第二章2 过程控制的数学模型-曲线响应 (1)讲解
合集下载
第二章2 过程控制的数学模型-曲线响应

(2)半对数坐标作图法 由于较为繁杂,一般不用。
3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
x TC (1 x) x1 x TA
(1) (2)
(2)
T1 T2 TC
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
(1) 直角坐标图解法求K0和T0 阶跃输入量为x0,一阶无时延响应为:
将采集的输出测量数据减去原来的稳态数据, 即响应曲线是在原稳态工作点基础上的增量 曲线。
3.由阶跃响应曲线确定过程的数学模型
确定
y () y (0) K0 x0
确定
3.由阶跃响应曲线确定过程的数学模型
y() y(t ) K0 x0e
1 0.46 20 33.5
3 1.7 25 27.2
4 3.7 30 21
5 9 40 10.4
8 19 50 5.1
10 26.4 60 2.8
15 36 70 1.1
16.5 31.5 80 0.5
第二题: 设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
0 y0 (t ) t T0 1 e
y0 (t1 ) 1 e t2 y0 (t2 ) 1 e T0
t1 T0
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
t/s h/mm t/s h/mm 0 0 150 78 20 18 200 86 40 33 300 95 60 45 400 98 80 55 500 98.5 100 63
过程控制工程第2章数学模型解析

dh dt
h
R2 q1
拉氏变换,得到传递函数形式
G(s) H (s) R2 Q1(s) R2As 1
河南理工大学 电气工程与自动化学院
2.3 解析法建立过程数学模型—单容过程
令:过程的时间常数 T=R2A=R2C 过程的放大系数 K=R2 过程的容量系数 C=A
则:
容量:贮存能力大小, 即引起单位被控量变化 时,被控过程贮存量变 化程度。
河南理工大学 电气工程与自动化学院
无振荡无自衡过程模型
GP
(s)
K Ts
e
s
GP (s)
K s(Ts 1)
e
s
Gp
(s)
K T1s(Ts
1)n1
e- s
河南理工大学 电气工程与自动化学院
2.1典型过程的动态特性
(3)自衡的振荡过程
自衡振荡:阶跃输入信号作用下, 输出响应曲线呈现衰减振荡特性, 最终被控过程趋于新的稳态值。
热交换器温度控制系统方块图
扰动 RF (t), Ti (t)
设定值 Tsp
偏差 e(t)
+_
温度 控制器
控制信号
u(t)
蒸汽
控制阀
蒸汽量 RV (t)
测量值 Tm(t)
温度测量 变送器
热交换器
干扰 通道
+ 控制 + 通道
被控变量 T(t)
河南理工大学 电气工程与自动化学院
液位过程控制系统
Qi
h
LC
水箱截 面积
水箱内液体 容量变化率
表示为增量形式有:
q1
q2
A
d h dt
q1, q2 , h—偏离某平衡状态 q10 , q20 , h0 的增量
第二章2过程控制的数学模型-曲线响应

u2 (t) u1(t a)
矩形脉冲响应曲线:
3.由阶跃响应曲线确定过程的数学模型
首先确定过程数学模型的结构,然后确定数学模型的具体参数。
传递函数: (1)一阶无延 时
无自衡过程。
(2)二阶无延 时
(3)一阶有延 时
3.由阶跃响应曲线确定过程的数学模型
3.1 阶跃响应确定一阶过程参数 放大系数K0、时间常数T0、时延时间τ0。 t=0,曲线斜率最大,之后斜率减小,逐渐达稳态。
3.由阶跃响应曲线确定过程的数学模型
3.2 由阶跃响应曲线确定一阶时延过程的参数 一阶时延环节响应曲线特点:
在t=0时,斜率几乎为零,之后逐渐增大到某点(拐点)后,斜率 又逐渐减小。曲线呈S形状。
3.由阶跃响应曲线确定过程的数学模型
y0 (t)
y(t) y()
y0
(t
)
0
t
t
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:
矩形脉冲响应曲线:
3.由阶跃响应曲线确定过程的数学模型
首先确定过程数学模型的结构,然后确定数学模型的具体参数。
传递函数: (1)一阶无延 时
无自衡过程。
(2)二阶无延 时
(3)一阶有延 时
3.由阶跃响应曲线确定过程的数学模型
3.1 阶跃响应确定一阶过程参数 放大系数K0、时间常数T0、时延时间τ0。 t=0,曲线斜率最大,之后斜率减小,逐渐达稳态。
3.由阶跃响应曲线确定过程的数学模型
3.2 由阶跃响应曲线确定一阶时延过程的参数 一阶时延环节响应曲线特点:
在t=0时,斜率几乎为零,之后逐渐增大到某点(拐点)后,斜率 又逐渐减小。曲线呈S形状。
3.由阶跃响应曲线确定过程的数学模型
y0 (t)
y(t) y()
y0
(t
)
0
t
t
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:
东北大学过程控制系统第二章2 过程控制的数学模型-曲线响应

3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
TC
x
(1 x)x1x
(1)
TA
T1 T2 TC
(2)
(2)
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
1 0.46
20 33.5
3 1.7
25 27.2
4
5
3.7
9
30 40
21 10.4
8 10 19 26.4 50 60 5.1 2.8
15 16.5 36 371..55 70 80 1.1 0.5
第二题:
设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:
《自动控制原理》第2章控制系统的数学模型精品PPT课件

FB(t)
f
dy(t) dt
FK (t) 为弹簧的弹性力,它与物体的位移成正比,即
FK(t)ky(t)
d 2 y(t)
a为物体的加速度,即
a dt 2
消除中间变量,将式子标准化可得
mdd 2y2 (tt)fdd(ty)tk(yt)F(t)
2.3用拉普拉斯变换求解线性微 分方程
2.3.1拉普拉斯变换定义 2.3.2常用函数的拉普拉斯变换 2.3.3拉普拉斯变换的几个基本法则 2.3.4拉普拉斯反变换变换 2.3.5用拉普拉斯变换求解微分方程
第2章 控制系统的数学模型
• 本章的主要内容 控制系统的微分方程-建立和求解 控制系统的传递函数 控制系统的结构图-等效变换 控制系统的信号流图-梅逊公式
2.1系统数学模型概述
数学模型:用数学的方法和形式来表示 和描述系统中各变量间的关系。 三种形式:输入输出描述
状态空间描述 方块图或信号流图描述
对上式取拉氏变换得 c(t)et sint
2.4传递函数
利用拉氏变换的方法可以得到控制系统在 复数域的数学模型——传递函数。 2.4.1 传递函数的定义 2.4.2典型环节的传递函数
2.4.1 传递函数的定义
线性定常系统,当初始条件为零时,输出量拉氏变换与 输入量拉氏变换之比,定义为传递函数。
G (s)C R ((ss))b0 ssnm ab 11 ssnm 1 1 ab n m 1 s1s ab nm
例2-7 求图2-1所示RLC串联电路的传递函数。设输入量 为 u r ,输出量 u c 。
L K(t) fK(s F )
2.微分定理
函数求导的拉氏变换,等于函数拉氏变换乘 以s的求导次幂(这时,初始条件需为零)。 同理,若初始条件 f(0 )f'(0 ) f(n 1 )(0 ) 0
第2章被控过程的数学模型

第2章 被控过程的数学模型
建立过程数学模型的基本方法
2.测试法建模 测试法一般只用于建立输入输出模型。它是根据工业过程 的输入和输出实测数据进行某种数学处理后得到的模型。
施加阶跃扰动或脉冲扰动 激励
测绘输出响应曲线
工业过程
把被研究的工业过程视为一个黑匣子,完全从外特性上测试和描述
它的动态性质,不需要深入掌握其内部机理。
第2章 被控过程的数学模型源自数学模型的表达形式与要求1. 建立数学模型的目的
