tan 4416AF BAD x x ∠==,AH =知,90HDG ODA ∠+∠=︒,29PQ PB=;25PQ PB=;234PQ PB==210PQ PB==2∴此时不存在符合条件的P、Q【提示】(1)由对称性和(2,3)A ,(4,3)B ,可知抛物线的对称轴是:3x =,利用顶点式列方程组解出可得抛物线的表达式;(2)如图1,先利用待定系数法求直线AC 的解析式,设点(,65)D m m m -+-,则点(,27)E m m -+,根据解析式表示DE 和AE 的长,由已知的比例式列式得结论;(3)根据题意得:BPQ △为等腰直角三角形,分三种情况:①若90BPQ ∠=︒,BP PQ =,如图2,作辅助线,构建全等三角形,证明BAP QMP △≌△,可得结论;如图3,同理可得结论;②若90BQP ∠=︒,BQ PQ =,如图4,证得:BNQ QMP △≌△,则3NQ PM ==,1NG =,5BN =,从而得出结论;如图5,同理易得QNB PMQ △≌△,可得结论;③若90PBQ ∠=︒,BQ BP =,如图6,由于23AB NQ =≠=,此时不存在符合条件的P 、Q【考点】二次函数综合体。

莱芜市近年中考选择题2017

莱芜市近年中考选择题2017

莱芜市2008年中等学校招生考试一、选择题:1.|-2|的相反数是 A.-2 B.2 C.21212y 3·2xy=-2x 3y 44y 2÷7x 32y-5xy 2=-2x2y D.(-3a-2)(3a+2)=9a 2-44.在平面直角坐标系中,假如点P 〔m-3,m+1〕在第二象限,如此m 的取值X 围为 A.-1<m<3 B.m>3 C.m<-1 D.m>-15.将一正方形纸片按如下顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是6.如下事件中是必然事件的是A.2008年8月8日是晴天B.小明买了一X 福利彩票能中奖C.小李打靶一定能打中十环D.将一块石头扔到水里,石头会下沉。

7.某书店把一本新书按标价的九折出售,仍可获利20%,假如该书的进价为21元,如此标价为8.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是A.4π B.π42 C. π22 D.2π9.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,如此△ABC 的面积是A .10B .16C .18D .20A .B .C .D .yx图 1OP4 9图 210.如图,点F 是梯形ABCD 的下底BC 上一点,假如将△DFC 沿DF 进展折叠,点C 恰好能与AD 上的点E 重合,那么四边形CDEFA.是轴对称图形但不是中心对称图形 B. 是中心对称图形但不是轴对称图形 C. 既是轴对称图形,也是中心对称图形 D. 既不是轴对称图形,也不是中心对称图形11.如下列图,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,如此图中与∠BCE 相等的角有A .2个B .3个C .4个D .5个 12.假如A 〔1,413y -〕,B 〔2,45y -〕,C 〔3,41y 〕为二次函数245y x x =+-的图象上的三点,如此1,y 2,y 3y 的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<2009年某某省莱芜市中等学校招生考试一、选择题:1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 A .-10℃B .-6℃C .6℃D .10℃2.计算432)3(b a --的结果是A .12881b a B .7612b a C .7612b a -D .12881b a -3.如下列图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ’,C ’的位置,假如∠EFB=65°,如此∠AED ’等于A .70°B .65°C .50°D .25°4.点M 〔-2,3〕在双曲线xky =上,如此如下各点一定在该双曲线上的是 A .〔3,-2〕 B .〔-2,-3〕 C .〔2,3〕 D .〔3,2〕5.如图,两个同心圆的圆心为O ,EC 是大圆的一条弦,交小圆于D 、B 两点,弦心距OA=3,DB=8,EC=l2,BEDACO如此圆环〔阴影局部〕的面积为A .4πB .20πC .40πD .80π6.如图,如下四个几何体,它们各自..的三视图〔主视图、左视图、俯视图〕中,有两个一样而另一个不同的几何体是A .②③B .③④C .②④D .①②7.不等式组⎪⎩⎪⎨⎧≥-->+2321123x x x 的解集在数轴上表示正确的答案是8.在下面4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,如此其旋转中心可能是A .点AB .点BC .点CD .点D9.二次函数c bx ax y ++=2的图象如图,如此点M 〔ab ,c 〕位于 A .第一象限B .第二象限C .第三象限D .第四象限10.将半径为24cm ,圆心角为120°的扇形铁皮,做成一个圆锥容器的侧面〔不计接缝处的材料损耗〕,那么这个圆锥容器的底面半径为A .4cmB .6cmC .8cmD .16cm11.如下事件中,是必然事件的为A .小明今年中考成绩会超过600分B .在下届乒乓球世锦赛中,获男子单打冠军的一定是我国运动员C .100个人中至少会有两个人的生日一样D .我市今年夏天平均气温比冬天的平均气温高 12.如图,点A 的坐标为〔-1,0〕,点B 在直线x y =上运动,当线段AB 最短时,点B 的坐标为A .)21,21(--B .)22,22(-C .〔0,0〕D .〔-22,-22〕 莱芜市2010年中等学校招生考试一、选择题 1.31-的倒数是A .3-B .31-C .31D .3A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-3.在如下四个图案中既是轴对称图形,又是中心对称图形的是4.2010年4月20日晚,“支援某某某某抗震救灾义演晚会〞保存两位有效数字可记为 A .×106元B .×104元C .×104元D .×105元5.如图,数轴上A、B 两点分别对应实数a 、b ,如此如下结论正确的答案是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,如此这个几何体的俯视图是A.B.C.D. 7.反比例函数xy 2-=,如下结论不正确的答案是....... A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .假如x >1,如此y >-28.圆锥的底面半径长为5,侧面展开后得到一个半圆,如此该圆锥的母线长为 A .2.5B .5C .10D .15c bx ax y ++=2的图象如下列图,如此一次函数a bx y +=的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限〔第9题图〕10 -1 a b BA 〔第5题图〕 〔第6题图〕主视图左视图俯视图10.⎩⎨⎧==12yx是二元一次方程组⎩⎨⎧=-=+18mynxnymx的解,如此nm-2的算术平方根为A.4B.2C.2D.±211.一个边长为2的正多边形的内角和是其外角和的2倍,如此这个正多边形的半径是A.2B.3C.1D.1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y〔千米〕随时间x〔分〕变化的图象〔全程〕如图,根据图象判定下列结论不正确的答案是.......A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米2011年莱芜市中考数学试题一、选择题〔本大题共12小题,每一小题3分,总分为36分〕1.-6的绝对值是【】A.-6 B.6 C.-16D.162.以下多边形中,既是轴对称图形又是中心对称图形的是【】A.正五边形 B.矩形 C.等边三角形 D.平行四边形3.如下计算正确的答案是【】A.3)3(2-=- B.91312=⎪⎭⎫⎝⎛-C.(-a2)3=a6 D.a6÷(12a2)=2a44.观察右图,在如下四种图形变换中,该图案不包含的变换是【】A.平移 B.轴对称 C.旋转 D.位似5.某校合唱团共有40名学生,他们的年龄如下表所示:如此合唱团成员年龄的众数和中位数分别是【】6.如下列图是由几个一样的小正方体搭成的几何体的三视图,如此搭成这个几何体的小正方体的个数是【】A.3 B.4 C.5 D.67.如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和〔第12题图〕AB1 123 34 2O O O O O A B CD P · x x x x xyy y y y A .B .C .D .1 1 1111 1 1 1 1 33333 6 6 6 6 2 33 3 3四等份.