超声波探伤仪内部校准记录
超声波探伤实验报告

超声波探伤实验报告引言:超声波探伤是一种常用且十分重要的无损检测技术,利用超声波的传播和反射特性来检测材料内部的缺陷,具有广泛的应用领域和丰富的研究内容。
通过本次实验,我们旨在探索超声波探伤技术的原理和应用,并通过实际操作来了解其实验过程和结果。
一、实验目的本实验的目的是研究超声波在不同材料中传播和反射的特性,以及利用超声波探伤技术检测材料中的缺陷情况。
通过实验,我们能够了解超声波在不同材料中的传播速度、反射特性以及对不同尺寸、形状的缺陷的探测敏感度。
二、实验装置和方法1. 超声波探伤仪:我们采用了一台商用的超声波探伤仪,该仪器具有较高的频率范围和分辨率,能够满足该实验的需求。
2. 实验样品:选择了不同材料(如金属、陶瓷等)的标准样品进行实验。
3. 实验过程:首先,根据实验需求选择适当的探头,将其通过声耦剂与样品表面接触。
然后,控制超声波仪器进行扫描,在实验过程中记录和分析数据。
三、实验结果和讨论1. 超声波在不同材料中的传播速度:通过实验,我们得到了不同材料中超声波的传播速度。
实验结果表明,不同材料的物理性质会影响超声波的传播速度,如金属材料具有较高的传播速度,而陶瓷材料的传播速度较低。
这些数据对于超声波探伤仪的校准和实际应用非常重要。
2. 超声波在材料中的反射特性:我们通过实验观察到在探测头将超声波引入样品后,部分超声波会被样品内的缺陷或界面反射回来。
通过检测反射回来的超声信号,我们可以推测出样品内的缺陷位置和形状。
实验结果表明,缺陷较严重的样品会导致更多的超声波反射,从而能够被更易于探测到。
3. 超声波探测缺陷的敏感度:通过在样品中加入不同尺寸和形状的缺陷,我们测试了超声波探测的敏感度。
实验结果表明,超声波探测对于较大和较深的缺陷相对较为敏感,而对于较小和浅的缺陷则有一定的探测限度。
四、结论通过本次实验,我们深入了解了超声波探伤的原理、实验方法以及应用。
实验结果证实了超声波在不同材料中的传播速度、反射特性和对不同尺寸缺陷的探测敏感度。
10 超声波探伤仪检定规程

超声波探伤仪检定规程1 目的为规范超声波探伤仪的检定工作,保证检定质量,确保检测数据的正确性,特制定本规程。
2 范围本规程适用于各类型号的超声波探伤仪的首次和后续检定。
3 职责检定人员应熟悉有关规程及相应说明书等有关技术资料,熟悉仪器的操作程序,对检定结果的正确性负责。
4 要求4.1术语和计量单位4.1.1术语4.1.1.1超声波频率高于20000Hz的机械波称为超声波。
4.1.1.2标准试块由权威机构制定的试块,试块的材质、形状、及表面状态都由权威部门统一规定。
4.1.1.3动态范围仪器示波屏容纳信号大小的能力。
4.1.1.4波速超声波在单位时间内所传播的距离。
4.1.1.5探头与工件接触,用于发射和接收超声波并进行电声信号能量转换的装置。
4.1.1.6耦合剂在探头与工件表面之间施加的一层透声介质。
4.1.1.7水平线性仪器示波屏上时基线显示的水平刻度值与实际声程之间成正比的程度。
4.1.1.8垂直线性仪器示波屏上的波高与探头接收的信号之间成正比的程度。
4.1.1.9分辨力示波屏上区分相邻两缺陷的能力。
4.1.1.10盲区从探测面到能够发现缺陷的最小距离。
4.1.2计量单位4.1.2.1厚度H-------mm4.1.2.2声速C--------- m/s4.1.2.3温度t-----------℃4.1.2.4频率f---------Hz4.2概述超声波探伤仪是利用电声转换原理和超声波在介质中的传播特性对工件进行检测,通过分析示波屏上回波的位置和高度来判断缺陷有无和大小的一种装置。
4.3计量性能要求4.3.1主要技术参数4.3.1.1工作频率:1~5MHz(钢)4.3.1.2总衰减量:≥80dB4.3.1.3衰减误差:≤ 1 dB4.3.1.4垂直线性误差:≤5%4.3.1.5水平线性误差:≤ 1%4.3.1.6动态范围:≥30 dB。
4.3.1.7远场分辨力:直探头≥30dB;斜探头≥6dB。
超声波探伤仪检定规程