在过程控制中,建立被控对象数学模型的目的主要有 以下几种: (l) 设计过程控制系统和整定控制器的参数 (2) 控制器参数的整定和系统的调试 (3) 利用数学模型进行仿真研究 (4) 进行工业过程优化 另外,设计工业过程的故障检测与诊断系统、制订大 型设备启动和停车的操作方案和设计工业过程运行人 员培训系统,等等都也需要被控过程的数学模型。
第2章 被控过程的数学模型
4)被控对象的自平衡与非自平衡特性
第2章 被控过程的数学模型 例如图中的单容水槽,其阶跃响应如右图所示。
单容过程的定义:只有一个储蓄容量的过程。
第2章 被控过程的数学模型 ②非自平衡:如下图的单容积分水槽,当进水调节阀
开度改变致使物质或能量平衡关系破坏后,不平衡量 不因被控变量的变化而改变,因而被控变量将以固定 的速度一直变化下去而不会自动地在新的水平上恢复 平衡。这种对象不具有自平衡特性,具有这种特性的 被控过程称为非自平衡过程,其阶跃响应如图所示。
对应上式的传递函数为:
H ( s) K G( s) e 0 s ( s) 1 Ts
第2章 被控过程的数学模型
纯滞后环节的存在使过程输 出在响应输入而发生变化的 开始时间在时间轴方向发生 了平移,但对过渡过程中输 出变化的速率和稳态值的大 小没有影响。
过程控制技术-第二章过程控制系统的数学模型精品PPT课件

式(2-7)中q s0是常数项,因此式(2-7)
成为只有输出变量(被控变量)Tout与输入变 量Tin的微分方程式,该式称为蒸汽直接加热器
扰动通道的微分方程式。
2 过程控制系统的数学模型
(5 输出变量和输入变量用增量形式表示的方程式 称为增量方程式。变量进行增量化处理后,使 方程不必考虑初始条件;能使非线性特性化成 线性特性;而且符合线性自动控制系统的情况。 因为在过程控制系统中,主要是考虑被控变量 偏离设定值的过渡过程,而不考虑在t=0时刻 的被控变量。现以蒸汽直接加热器为例,说明 增量方程式的列写方法。
今后在习惯上为书写的便利,可以将一阶微分 方程式中的增量“Δ”省略,但要理解为是相 应变量的增量。因此,一阶被控对象的数学模 型便可写成:
T dy y Kx dt
2 过程控制系统的数学模型
于是上述所讨论的温度对象的阻力系数是:
T 1
热阻R=温差/热量流量=
=
q FinC
热容C=被储存的热量的变化/温度的变化=
U Tout
Mc
2 过程控制系统的数学模型
二阶被控对象的数学模型
• 二阶被控对象数学模型的建立与一阶类似。由于二 阶被控对象实际是复杂的,下面仅以简单的实例作 一介绍。
• 【例2-2】 两个串联的液体储罐如图2-2所示。为便 于分析,假设液体储罐1和储罐2近似为线性对象, 阻力系数R1、R2
2 过程控制系统的数学模型
2 过程控制系统的数学模型
(1) 建立原始方程式:
A1
dL1 dt
F1
F2
A2
dL2 dt
F2
F3
F2
L1 R1
F3
L2 R2
2 过程控制系统的数学模型
成为只有输出变量(被控变量)Tout与输入变 量Tin的微分方程式,该式称为蒸汽直接加热器
扰动通道的微分方程式。
2 过程控制系统的数学模型
(5 输出变量和输入变量用增量形式表示的方程式 称为增量方程式。变量进行增量化处理后,使 方程不必考虑初始条件;能使非线性特性化成 线性特性;而且符合线性自动控制系统的情况。 因为在过程控制系统中,主要是考虑被控变量 偏离设定值的过渡过程,而不考虑在t=0时刻 的被控变量。现以蒸汽直接加热器为例,说明 增量方程式的列写方法。
今后在习惯上为书写的便利,可以将一阶微分 方程式中的增量“Δ”省略,但要理解为是相 应变量的增量。因此,一阶被控对象的数学模 型便可写成:
T dy y Kx dt
2 过程控制系统的数学模型
于是上述所讨论的温度对象的阻力系数是:
T 1
热阻R=温差/热量流量=
=
q FinC
热容C=被储存的热量的变化/温度的变化=
U Tout
Mc
2 过程控制系统的数学模型
二阶被控对象的数学模型
• 二阶被控对象数学模型的建立与一阶类似。由于二 阶被控对象实际是复杂的,下面仅以简单的实例作 一介绍。
• 【例2-2】 两个串联的液体储罐如图2-2所示。为便 于分析,假设液体储罐1和储罐2近似为线性对象, 阻力系数R1、R2