同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为 偶数的概率是【 】A .34B .23C .12D .138.如下说法正确的答案是【 】A .16的算术平方根是4B .方程-x 2+5x -1=0的两根之和是-5 C .任意八边形的内角和等于1080º D .当两圆只有一个公共点时,两圆外切9.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,如此点P 的纵坐标y 与P 所走过的路程S 之间的函数关系用图象表示大致是【 】10.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .如下结论:①EG ⊥FH ,②四边形EFGH是矩形,③HF 平分∠EHG ,④EG =12(BC -AD ),⑤四边形EFGH 是菱形.其中正确的个数是【 】A .1B .2C .3D .411.将一个圆心角是90º的扇形围成一个圆锥的侧面,如此该圆锥的侧面积S 侧和底面积S 底的关系是【 】A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底12.二次函数y =ax 2+bx +c (a ≠0)的图象如下列图,如此正比例函数y =(b +c )x 的图象与反比例函数y=ax的图象在同一坐标系中大致是【 】 O O O O O y y yy y xxxxx-11A .B .C .D .2012年莱芜市中考数学试题与答案一、选择题〔本大题共12小题,每一小题3分,总分为36分〕1.如图,在数轴上的点M 表示的数可能是【】2.四名运动员参加了射击预选赛,他们的成绩的平均环数x 与方差S 2如下表所示:甲 乙 丙 丁xS 211如果选出一个成绩较好且状态稳定的人去参赛,那么应选【】 A .甲 B .乙 C .丙 D .丁 3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为【】A .×105×104 C .142×103×1064.如下列图是由假如干个一样的小立方体搭成的几何体的俯视图和左视图,如此小立方体的个数不可能是【】A .6个B .7个C .8个D .9个5.如下图形中,既是轴对称图形又是中心对称图形的共有【】A .1个B .2个C .3个D .4个 6.对于非零的实数a 、b ,规定a ⊕b =1b -1a.假如2⊕(2x -1)=1,如此x =【】A .56B .54C .32D .-167.m 、n 是方程x 2+22x +1=0的两根,如此代数式m 2+n 2+3mn 的值为【】 A .9 B .±3 C .3 D .58.从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是【】 A .14 B .13 C .512 D .239.如下四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序【】①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系) ②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系) ④一杯越来越凉的水(水温与时间的关系)A .①②③④B .③④②①C .①④②③D .③②④①10.假如一个圆锥的底面积为 4cm 2,高为42cm ,如此该圆锥的侧面展开图中圆心角为【】A .40ºB .80ºC .120ºD .150º 11.以下说法正确的有【】①正八边形的每个内角都是135º②27与31是同类二次根式 ③长度等于半径的弦所对的圆周角为30º④反比例函数y =-2x,当x <0时,y 随x 的增大而增大 A .1个 B .2个 C .3个 D .4个12.如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90º,BC =2AD ,F 、E 分别是BA 、BC 的中点,如此如下结论不正确的答案是.......【】A .△ABC 是等腰三角形B .四边形EFAM 是菱形C .S △BEF =12S △ACD D .DE 平分∠CDF2013年某某莱芜市数学一、选择题12-,13-,﹣2,﹣1这四个数中,最大的数是〔 〕 A.12- B.13- C. ﹣2 D.﹣1“Google 〞搜索引擎搜索“中国梦〞,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为〔 〕A. 451×105×106×107×103.下面四个几何体中,左视图是四边形的几何体共有〔 〕球体 圆锥 正方体 圆柱242x x --=0的解为〔 〕A. ﹣2 B. 2 C. ±2 D.12-5.一组数据:10、5、15、5、20,如此这组数据的平均数和中位数分别是〔 〕A. 10,10B. 10, 12.5C. 11,12.5D. 11,106.如下列图,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,假如∠1=35°,如此∠2的度数为〔 〕A. 10°B. 20°C. 25°°7. 〔2013某某莱芜,7,3分〕将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影局部的扇形围成一个圆锥的侧面,如此这个圆柱的高为〔〕A. 22B.2C.10D.3 28.如下图形中,既是轴对称图形,又是中心对称图形的个数是〔〕①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆A. 2B. 3C. 4D.59.如图,在⊙O中,∠°,如此∠C的度数为〔〕A. 135°°°°错误的答案是......〔〕A.假如两圆相交,如此它们公共弦的垂直平分吧必过两圆的圆心B.2+3与2-3a>b,如此a >b11.在平面直角坐标系中,O为坐标原点,点A的坐标为〔13〕,M为坐标轴上一点,且使得△12.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→x,MN2=y,如此y关于x的函数图象大致为〔〕2014年某某省莱芜市中考数学试卷一、选择题1.〔3分〕〔2014•莱芜〕如下四个实数中,是无理数的为〔〕A.0 B.﹣3 C.D.2.〔3分〕〔2014•莱芜〕下面计算正确的答案是〔〕A.3a﹣2a=1 B.3a2+2a=5a3C.〔2ab〕3=6a3b3D.﹣a4•a4=﹣a83.〔3分〕〔2014•莱芜〕2014年4月25日某某世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为〔〕A.15×105B.×106C.×107D.×1084.〔3分〕〔2014•莱芜〕如图是由4个一样的小正方形搭成的一个几何体,如此它的俯视图是〔〕A.B.C.D.5.〔3分〕〔2014•莱芜〕对参加某次野外训练的中学生的年龄〔单位:岁〕进展统计,结果如表:年龄13 14 15 16 17 18人数 4 5 6 6 7 2如此这些学生年龄的众数和中位数分别是〔〕A.B.17,16 C.D.16,166.〔3分〕〔2014•莱芜〕假如一个正n边形的每个内角为156°,如此这个正n边形的边数是〔〕A.13 B.14 C.15 D.167.〔3分〕〔2014•莱芜〕A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A 、B两地同时出发到C 地.假如乙车每小时比甲车多行驶12千米,如此两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的答案是〔〕A.B.C.D.8.〔3分〕〔2014•莱芜〕如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,如此图中阴影局部的面积为〔〕A.πB.2πC.D.4π9.〔3分〕〔2014•莱芜〕一个圆锥的侧面展开图是半径为R的半圆,如此该圆锥的高是〔〕A.R B.C.D.10.〔3分〕〔2014•莱芜〕如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,假如S△BDE:S△=1:4,如此S△BDE:S△ACD=〔〕CDEA.1:16 B.1:18 C.1:20 D.1:2411.〔3分〕〔2014•莱芜〕如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,如下说法不正确的答案是〔〕A.△CDF的周长等于AD+CD B.FC平分∠BFDC.AC2+BF2=4CD2D.DE2=EF•CE12.〔3分〕〔2014•莱芜〕二次函数y=ax2+bx+c的图象如下列图.如下结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④〔a+c〕2<b2其中正确的个数有〔〕A.1 B.2 C.3 D.42015年某某省莱芜市中考数学试卷一、选择题〔本大题共12小题,每一小题3分〕1.