第二章2 过程控制的数学模型-曲线响应

合集下载

东北大学过程控制系统第二章2 过程控制的数学模型-曲线响应

东北大学过程控制系统第二章2 过程控制的数学模型-曲线响应

3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
TC
x
(1 x)x1x
(1)
TA
T1 T2 TC
(2)
(2)
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
1 0.46
20 33.5
3 1.7
25 27.2
4
5
3.7
9
30 40
21 10.4
8 10 19 26.4 50 60 5.1 2.8
15 16.5 36 371..55 70 80 1.1 0.5
第二题:
设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:

自动控制原理(第三版)第2章控制系统的数学模型(2)

自动控制原理(第三版)第2章控制系统的数学模型(2)
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
求取该电路在单位阶跃输入时的响应。 U c ( s) 1 G( s ) T RC U r ( s ) Ts 1
ur 1( t )
方法1
U c ( s ) G( s )U r ( s )
1
U r (s)
1 s
方法2
1 (Ts 1) s
1 t 1 g (t ) 1[G ( s)] e T T t uc (t ) g (t )ur ( )d
0 1 1 ( t ) t t 1 T 1 T e d e e T d 0T 0 T t
1 uc (t ) L [ ] (Ts 1) s T 1 1 1 L ( )L ( ) s Ts 1 1 e
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
传递函数的求法
例2-1 方法一 R-L-C串联电路
d 2 uc ( t ) R duc ( t ) 1 1 uc ( t ) ur ( t ) 2 dt L dt LC LC传递Fra bibliotek数: G( s)
U c ( s) 1 U r ( s) LCs 2 RCs 1
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
零、极点分布图
传递函数的零、极点分 布图: 将传递函数的零、 极点表示在复平面上的 图形。
零点用“o”表示 极点用“×”表示
j
1 -3 -2

-1
s2 G( s) = ( s 3)( s 2 2s 2)
大连民族学院机电信息工程学院

02 自动控制原理—第二章

02 自动控制原理—第二章
Tm J
Tm
d dt
K u u a K m (Ta
dM c dt
Mc)
电感La较小,故电磁时间常数Ta可以忽略 ,则
Tm
d dt
K uua K m M c
如果取电动机的转角 (rad)作为输出,电枢电压ua (V),考 虑到 d ,可将上式改写成
2.举例 ①一个自变量:励磁电流成正 比,但if增加到某个范围后,磁路饱和,发电机的电势与励磁电流呈 现一种连续变化的非线性函数关系。 设:x—励磁电流, y—发电机的输出电势。 y=f(x)
设原运行于某平衡点(静态工作点) A点:x=x0 , y=y0 ,且y0=f(x0) B点:当x变化△ x, y=y0+△ y 函数在(x0 , y0 )点连续可微,在A 点展开成泰勒级数,即
y k x
df ( x ) k dx x x0
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f y f ( x10 , x 20 ) ( x1 x10 ) ( x 2 x 20 ) ( x1 x10 ) 2 ( x1 x10 )( x 2 x 20 ) ( x 2 x 20 ) 2 2 2 x 2! x x 2 x1x 2 x 2 1 1
例2-2
解 设回路电流i1和i2为中间变量。根据基尔霍夫电压定律对前一回 路,有
u i R1i1
对后一回路,有
1 C1
(i
1
i 2 ) dt
1 C2

控制工程基础第二章——数学模型

控制工程基础第二章——数学模型

② 脉冲函数: 脉动函数的极限,t0看作变量。
A
fT
(t)
lim
t0 0
t0
d [ A(1 et0s )]
L[
fT
(t
)]
lim
t0 0
A t0s
(1
et0s
)
lim t0 0
dt0
d dt0
(t0 s )
As A s
单位脉冲(Dirac) 定义:
面积为1的脉冲函数
(t)dt 1, (t 0, (t) 0)
fi (t)
此式为二阶常系 数线性微分方程。
系统的数学模型可用方块图表示:
方块图描述了系统
中信号转换、传递的 过程,给出了系统的 工作原理。
☆ 举例2:电网络系统
设输入端电压ui(t)为系统输入量。电容器c两端电压uo(t)为系统输
出量。现研究输入电压ui(t)和输出电压 uo(t)之间的关系。电路中的
.
(n)
x(t) sX (s) x (t) s n X (s)
x(t)dt
1 sn
X
(s)
①平移函数、延迟函数
对于函数 f (t) 函数 f (t )
称为延迟函数,函数本身并
不发生改变,只是延迟α时
间才发生。
注意:t 时,函数 f (t ) 0
②延迟定理
若 f (t) F (s) 则有 f (t ) es F (s) 延迟函数的拉氏变换 原函数的拉氏变换乘以 es
显然 (t) 1, A (t) A
结论:脉冲函数是面积函数; 脉冲函数的拉氏变换就是脉冲下的面积。 换言之,复数域中的实数在时域里是脉冲函数。
☆ 关于单位脉冲函数的说明