超声波探伤仪检定规程引言超声波探伤仪是一种广泛应用于工业领域的检测设备,用于检测材料内部的缺陷或异物。
为了保证超声波探伤仪的准确性和可靠性,需要进行定期的检定。
本文将详细介绍超声波探伤仪检定的规程和步骤。
检定目的超声波探伤仪的检定旨在验证设备的测量准确性、敏感度以及其他性能指标,以确保其在实际使用中能够正常工作并正确地检测缺陷和异物。
检定方法选择超声波探伤仪的检定方法应选择符合国家标准或行业规范的方法,并根据设备的特点和用途进行合理的调整。
一般常用的检定方法有以下几种:1.回波幅值检定–使用标准试块进行测量,通过比对回波信号的幅值与试块设定值的差异,评估超声波探伤仪的测量准确性。
2.分辨力检定–采用不同直径的孔板进行检测,通过分析超声波探测到的信号的清晰度和分辨能力,评估设备的敏感度和分辨力。
3.脉冲重复频率检定–通过测量超声波探测仪器的脉冲重复频率,以判断设备的工作频率是否符合规定要求。
检定设备准备在进行超声波探伤仪的检定之前,需要做好以下准备工作:1.检定仪器和设备:–确保超声波探伤仪器的正常工作状态,包括电源供应、传感器的连接和校准等。
2.校准试块和标准器件:–准备一套标准试块,并根据规定的要求进行校准。
3.测试环境准备:–确保测试环境符合要求,包括温度、湿度和电磁干扰等。
检定步骤步骤一:回波幅值检定1.首先,选取一块符合要求的标准试块,并进行相关的校准工作。
2.将标准试块放置在检测台上,并调整超声波探测器的位置和角度,使其与试块表面垂直。
3.使用超声波探测仪器进行扫描,记录所得的回波信号的幅值。
4.将记录的回波信号与试块的设定值进行比对,计算出差异,并判断是否符合要求。
步骤二:分辨力检定1.准备一组具有不同直径的孔板,并确保其直径和深度的测量准确性。
2.将孔板放置在检测台上,并使用超声波探测仪器进行扫描。
3.观察和记录超声波探测到的信号,并评估其清晰度和分辨能力。
4.根据观察结果,判断设备的分辨力是否达到要求。
数字超声波探伤仪校验规程

数字超声波探伤仪校验规程1.0目的规范数字超声波探伤仪的校准操作,确保其有效性和准确性。
2.0范围本规程适用于本公司新购置的和使用中的超声波探伤仪与探头的系统性能的校验。
数字式超声仪的校验可按照本规程,也可按照仪器内置的仪器自校功能。
3.0校验人员校验人员应熟悉仪器的工作原理和使用方法,并按本规程规定的方法进行校验。
4.0应用器材4.1 标准试块CSK-ⅠA试块及DB一P Z20一2、DB一P Z20一4型标准试块。
4.2 所用试块必须是具有相应资质的企业生产的标准试块,且经过计量部门检定合格。
5.0校验及评定内容5.1 外观检查采用目视及操作方法进行。
5.2 水平线性误差5.2.1 所用检定设备与被检超声探伤仪的连接方式如图1所示。
并应使函数信号发生器输出阻抗、衰减器特性阻抗和终端负载相互匹配。
5.2.2 被检超声探伤仪的工作方式置[双],抑制置“0”,衰减器置适中量值。
在扫描范围各挡上,将被检超声探伤仪的发射脉冲输人到函数信号发生器输人端,其输出通过标准衰减器接到被检超声探伤仪“收”端,并调节频率、信号幅度、调制波数及标准衰减器旋钮,使超声探伤仪显示屏上显示六个幅度相等的 (如垂直满刻度80%)脉冲波形。
5.2.3 调节被检超声探伤仪[扫描微调]及[移位]旋钮,使第一个波的前沿对准水平刻度“0”,第六个波的前沿对准水平刻度 “10”,依次读取第二至第五个波的前沿与水平刻度“2”、“4”、“6”、“8”的偏差amax ,如图2所示,取其最大偏差值。
按下式计算超声探伤仪水平线性误差:%100max ⨯=∆Ba L式中:ΔL —水平线性误差;B —水平满刻度数。
5.3 衰减器衰减误差5.3.1 所用检定设备与被检超声探伤仪的连接方式如图1所示。
并应使正弦信号发生器输出阻抗衰减器特性阻抗和终端负载相互匹配。
5.3.2 被检超声探伤仪的工作方式置[双],抑制置“0”,衰减器置适中量值。
在扫描范围各挡上,将被检超声探伤仪的发射脉冲输人到函数信号发生器输入端,其输出通过衰减器接到被检超声探伤仪“收”端。
钢铁构造焊缝超声波探伤原始记录