〔3分〕〔2015•莱芜〕﹣3的相反数是〔〕A. 3 B.﹣3 C. D .﹣2.〔3分〕〔2015•×10﹣3化为小数是〔〕3.〔3分〕〔2015•莱芜〕如下运算正确的答案是〔〕A.〔﹣a2〕•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.〔a3〕2=a64.〔3分〕〔2015•莱芜〕要使二次根式有意义,如此x的取值X围是〔〕A. x B. x C. x D. x5.〔3分〕〔2015•莱芜〕如图,AB∥CD,EF平分∠AEG,假如∠FGE=40°,那么∠EFG的度数为〔〕A. 35° B. 40° C. 70° D. 140°6.〔3分〕〔2015•莱芜〕如下图形中,是轴对称图形,但不是中心对称图形的是〔〕A. B. C. D.7.〔3分〕〔2015•莱芜〕为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下〔单位:℃〕:﹣6,﹣3,x,2,﹣1,3.假如这组数据的中位数是﹣1,如此如下结论错误的答案是〔〕A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣18.〔3分〕〔2015•莱芜〕如下几何体中,主视图和左视图都为矩形的是〔〕A. B. C. D.9.〔3分〕〔2015•莱芜〕一个多边形除一个内角外其余内角的和为1510°,如此这个多边形对角线的条数是〔〕A. 27 B. 35 C. 44 D. 5410.〔3分〕〔2015•莱芜〕甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,如此如下结论中正确的答案是〔〕A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关11.〔3分〕〔2015•莱芜〕如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,如此如下能大致反映y与x的函数关系的图象是〔〕A. B. C. D.12.〔3分〕〔2015•莱芜〕如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,如下结论正确的个数是〔〕〔1〕AB+CD=AD;〔2〕S△BCE=S△ABE+S△DCE;〔3〕AB•CD=;〔4〕∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 42016年某某省莱芜市中考数学试卷一、选择题1. 4的算术平方根为〔〕A.﹣2B.2C.±2D.2.如下运算正确的答案是〔〕A.a7÷a4=a3B.5a2﹣3a=2aC.3a4•a2=3a8D.〔a3b2〕2=a5b43.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,假如a+c=0,如此b+d〔〕A.大于0B.小于0C.等于0D.不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是〔〕A.B.C.D.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是〔〕A.76°B.81°C.92°D.104°6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为〔〕A.y=﹣2〔x+3〕B.y=﹣2〔x﹣3〕C.y=﹣2x+3D.y=﹣2x﹣37.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,两个转盘每分钟共转200圈,设甲每分钟转x圈,如此列方程为〔〕A. =B. =C. =D. =8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,如此圆锥的高是〔〕A.2B.4C.2D.29.正多边形的内切圆与外接圆的周长之比为:2,如此这个正多边形为〔〕A.正十二边形B.正六边形C.正四边形D.正三角形10.△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,假如其中有一个三角形是等腰三角形,如此这样的直线最多有〔〕A.3条B.5条C.7条D.8条11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x〔s〕,△AMN的面积为y〔cm2〕,如此y关于x的函数图象是〔〕A.B.C.D.12.四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF,DF,DF交AB于点G,如下结论:〔1〕BF ⊥DF ;〔2〕S △BDG =S △ADF ;〔3〕EF 2=FG •FD ;〔4〕=其中正确的个数是〔 〕A .1B .2C .3D .42017年某某省莱芜市中考数学试卷一、选择题1.〔3分〕﹣6的倒数是〔 〕A .﹣B .C .﹣6D .62.〔3分〕某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为〔 〕 ×10﹣7×10﹣8×10﹣7D .78×10﹣83.〔3分〕如下运算正确的答案是〔 〕A .2x 2﹣x 2=1B .x 6÷x 3=x 2C .4x •x 4=4x 5D .〔3xy 2〕2=6x 2y 44.〔3分〕电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为〔 〕A .﹣1=B .﹣1=C .+1=D .+1=5.〔3分〕将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如下列图的几何体,如此该几何体的左视图是〔 〕A .B .C .D .6.〔3分〕如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,假如∠ABC=21°,如此∠ADC的度数为〔〕A.46°B.47°C.48°D.49°7.〔3分〕一个多边形的内角和比其外角和的2倍多180°,如此该多边形的对角线的条数是〔〕A.12B.13C.14D.158.〔3分〕如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,如此BC扫过的面积为〔〕A.B.〔2﹣〕πC.πD.π9.〔3分〕如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是〔〕A.B.C.D.10.〔3分〕如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t〔秒〕时,△APQ的面积为s,如此s关于t的函数图象是〔〕A.B.C.D.11.〔3分〕对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,假如关于x的函数y=min{2x﹣1,﹣x+3},如此该函数的最大值为〔〕A.B.1C.D.12.〔3分〕如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出如下结论:①∠FDG=18°;②FG=3﹣;③〔S〕2=9+2;④四边形CDEFDF2﹣DG2=7﹣2.其中结论正确的个数是〔〕A.1B.2C.3D.4。

2017山东莱芜中考试卷解析

2017山东莱芜中考试卷解析

2017年山东省莱芜市初中学业考试数学试题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题都给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.(2017山东莱芜,1,3分)-6的倒数是( ) A .-16B .16C .-6D .6答案:A ,解析:-6的倒数是-16.2.(2017山东莱芜,2,3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A .7.8×10-7B .7.8×10-8C .0.78x 10-7D .78x 10-8答案:A ,解析:0.000 000 78=7.8×10-7 3.(2017山东莱芜,3,3分)下列运算正确的是( ) A .2x 2-x 2=1 B .x 6÷x 3=x 2 C .4x ·x 4=4x 5 D .(3xy 2)2=6x 2y 4 答案:C ,解析:A 项, 2x 2-x 2=x 2,该项错误; B 项,x 6÷x 3=x 3,该项错误; C .4x ·x 4=4x 5,该项正确; D .(3xy 2)2=9x 2y 4,该项错误. 4.(2017山东莱芜,4,3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为( ) A .30x -1=40x -25B .30x -1=40x +25C .30x +1=40x -25D .30x +1=40x +25答案:B ,解析:据时间方面的等量关系列方程:30x -1=40x +25.5.