2 过程控制系统的数学模型
2 过程控制系统的数学模型
(1) 建立原始方程式:
A1
dL1 dt
F1
F2
A2
dL2 dt
F2
F3
F2
L1 R1
F3
L2 R2
2 过程控制系统的数学模型
自动控制原理第二章-控制系统的数学模型1

2
零初始条件:函数 f(t) 及其各阶导数的初始值都等于零
在零初始条件下,
dn f (t)
L
dtn
snF(s)
4.积分定理:
L[
f
(t)dt]1F(s) s
5.初值定理:假设函数 f(t) 及其一阶导数都是可拉氏变 换的,那么函数 f(t) 的初值为
f(0 )tl 0 im f(t)ls i s m ( F s)
c1 3et (s1) 4
c3ls i0m ss(ss1)2(2s3)3 2
c4sl i3(m s3)s(ss1) 2(2s3)112
f(t)21e t(t3)1e 3 t
32
2 12
c3 2 s3
c4 1 e3t (s3) 12
9
第二章 控制系统的数学模型
2-1 线性微分方程的建立与求解 2-2 传递函数 2-3 控制系统的结构图及其等效变换
cr sl ism 1(ss1)rF(s)
cr1sl ism 1dd[ss(s1)rF(s)]
crj 1j!sl im s1dd(jjs)[s(s1)rF(s)]
c1(r 11)s!l is1 m d d(rr s1 1 )[s(s1)rF(s)]
其余各极点的留数确定方法与上同。
8
例2 求 F(s) s2 的原函数 f (t ) s(s1)2(s3)
c 1s l i1 (m s 1 )F (s)s l i1 (m s 1 )(s (s 1 ) s 2 ( )3 )
12 13
1 2
c2sl im 3(s3)F(s)1 2
f(t)1(et e3t)
2
7
◆F(s)含有多重极点时,可展开为
F ( s ) ( s c r s 1 ) r ( s c r s 1 1 ) r 1 ( s c 1 s 1 ) ( s c r s r 1 1 ) ( s c n s n )
零初始条件:函数 f(t) 及其各阶导数的初始值都等于零
在零初始条件下,
dn f (t)
L
dtn
snF(s)
4.积分定理:
L[
f
(t)dt]1F(s) s
5.初值定理:假设函数 f(t) 及其一阶导数都是可拉氏变 换的,那么函数 f(t) 的初值为
f(0 )tl 0 im f(t)ls i s m ( F s)
c1 3et (s1) 4
c3ls i0m ss(ss1)2(2s3)3 2
c4sl i3(m s3)s(ss1) 2(2s3)112
f(t)21e t(t3)1e 3 t
32
2 12
c3 2 s3
c4 1 e3t (s3) 12
9
第二章 控制系统的数学模型
2-1 线性微分方程的建立与求解 2-2 传递函数 2-3 控制系统的结构图及其等效变换
cr sl ism 1(ss1)rF(s)
cr1sl ism 1dd[ss(s1)rF(s)]
crj 1j!sl im s1dd(jjs)[s(s1)rF(s)]
c1(r 11)s!l is1 m d d(rr s1 1 )[s(s1)rF(s)]
其余各极点的留数确定方法与上同。
8
例2 求 F(s) s2 的原函数 f (t ) s(s1)2(s3)
c 1s l i1 (m s 1 )F (s)s l i1 (m s 1 )(s (s 1 ) s 2 ( )3 )
12 13
1 2
c2sl im 3(s3)F(s)1 2
f(t)1(et e3t)
2
7
◆F(s)含有多重极点时,可展开为
F ( s ) ( s c r s 1 ) r ( s c r s 1 1 ) r 1 ( s c 1 s 1 ) ( s c r s r 1 1 ) ( s c n s n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(t)
K0 x0[1
T1 T1 T2
t
e T1
T2 T1 T2
t
e T2
]
(1)两点法
求静态放大系数K0,同前
2-15
取输出最终变化量的 40%和80%点来拟合,
结果比较理想.