过程控制 第二章(过程建模与过程特性)

过程控制 第二章(过程建模与过程特性)

因此,qi H qo,直至qi=qo可见该系统受到干扰以后,即使不加控制,最 终自身是会回到新的平衡状态,这种特性称为“自衡特性”。 右图:如果水箱出口由泵打出,其不同之处在于:qi当发生变化时,qo不发生变化。如 果qi>qo ,水位H将不断上升,直至溢出,可见该系统是无自衡能力。 绝大多数对象都有自衡能力,一般而言有自衡能力的系统比无自衡能力的系统容易控制。
例1.液体储罐的动态模型 1.液体储罐(一阶对象) 干扰作用 Q1 h
液体储罐的 动态模型? ?
控制作用
水槽
Q2
列写微分方程式的依据可表示为: 对象物料蓄存量变化率=单位时间内(流入对象物料—流出对象物料)
假定t<0时,Q1=Q10,Q2= Q20, 且Q10= Q20, h =h0, 当t≥0时,Q1= Q10+ΔQ1,Q2= Q20+ΔQ2,h = h0+Δh, 则在很短一段时间d t内,由物料平衡关系可得:
u(t ) u1 (t ) u1 (t t )
其中
u 2 (t ) u1 (t t )
假定对象无明显非线性,则矩形脉冲 响应就是两个阶跃响应之和,即
y(t ) y1 (t ) y1 (t t )
Rs
Rs
将此关系式代入上式,便有:
(Q1 h )d t Adh Rs
AR S dh h RS Q1 dt
移项整理后可得:

T ARS
K RS
代入上式得:
THale Waihona Puke dh h KQ1 dt
上式是用来描述简单的水槽对象特性的一阶常系数微分方 程式。式中T称时间常数,K称放大系数。
传递函数:
H 2 ( s) K K Qi ( s) T1T2 s 2 (T1 T2 )s 1 (T1s 1)(T2 s 1)