(2017山东莱芜,5,3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三梭柱,得到一个如图所示的几何体,则该几何体的左视图是( )答案:C ,解析:该几何体的左视图是C 项中的图形. 6.(2017山东莱芜,6,3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切于点A ,DO 交⊙O 于点C ,连接BC ,若∠ABC =21°,则∠ADC 的度数为( ) A .46° B .47° C .48° D .49°答案:C ,解析:∵直线DA 与⊙O 相切,∴∠ODA =90°. ∵∠AOD =2∠ABC =2×21°=42°,∴∠ADC =90°-∠AOD =90°-42°=48°. 7.(2017山东莱芜,7,3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( ) A .12 B .13 C .14 D .15 答案:C ,解析:设多边形的边数是n ,据题意,得 (n -2)·180°=2×360°+180°. 解得n =7.7边形的对角线的条数是7(73)2⨯-=14. 8.(2017山东莱芜,8,3分)如图,在Rt △ABC 中,∠BCA =90°,∠BAC =30°,BC =2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( ) A .π2B .(2-3)πC .2-32πD .πB(第6题图)正面(第5题图)A B C D答案:D ,解析:∵∠BCA =90°,∴222BC AC AB +=,即222AB AC BC -=. ∵整个图形的面积=△ABC 的面积+扇形BAD 的面积 =阴影部分的面积+扇形CAE 的面积+△AED 的面积, 又△ABC 的面积=△AED 的面积,∴阴影部分的面积=扇形BAD 的面积-扇形CAE 的面积= 2290()360AB AC π⋅-= 290360BCπ⋅=π.点拨 线段旋转所形成的阴影部分的面积=线段两端点分别绕旋转中心旋转所形成的扇形面积的差. 9.(2017山东莱芜,9,3分)如图,菱形ABCD 的边长为6,∠ABC =120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +PM 的值最小时,PM 的长是( ) A .72B .273C .355D .264答案:A ,解析:法一:解析:连接BD 、DM ,DM 交AC 于点P ,则此时PB +PM 的值最小.过点D 作DF ⊥BC 于点F ,过点M 作ME ∥BD 交AC 于点E . ∵∠ABC =120°,∴∠BCD =60°.又∵DC =BC ,∴△BCD 是等边三角形.∴BF =CF =12BC =3.∴MF =CF -CM =3-2=1,DF =3BF =3 3.∴DM =(33)2+12=27.∵ME ∥BD ,∴△CEM ∽△CO B.∴ME OB =CM BC =26=13.又∵OB =OD ,∴ME OD =13.MDAB P(第9题图)∵ME ∥BD ,∴△PEM ∽△PO D.∴PM PD =ME OD =13.∴PM =14DM =14×27=72.故选A .法二:作点M 关于AC 的对称点M ′,连接BM ′交AC 于点P ,此时PB +PM 的值最小. 过点作BE ⊥CD 于E .可求CE =3,则EM ′=1. 利用勾股定理可得BM ′=利用相似三角形可得PM ′=PM =72.10.(2017山东莱芜,10,3分)如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sin A =sin B =13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△APQ 的面积为S ,则S 关于t 的函数图象是( )AB C P D M′E M答案:B ,解析:法一:过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F . ∵sin A =DE AD =13,∴DE 5=13.∴DE =53.∴CF =DE =53.∵sin A =sin B ,∴∠A =∠B.∴△ADE ≌△BCF . ∴BC =AD =5,AE =BF =52-⎝⎛⎭⎫532=103 2.∴AB =AE +EF +BF =2×1032+3=2032+3,AD +CD +BC =5+3+5=13.∵2032+3<13, ∴当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0. 当8<t ≤2032+3时,点Q 在线段BC 上,此时AP =t ,AD +CD +CQ =t ,∴CQ =t -8,∴BQ =5-( t -8)=13-t .过点Q 作QG ⊥AB 于点G ,则sin B =QG BQ =13,∴QG 13-t =13.∴QG =13(13-t ).∴△APQ 的面积S =12AP ×QG =12×t ×13(13-t )=-16(t 2-13t ),其图象开口向下.又∵当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0.∴由此可得答案选B .G法二:分为三段,当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而增大; 当点Q 在DC 上运动时,S 关于t 的函数为一次函数,且S 随t 的增大而增大;P(第10题图)当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而减小,注意在该段当点P 运动点B 停止时,点Q 没有到达达点B. 综上,选B.11.(2017山东莱芜,11,3分)对于实数a ,b ,定义符号min ,其意义为:当a ≥b 时,min=b :当a <b 时,min=a .例如min=-1.若关于x 的函数y =min {2x -1,-x +3},则该函数的最大值为( ) A .23B .1C .43D .53答案:D ,解析:当2x -1≥-x +3时,43x ≥,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,43x <,y =min {2x -1,-x +3}=2x -1,最大值为53. 综上,该函数的最大值为53.12.(2017山东莱芜,12,3分)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE 分别与AC 和AD 相交于点F ,G ,连结DF ,给出下列结论:①∠FDG =18°;②FG =3-5;③(S 四边形CDEF )2=9+25;④DF 2-DG 2=7-25.其中结论正确的个数是( ) A .1 B .2 C .3 D .4答案:B ,解析:(1)∵正五边形ABCDE 的每一个内角都等于(5-2)×180°5=108°.∴∠BAC =∠BCA =(180°-108°)÷2=36°. 同理可得∠ABE =∠AEB =∠EAD =∠EDA =36°. ∴∠CBF =∠FCD =∠GDC =∠DEG =108°-36°=72°. ∴∠BFC =180°-∠BCA -∠CBF =180°-36°-72°=72°.GF(第12题图)∴∠BFC =∠CBF =72°. ∴BC =CF =2.同理可得DG =DE =2.∵BC =CF ,BC =CD ,∴CF =C D . 又∵∠FCD ==72°, ∴∠CDF =∠CFD =(180°-72°)÷2=54°. ∴∠FDG =∠GDC -∠CDF =72°-54°=18°. 由此可知①正确;(2)∵∠ABE =∠BCA =36°,∠BAF =∠CAB ,∴△BAF ∽△CA B .∴AB AC =AF AB .∴AB AF +CF =AF AB .∴2AF +2=AF2.解得AF =5-1.∴AC =AF +FC =(5-1)+2=5+1.∵△AFG ∽△ACD ,∴AF AC =FGCD .∴5-15+1=FG 2.解得FG =3-5.由此可知②正确;(3)过点A 作AM ⊥CD 于点M ,交BE 于点N .MMG∵AC =AD , AM ⊥CD ,∴CM =DM =12CD =1.∴cos ∠ACM =CM AC =15+1=5-14.∴(sin ∠ACM )2=1-( cos ∠ACM )2=1-(5-14)2. ∵CD =CF =EF =DE =2,∴四边形CDEF 是菱形.∴S 四边形CDEF =2 S △CDF=2×(12CF ×CD ×sin ∠ACM )=2×(12×2×2×sin ∠ACM )=4sin ∠ACM .∴(S 四边形CDEF )2=(4sin ∠ACM )2 =16×(sin ∠ACM )2=10+25≠9+25. 由此可知③错误;(4)过点F 作FG ⊥CD 于点G . ∵cos ∠ACM =cos ∠FCG =CG FC =5-14,∴CG 2=5-14. ∴CG =5-12.