3.由阶跃响应曲线确定过程的数学模型
(2)半对数坐标作图法 由于较为繁杂,一般不用。
3.由阶跃响应曲线确定过程的数学模型
1 e T 0 t
t1
y0 (t1) y0 (t2 )
1 1
e T0
t2
e T0
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
3.3 由阶跃响应曲线确定二阶过程的参数
阶跃响应方程为:
u2 (t) u1(t a)
矩形脉冲响应曲线:
3.由阶跃响应曲线确定过程的数学模型
首先确定过程数学模型的结构,然后确定数学模型的具体参数。
传递函数: (1)一阶无延 时
无自衡过程。
(2)二阶无延 时
(3)一阶有延 时
3.由阶跃响应曲线确定过程的数学模型
3.1 阶跃响应确定一阶过程参数 放大系数K0、时间常数T0、时延时间τ0。 t=0,曲线斜率最大,之后斜率减小,逐渐达稳态。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
课堂作业:
第一题: 采用矩形方波法测定温度对象的动态特性,所用方波
脉冲宽度t0=10min,方波幅值为2℃/h,测试记录如下 表,
(1)试将矩形脉冲响应曲线换算成阶跃响应曲线。 (2)用二阶惯性环节求取该温度对象的传递函数。
t/min T/℃ t/min T/℃
1 0.46
20 33.5
3 1.7
(1) 直角坐标图解法求K0和T0 阶跃输入量为x0,一阶无时延响应为:
将采集的输出测量数据减去原来的稳态数据, 即响应曲线是在原稳态工作点基础上的增量 曲线。
3.由阶跃响应曲线确定过程的数学模型
确定
确定
K0
y() x0
y(0)
3.由阶跃响应曲线确定过程的数学模型
t
y() y(t) K0x0e T0 1
0
18
33
45
55
63
t/s
150
200
300
400
500
h/mm
78
86
95
98
98.5
太小,被干扰信号淹没。 (3) 分别输入正负阶跃信号,并测取其响应曲线作对比,以便
显示过程的非线性影响。一般取正常信号的10%。 (4) 在相同条件下重复测试几次,选择两次比较接近的响应曲
线作为分析数据,以减小干扰。 (5) 完成一次试验测定后,使过程稳定在原来的工况一段时间,
再作第二次试验测试。 (6) 注意记录响应曲线的起始部分,如果这部分没有测出或者
3.由阶跃响应曲线确定过程的数学模型
3.2 由阶跃响应曲线确定一阶时延过程的参数 一阶时延环节响应曲线特点:
在t=0时,斜率几乎为零,之后逐渐增大到某点(拐点)后,斜率 又逐渐减小。曲线呈S形状。
3.由阶跃响应曲线确定过程的数学模型
y0 (t)
y(t) y()
y0
(t
)
0
t
t
25 27.2
4
5
3.7
9
30 40
21 10.4
8 10 19 26.4 50 60 5.1 2.8
15 16.5 36 31.5 70 80 1.1 0.5
第二题:
设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
t/s
0
20
40
60
80
100
h/mm
二阶加时延过程参数的确定
数学模型:
TC
x
(1 x)x1x
(1)
TA
T1 T2 TC
(2)
(2)
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
放大系数K0确定同前:
K0
y() x0
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:
两个极性相反、幅值相同、时间相差 a的阶跃信号叠加而成。