自动控制原理:第二章 控制系统数学模型

自动控制原理:第二章  控制系统数学模型

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

过程控制第二章 过程建模

过程控制第二章 过程建模
y(t)
设 y p (t ) 为矩形脉冲响应
y(t) 为阶跃响应
u(t ) 为阶跃输入
y p (t)
u(t t0) 为 t 0
时刻的阶跃输入
o Fi.g218
t
0
2t0
3t0
4t0
5t0
t
曲线合成的数学描述:
up(t) u(t)u(t t0) yp(t) y(t) y(t t0) y(t) yp(t) y(t t0)
四、自衡对象与无自衡对象
四、自衡对象与无自衡对象
自衡对象: 在扰动作用下,过程平衡状态被破坏后, 不需人工或仪表干预,自身能建立新的 平衡状态。
无自衡对象:在扰动作用下,过程平衡状 态被破坏后,自身不能建立新的平衡状 态。
五、建模途径
1 机理建模 2 实验建模 3 其它方法
六、建模目的
1 控制系统设计与参数整定; 2 2 控制系统仿真研究。
令 t n 0,tn 0 ,1 ,2 ,,则:
y (n 0 )typ (n 0 ) ty (n 0 tt0 )
在输出坐标图上描出多个点,将这些点光滑连接, 得阶跃响应曲线。
二. 切线法
下面分类求模型参数:
u (t )
1. 一阶自衡模型
u
根据 Fig.220所示曲线:
O
t
1) 过原点作切线与y() 相交于
时间变化的特性。
时间常数用T表示,T表征对象物理量变
化的速率。
y
T1 T2
O
T1 T2
t
三、物料平衡与能量平衡
在静态情况下,单位时间流出过程的 物 料 (能量)等于流入过程的 物料 (能量)
在动态情况下,单位时间流入过程的 物 料 (能量)与流出过程的 物料 (能量)之 差等于过程物料 (能量)儲存量的变化率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)半对数坐标作图法 由于较为繁杂,一般不用。
3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
x TC (1 x) x1 x TA
(1) (2)
(2)
T1 T2 TC
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
(1) 直角坐标图解法求K0和T0 阶跃输入量为x0,一阶无时延响应为:
将采集的输出测量数据减去原来的稳态数据, 即响应曲线是在原稳态工作点基础上的增量 曲线。
3.由阶跃响应曲线确定过程的数学模型
确定
y () y (0) K0 x0
确定
3.由阶跃响应曲线确定过程的数学模型
y() y(t ) K0 x0e
1 0.46 20 33.5
3 1.7 25 27.2
4 3.7 30 21
5 9 40 10.4
8 19 50 5.1
10 26.4 60 2.8
15 36 70 1.1
16.5 31.5 80 0.5
第二题: 设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
0 y0 (t ) t T0 1 e
y0 (t1 ) 1 e t2 y0 (t2 ) 1 e T0
t1 T0
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
t/s h/mm t/s h/mm 0 0 150 78 20 18 200 86 40 33 300 95 60 45 400 98 80 55 500 98.5 100 63

t T0
1
3.由阶跃响应曲线确定过程的数学模型
3.2 由阶跃响应曲线确定一阶时延过程的参数 一阶时延环节响应曲线特点:
在t=0时,斜率几乎为零,之后逐渐增大到某点(拐点)后,斜率 又逐渐减小。曲线呈S形状。
3.由阶跃响应曲线确定过程的数学模型
y0 (t )
y (t ) y ( )
t t
放大系数K0确定同前: K0
y() x0
课堂作业:
第一题: 采用矩形方波法测定温度对象的动态特性,所用方波 脉冲宽度t0=10min,方波幅值为2℃/h,测试记录如下 表, (1)试将矩形脉冲响应曲线换算成阶跃响应曲线。 (2)用二阶惯性环节求取该温度对象的传递函数。
t/min T/℃ t/min T/℃
u2 (t ) u1 (t a)
矩形脉冲响应曲线:
3.由阶跃响应曲线确定过程的数学模型
首先确定过程数学模型的结构,然后确定数学模型的具体参数。 传递函数: (1)一阶无延 时 无自衡过程。
(2)二阶无延 时
(3)一阶有延 时
3.由阶跃响应曲线确定过程的数学模型
3.1 阶跃响应确定一阶过程参数 放大系数K0、时间常数T0、时延时间τ0。 t=0,曲线斜率最大,之后斜率减小,逐渐达稳态。
(1) (2)
试验测定时,被控过程处于相对稳定的工作状态。
输入的阶跃信号不可太大,也不可太小。太大,影响生产; 太小,被干扰信号淹没。
(3)
分别输入正负阶跃信号,并测取其响应曲线作对比,以便 显示过程的非线性影响。一般取正常信号的10%。
在相同条件下重复测试几次,选择两次比较接近的响应曲 线作为分析数据,以减小干扰。 完成一次试验测定后,使过程稳定在原来的工况一段时间, 再作第二次试验测试。 注意记录响应曲线的起始部分,如果这部分没有测出或者 欠佳,就难以获得对象的动态特性参数。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的 响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意:
(4)
(5)
(6)
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号 作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。 用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作: 两个极性相反、幅值相同、时间相差 a的阶跃信号叠加而成。
3.3 由阶跃响应曲线确定二阶过程的参数 阶跃响应方程为:
T1 T2 T1 y(t ) K 0 x0 [1 e e T2 ] T1 T2 T1 T2 t t
(1)两点法
求静态放大系数K0,同前
2-15
取输出最终变化量的 40%和80%点来拟合, 结果比较理想.
3.由阶跃响应曲线确定过程的数学模型
相关文档
最新文档