∴DG =CD -CG =2-5-12=5-52. ∴DG 2=(5-52)2=15-552.由对称性知CF=DG.∴DF 2-DG 2=DG 2-CG 2=6-25≠7-25.由此可知④错误;综上①②正确,故选B .第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题填对得4分,共20分.请填在答题卡上) 13.(2017山东莱芜,13,4分)3012cos 45(3.14)2π-⎛⎫--︒+-+ ⎪⎝⎭=___________.答案:-7(-2)3-2×22+1+22=-8-2+1+22=-714.(2017山东莱芜,14,4分)圆锥的底面周长为23π,母线长为2,点P 是母线OA 的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P .则细绳的晟短长度为___________.答案:1,解析:将圆锥的侧面展开,如图.取OA ′的中点P ′,连接PP ′,则P P ′ 即为细绳的最短路径. ∵2180O π∠⋅⋅︒=23π,∴∠O =60°.∵OP =OP ′=12×2=1,∴△OPP ′是等边三角形. ∴PP ′=1. O AA′P P ′15.(2017山东莱芜,15,4分)直线y =kx +b 与双曲线6y x=-交于A (-3,m ),B (n ,-6)两点.将直线y =kx +b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △ADE =___________.答案:16,解析:把A (-3,m )代入6y x=-,得m =-6-3=2.∴A (-3,2).把B (n ,-6)代入6y x=-,得-6=-6n .∴n =1.∴B (1,-6).把A (-3,2)、B (1,-6)分别代入y =kx +b ,得⎩⎨⎧2=-3k +b -6=k +b .解得⎩⎨⎧k =-2b =-4. ∴y =-2x -4. 把x =0代入y =-2x -4,得y =-4.∴直线y =-2x -4与y 轴交于点(0,-4). 把点(0,-4)向上平移8个单位长度后得到的点是(0,4),∴将直线y =-2x -4向上平移8个单位长度后所得的直线是y =-2x +4.解方程组⎩⎪⎨⎪⎧y =-2x +4y =-6x ,得⎩⎨⎧x 1=3y 1=-2,⎩⎨⎧x 2=-1y 2=6.∴可以取D (-1,6)、E (3,-2).设直线AE 的解析式为y =mx +n ,则⎩⎨⎧2=-3m +n-2=3m +n .解得⎩⎪⎨⎪⎧m =-23n =0. ∴直线AE 的解析式为y =-23x ,该直线经过原点(0,0).过点D 作DC ⊥x 轴于点C ,交AE 于点F ,则C (-1,0)、F (-1,-23).∴DF =6-23=163.∴S △ADE =S △ADF + S △FDE =12DF ×CM +12DF ×CN =12DF ×(CM +CN )= 12DF ×MN =12×163×6=16.16.(2017山东莱芜,16,4分)二次函数y =ax 2+bx +c (a <0) 图象与x 轴的交点A 、B 的横坐标分别为-3,1,与y 轴交于点C ,下面四个结论: ①16a -4b +c <0; ②若P (-5,y 1)、Q (52,y 2)是函数图象上的两点,则y 1>y 2; ③a =-13c ;④若△ABC 是等腰三角形,则b .其中正确的有_______________.(请将结论正确的序号全部填上) 答案:①③,解析:①∵a <0,∴该抛物线开口向下. ∵图象与x 轴的交点A 、B 的横坐标分别为-3,1,∴当x =-3或1时,y =0且抛物线的对称轴是直线x =-1. ∴当x =-4时,y =a +b +c <0. 由此可知①正确;②点P (-5,y 1)关于对称轴的对称点是P ′(3,y 1).点是P ′(3,y 1)、Q (52,y 2)都在对称轴右侧. ∵该抛物线开口向下,对称轴是直线x =-1, ∴当x >-1时,y 随x 的增大而减小. ∵3>52,∴y 1<y 2.由此可知②错误;③∵对称轴是直线x =-1, ∴-b2a=-1.∴b =2a .∵抛物线过点(1,0),∴a +b +c =0.把b =2a 代入上式,得a +2a +c =0.∴a =-13c . 由此可知③正确;④若△ABC 是等腰三角形,则有两种情况:AB =AC 或BA =BC ,因此c 的值有两个,b 的值也有两个.由此可知④错误.17.(2017山东莱芜,17,4分)如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =___________.CE . E DB (第17题图)EDB A∵AB =CF ,AB =CD ,∴CF =CD .又∵CE =CE ,∠EFC =∠EDC =90°,∴△EFC ≌△ED C.∴DE =EF .设AB =CD =CF =a ,则AC 2=AD 2+CD 2=12+a 2=1+a 2.设AE =x ,则DE =EF =1-x .∵△ABE ∽△DAC ,∴AB AD =AE DC .∴a 1=x a. ∴x =a 2…………………………①∵△AEF ∽△ACD ,∴AE AC =EF DC .∴AE 2AC 2=EF 2DC2. ∴x 21+a 2=(1-x )2a 2.…………………………② 由①、②两式,可解得x =5-12, ∴AE =5-12.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(本题满分6分)(2017山东莱芜,18,6分) 先化简,再求值:(a +63a a -)÷(a +993a a +-),其中a 3. 思路分析:先将两括号内的式子分别通分,再将除法转化为乘法,然后约分化简,最后代入所给的值求解. 解:原式=(3)63a a a a -+-÷(3)993a a a a -++- =233a a a +-×2369a a a -++=(3)3a a a +-×23(3)a a -+ =3a a +.当a3时,原式=3aa+119(本题满分8分)(2017山东莱芜,19,8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如下不完整的统计图表:根据图表中提供的信息,解答下列问题:(1)a=____________,b=_______,c=_______.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑、拔河赛可分别记A、B、C、D、E)中任选其中两项进行训练,用画树状固或列表的方法求恰好选到学生喜欢程度最高的两项的概率.思路分析:(1)根据“袋鼠跳”的学生数和百分比可以求出被调查学生的总数,即a的值;用“绑腿跳”的百分比乘以a,即可得b的值;用“夹球跑”的学生数除以a,即可得c的值.(2)根据b的值即可将条形统计图补充完整.(3)用3000乘以“绑腿跳”的百分比,即可得到该校学生中最喜欢绑腿跑的人数.(4)用“列表法”求解即可,需注意本小题是属于“不放回”类型的.解:(1)a=300,b=60,c=10;(2)学生最喜欢的活动项目的人数条形统计图(3)3000×20%=600(名);(4)P =220=110.(树状图或列表略)20.(本题满分9分)(2017山东莱芜,20,9分)某学校教学楼(甲楼)的顶部E 和大门A 之间挂了一些彩旗.小颍测得大门A 距甲楼的距离AB 是31 m ,在A 处测得甲楼顶部E 处的仰角是31°.(1)求甲楼的高度及彩旗的长度:(精确到0.01 m )(2〉若小颖在甲楼楼底C 处测得学校后面医院楼(乙楼)楼顶G 处的仰角为40°.爬到甲楼楼顶F 处测得乙楼楼顶G 处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01 m )(cos31°≈0.86,t an31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77, tan40°≈0.84)思路分析:(1)应用∠A 的正切可以求得甲楼的高度BE ;应用∠A 的余切可以求得彩旗的长度AE ;(2)设甲乙两楼之间的距离为x m ,再利用19°角、40°角的正切列方程求解. 解:(1)在Rt △ABE 中,BE =AB ·tan31°=31×tan31°≈31×0.60=18.60.AE =cos31AB ︒=31cos31︒≈310.86≈36.05 故甲楼的高度为18.60m ,彩旗的长度为36.05m.(2)过点F 作FM ⊥GD ,交GD 于M ,在Rt △GMF 中,GM =FM tan19°,在Rt △GDC 中,GD =CD tan40°,设甲乙两楼之间的距离为x m ,FM =CD =x ,则根据题意得: 19︒40︒31︒甲乙 C D E F G A B (第20题图)x tan40°-x tan19°=18.60;解之得:x =37.20m ;乙楼的高度:GD =CD tan40°≈37.20×0.84≈31.25,故乙楼的高度为31.25m ,甲乙两楼之间的距离为37.20m.21.(本题满分9分)(2017山东莱芜,21,9分)己知△ABC 与△DEC 是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE 、DB .试判断线段AE 和DB 的数量和位置关系,并说明理由;(2)如图②所示,连接DB ,将线段DB 绕D 点顺时针旋转90°到DF ,连接AF ,试判断线段DE 和AF 的数量和位置关系,并说明理由.思路分析:(1)通过证明Rt △ACE ≌Rt △BCD 即可解决;(2)通过证明△EBD ≌△ADF 即可得解.解:(1)AE =DB ,AE ⊥DB .理由:由题意可知,CA =CB ,CE =CD ,∠ACE =∠BCD =90°,∴Rt △ACE ≌Rt △BCD .∴AE =DB .延长DB 交AE 于点M , ① C E B ② F C E B (第21题图)∵Rt△ACE≌Rt△BCD,∴∠AEC=∠BDC.又∵∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°,∴在△AMD中,∠AMD=180°-90°=90°,∴AE⊥DB.(2)DE=AF,DE⊥AF.理由:设ED与AF相交于点N,由题意可知,BE=AD.∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,又∵DB=DF,∴△EBD≌△ADF.∴DE=AF.∠E=∠F AD,∵∠E=45°,∠EDC=45°,∴∠F AD=45°. ∴∠AND=90°.∴DE ⊥AF .22.(本题满分10分〉(2017山东莱芜,22,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩毎袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10 000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45.已知甲种口罩毎袋的进价为22.4元,乙种口罩毎袋的进价为18元.请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式组求解各种符合题意的方案;分别计算所得各种方案的获利情况,可得利润最大的方案及最大利润;也可以建立二次函数模型求解.解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:523110x y x y -=⎧⎨+=⎩, 解这个方程组得:2520x y =⎧⎨=⎩, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元.(2)设该网店购进甲种口罩m 袋,则购进乙种口罩(500-m )袋,根据题意得:4(500)522.418(500)10000m m m m ⎧>-⎪⎨⎪+-≤⎩, 解这个不等式组得:222 2<m ≤227 3,因m 是整数,故有5种进货方案,分别是: 购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利为w 元,则有w =(25-22.4)m +(20-18)(500-m )=0.6m +1000,因w 随m 的增大而增大,故当m =227时,w 最大,W 最大=0.6×227+1000=1136.2(元).故网店购进甲种口罩227袋,乙种口罩273袋时,获利最大,最大获利为1136.2元.23.(本题满分10分〉(2017山东莱芜,23,10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E ,如图①.(1)求证:DE 是⊙O 的切线;(2)若AB=10.AC=6,求BD的长;(3)如图②,若F是OA的中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.思路分析:(1)连接OD,证明OD⊥DE即可得解;(2)连接BC,构造直角三角形,利用勾股定理求出BC的长度,再进一步应用三角形中位线性质及勾股定理求解;(3)设FG与AD交于点H,证明△DHE是等腰三角形是解题突破口.解:(1)如图,连接OD.NEDCBAO∵OA=OD,∴∠OAD=∠ODA.又∵AD平分∠BAC,∴∠OAD=∠DAE.∴∠ODA=∠DAE. ∴OD∥AE.∴∠ODE+∠AED=180°.又∵∠AED=90°,∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.(2)连接BC,交OD于点N.∵AB是直径,∴∠BCA=90°.∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12 AC,∴∠ONB=90°,且ON=3.则BN=4,ND=2,∴BD==.②(第23题图)①(3)如图,设FG 与AD 交于点H .FEH C G M DA OB根据题意,设AB =5x ,AD =4x ,BD =3x ,则AF =54x ,5315tan 4416FH AF BAD x x =⋅∠=⋅=, 52544cos 165x AF AH x BAD ===∠,HD =AD -AH =253941616x x x -=. 由(1)可知,∠HDG +∠ODA =90°,在Rt △HF A 中,∠F AH +FHA =90°,又∵∠OAD =∠ODA ,∠FHA =∠DHG ,∴∠DHG =∠HDG .∴GH =GD .过点G 作GM ⊥HD ,交HD 于点M .∴MH =MD ,∴HM =12HD =12×3916x =3932x . ∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°,∴∠F AH =∠HGM . 在Rt △HGM 中,HG =sin HM HGM ∠=393235x =6532x . ∵FH +GH =194,故有1516x +6532x =194,解之得:x =85. 故此圆的半径为52×85=4.24.(本题满分12分)(2017山东莱芜,24,12分)抛物线y =ax 2+bx +c 过A (2,3),B (4,3),C (6,-5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若潢足DE AE,求点D 的坐标.(3〉如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似.若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.思路分析:(1)将A (2,3),B (4,3),C (6,-5)三点的坐标分别代入y =ax 2+bx +c ,得到关于a ,b ,c 的方程组,解所得的方程组得到a ,b ,c 的值,即得抛物线的解析式;(2)根据题意,AB ∥x 轴,DE ⊥x 轴,求出直线AC 的解析式y =kx n +,设D 设点D (m ,ax 2+bx +c ),2<m <6,则点E (m ,kx n +),用含有m 的式子分别表示出AE 、DE 的长度,再求解;(3)先确定△ABF 的形状,再分不同情况分别讨论求解.解:(1)根据题意,设抛物线表达式为y =2(3)a x h -+.所以395a h a h +=⎧⎨+=-⎩﹐﹒ 解得14a h =-⎧⎨=⎩﹐﹒ 所以抛物线表达式为y =265x x -+-.(2)设直线AC 的表达式为y =kx n +,则2365k n k n +=⎧⎨+=-⎩﹐﹒ 解得27k n =-⎧⎨=⎩﹐﹒ ∴直线AC 表达式为y =-2x +7.设点D (m ,265m m -+-),2<m <6,则点E (m ,-2m +7),∴DE =2(65)(27)m m m -+---+=2812m m -+-.设直线DE 与直线AB 交于点G ,则AG =m -2,EG =3(27)m --+=2(m -2),m -2>0.(第24题图)在Rt △AEG 中,∴AE (m -2).由DEAE ,2,化简得221114m m -+=0,解得m =72或m =2(舍去).∴D (72,154). (3)根据题意得,△ABF 为等腰直角三角形,假设存在满足条件的点P 、Q ,则△BPQ 为等腰直角三角形.(i )若∠BPQ =90°,BP =PQ ,如图①,易知△BAP ≌△PMQ ,由AB =PM =2,所以P(2,2),Q (3,0),PQ ,S △BPQ =52.如图②,△BNP ≌△PMQ ,由PN =QM =2,所以P (2,-2),Q (-3,0),PQ S △BPQ =292. (ii )若∠BQP =90°,BQ =PQ ,如图③,易知△BNQ ≌△QMP ,由NQ =PM =3,所以P(2,-5),Q (-l ,0),PQ S △BPQ =17.如图④,△QNB ≌△PMQ ,由NQ =PM =3,所以p(2,-1),Q (5,0),PQ S △BPQ =5.(iii )若∠PBQ =90°,BQ =BP ,如图⑤,易知△PQB ≌△BNQ ,又AB =2,NQ =3,AB ≠NQ ,此时不存在满足条件的点P 、Q .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是()A.﹣ B.C.﹣6 D.62.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣83.(3分)下列运算正确的是()A.2x2﹣x2=1 B.x6÷x3=x2C.4x•x4=4x5D.(3xy2)2=6x2y44.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1=B.﹣1=C.+1= D.+1=5.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B.C.D.6.(3分)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°B.47°C.48°D.49°7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12 B.13 C.14 D.158.(3分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π9.(3分)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.10.(3分)如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A. B. C. D.11.(3分)对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.B.1 C.D.12.(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;)2=9+2;④DF2﹣DG2=7﹣2.其中结论正确的个数是()③(S四边形CDEFA.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+=.14.(4分)圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为.15.(4分)直线y=kx+b与双曲线y=﹣交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△=.ADE16.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有(请将结论正确的序号全部填上)17.(4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a+)÷(a+),其中a=﹣3.19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)a=,b=,c=.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?23.(10分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.24.(12分)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是()A.﹣ B.C.﹣6 D.6【解答】解:﹣6的倒数是﹣.故选:A2.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选A.3.(3分)下列运算正确的是()A.2x2﹣x2=1 B.x6÷x3=x2C.4x•x4=4x5D.(3xy2)2=6x2y4【解答】解:A、原式=x2,不符合题意;B、原式=x3,不符合题意;C、原式=4x5,符合题意;D、原式=9x2y4,不符合题意,故选C4.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1=B.﹣1=C.+1= D.+1=【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程﹣1=,故选B.5.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B.C.D.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选C.6.(3分)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°B.47°C.48°D.49°【解答】解:∵OB=OC,∴∠B=∠BCO=21°,∴∠AOD=∠B +∠BCO=21°+21°=42°,∵AB 是⊙O 的直径,直线DA 与⊙O 相切与点A ,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C .7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【解答】解:根据题意,得(n ﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7, 七边形的对角线条数为=14,故选C .8.(3分)如图,在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A .B .(2﹣)πC .πD .π【解答】解:在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,∴AC=2,AB=4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt △ADE ,∴△ABC 的面积等于△ADE 的面积,∠CAB=∠DAE ,AE=AC=2,AD=AB=4, ∴∠CAE=∠DAB=90°,∴阴影部分的面积S=S 扇形BAD +S △ABC ﹣S 扇形CAE ﹣S △ADE=+2×2﹣﹣2×2=π.故选D.9.(3分)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.【解答】解:如图,连接DP,BD,作DH⊥BC于H.∵四边形ABCD是菱形,∴AC⊥BD,B、D关于AC对称,∴PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,∴CM=2,HM=1,DH=3,在Rt△DMH中,DM===2,∵CM∥AD,∴===,∴P′M=DM=.故选A.10.(3分)如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A. B. C. D.【解答】解:过点Q做QM⊥AB于点M.当点Q在线段AD上时,如图1所示,∵AP=AQ=t(0≤t≤5),sinA=,∴QM=t,∴s=AP•QM=t2;当点Q在线段CD上时,如图2所示,∵AP=t(5≤t≤8),QM=AD•sinA=,∴s=AP•QM=t;当点Q在线段CB上时,如图3所示,∵AP=t(8≤t≤+3(利用解直角三角形求出AB=+3),BQ=5+3+5﹣t=13﹣t,sinB=,∴QM=(13﹣t),∴s=AP•QM=﹣(t2﹣13t),∴s=﹣(t2﹣13t)的对称轴为直线x=.综上观察函数图象可知B选项中的图象符合题意.故选B.11.(3分)对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.B.1 C.D.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1<﹣x+3时,x<,∴当x<时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选D.12.(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;)2=9+2;④DF2﹣DG2=7﹣2.其中结论正确的个数是()③(S四边形CDEFA.1 B.2 C.3 D.4【解答】解:①∵五方形ABCDE是正五边形,∴AB=BC,∠ABC=180°﹣=108°,∴∠BAC=∠ACB=36°,∴∠ACD=108°﹣36°=72°,同理得:∠ADE=36°,∵∠BAE=108°,AB=AE,∴∠ABE=36°,∴∠CBF=108°﹣36°=72°,∴BC=FC,∵BC=CD,∴CD=CF,∴∠CDF=∠CFD==54°,∴∠FDG=∠CDE﹣∠CDF﹣∠ADE=108°﹣54°﹣36°=18°;所以①正确;②∵∠ABE=∠ACB=36°,∠BAC=∠BAF,∴△ABF∽△ACB,∴,∴AB•ED=AC•EG,∵AB=ED=2,AC=BE=BG+EF﹣FG=2AB﹣FG=4﹣FG,EG=BG﹣FG=2﹣FG,∴22=(2﹣FG)(4﹣FG),∴FG=3+>2(舍),FG=3﹣;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°,∴∠EBC+∠BCD=180°,∴EF∥CD,∵EF=CD=2,∴四边形CDEF是平行四边形,过D作DM⊥EG于M,∵DG=DE,∴EM=MG=EG=(EF﹣FG)=(2﹣3+)=,由勾股定理得:DM===,)2=EF2•DM2=4×=10+2;∴(S四边形CDEF所以③不正确;④如图2,连接EC,∵EF=ED,∴▱CDEF是菱形,∴FD⊥EC,∵EC=BE=4﹣FG=4﹣(3﹣)=1+,=FD•EC=2×,∴S四边形CDEF×FD×(1+)=,FD2=10﹣2,∴DF2﹣DG2=10﹣2﹣4=6﹣2,所以④不正确;本题正确的有两个,故选B.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+=﹣7+.【解答】解:原式=﹣8﹣+1+2=﹣7+,故答案为:﹣7+14.(4分)圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为1.【解答】解:如图,连接AA′,∵底面周长为,∴弧长==,∴n=60°即∠AOA′=60°,∵OA=OA′∴△AOA′是等边三角形,∴AA′=2,∵PP′是△OAA′的中位线,∴PP′=AA′=1,故答案是:1.15.(4分)直线y=kx+b与双曲线y=﹣交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S=△ADE 16.【解答】解:由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴,解得,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由,解得和,不妨设D(3,﹣2),E(﹣1,6),∴S=6×8﹣×4×2﹣×6×4﹣×8×4=16,△ADE故答案为16.16.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有①③(请将结论正确的序号全部填上)【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确;③∵﹣=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=3,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=9+c2,在△BOC中BC2=c2+1,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案是:①③.17.(4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=.【解答】解:∵四边形ABCD是矩形,∴BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE⊥AC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,在△ABE和△FCB中,,∴△ABE≌△FCB,∴BF=AE,BE=BC=1,∵BE⊥AC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△ABE∽△FBA,∴,∴,∴AE=AB2,在Rt△ABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a+)÷(a+),其中a=﹣3.【解答】解:原式=÷,=×,=×,=.当a=﹣3时,原式====1﹣.19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)a=300,b=60,c=10.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.【解答】解:(1)由题可得,a=45÷15%=300,b=300×20%=60,c=×100=10,故答案为:300,60,10;(2)如图:(3)3000×20%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,∴恰好选到“C”和“E”的概率是=.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)【解答】解:(1)在Rt△ABE中,BE=AB•tan31°=31•tan31°≈18.60,AE==≈36.05,则甲楼的高度为18.60m,彩旗的长度为36.05m;(2)过点F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FM•tan19°,在Rt△GDC中,DG=CD•tan40°,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:xtan40°﹣xtan19°=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m.21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.【解答】解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【解答】解:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:,解这个方程组得:,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得,解这个不等式组得:222,2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.23.(10分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.【解答】(1)证明:如图①中,连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)如图①中,连接BC,交OD于点N,∵AB是直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,则BN=4,ND=2,∴BD==2.(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,F H=AF•tan∠BAD=x•=x,AH===x,HD=AD﹣AH=4x﹣x=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=HD=×x=x,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===x,∵FH+GH=,∴x+x=,解得x=,∴此圆的半径为×=4.24.(12分)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.【解答】解:(1)根据题意,设抛物线表达式为y=a(x﹣3)2+h.把B(4,3),C(6,﹣5)代入得:,解得:,故抛物线的表达式为:y=﹣(x﹣3)2+4=﹣x2+6x﹣5;(2)设直线AC的表达式为y=kx+n,则:,解得:k=﹣2,n=7,∴直线AC的表达式为y=﹣2x+7,设点D(m,﹣m2+6m﹣5),2<m<6,则点E(m,﹣2m+7),∴DE=(﹣m2+6m﹣5)﹣(﹣2m+7)=﹣m2+8m﹣12,设直线DE与直线AB交于点G,∵AG⊥EG,∴AG=m﹣2,EG=3﹣(﹣2m+7)=2(m﹣2),m﹣2>0,在Rt△AEG中,∴AE=(m﹣2),由,得=,化简得,2m2﹣11m+14=0,解得:m1=,m2=2(舍去),则D(,).(3)根据题意得:△ABF为等腰直角三角形,假设存在满足条件的点P、Q,则△BPQ为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ,如图2,过P作MN∥x轴,过Q作QM⊥MN于M,过B作BN⊥MN于N,易证得:△BAP≌△QMP,∴AB=QM=2,PM=AP=3+2=5,∴P(2,﹣2),Q(﹣3,0),在Rt△QMP中,PM=5,QM=2,由勾股定理得:PQ==,∴S=PQ•PB=;△BPQ如图3,易证得:△BAP≌△PMQ,∴AB=PM=2,AP=MQ=3﹣2=1,∴P(2,2),Q(3,0),在Rt△QMP中,PM=2,QM=1,由勾股定理得:PQ=,∴S=PQ•PB=;△BPQ②若∠BQP=90°,BQ=PQ,如图4,易得:△BNQ≌△QMP,∴NQ=PM=3,NG=PM﹣AG=3﹣2=1,∴BN=MQ=4+1=5,∴P(2,﹣5),Q(﹣1,0)∴PQ==,∴S=PQ•PB==17;△BPQ如图5,易得△QNB≌△PMQ,∴NQ=PM=3,∴P(2,﹣1),Q(5,0),∴PQ=,=PQ•PB==5,∴S△BPQ③若∠PBQ=90°,BQ=BP,如图6,过Q作QN⊥AB,交AB的延长线于N,易得:△PAB≌△BNQ,∵AB=2,NQ=3,AB≠NQ∴此时不存在符合条件的P、Q.。

相关文档
最新文档