钢铁构造焊缝超声波探伤原始记录目的本文档旨在记录钢铁构造焊缝超声波探伤的原始记录,以便进行分析和评估。
检测对象本次检测的对象为钢铁构造焊缝。
焊缝的材料为钢铁。
设备和仪器本次检测使用的设备和仪器如下:- 超声波探伤仪器:型号 XYZ123- 探头:型号 ABC456- 耦合剂:型号 DEF789检测参数本次检测使用的参数如下:- 探头频率:10 MHz- 距离增益:20 dB- 波束角度:45°- 采样点数:1000检测过程步骤1:准备工作- 将超声波探伤仪器连接至电源,并确保正常启动。
- 检查探头和耦合剂是否完好,并进行必要的更换和维护。
步骤2:拍照记录- 用相机拍摄焊缝的整体照片,并标注焊缝的位置和编号。
步骤3:调整检测参数- 打开超声波探伤仪器的设置界面。
- 使用触摸屏或按钮调整探头频率、距离增益、波束角度和采样点数等参数,以适应当前焊缝的特性。
步骤4:进行探伤检测- 将探头与焊缝表面贴合,并涂抹耦合剂以提高信号传输质量。
- 启动超声波探伤仪器,并开始进行焊缝的超声波探伤。
- 根据仪器显示的超声波信号,记录焊缝的异常情况,如裂纹、尺寸偏差等。
步骤5:结束检测- 完成焊缝的超声波探伤后,关闭超声波探伤仪器。
- 清理和维护设备,确保其处于良好的工作状态。
结论经过超声波探伤检测,钢铁构造焊缝的情况如下:- 位置1:无异常情况。
- 位置2:存在裂纹,裂纹长度约为5mm。
检测人员和日期本次超声波探伤检测由XXX人员于20XX年XX月XX日完成。
以上为钢铁构造焊缝超声波探伤的原始记录。
超声波探伤仪斜探头横波零点自动校准操作指导书

设备(工艺装备)操作指导书
操 一、 设备(工艺装备)主要参数
《HS610e 使用说明书》
设备(工艺装备)名称
超声波探伤仪
设备型号 (工艺装备代号)
HS610e
作
说
明
图一 显示屏
图片/草图
单击选择、
图四
GB\T11345-1989
二、操作步骤
超声波探伤仪斜探头横波零点自动校准操作指导书
1、仪器各主要部件名称,如图一。 2、零点自动校准操作规程。 3、将探头与仪器连接好,将探头放置在 CSK-IA 试块上。 (如图二、三) 4、按住旋钮 2S~3S 后选定旋钮功能,旋转旋钮到“参数”栏确定,继续旋钮将光标移到探头类型, 单击旋钮在直探头与斜探头间选择斜探头。转动旋钮到“退出”单击返回探伤界面。 (如图一、四、五) 5、继续旋转旋钮到到“自动调校”单击进入自动校准功能。依次停好材料的声速 3240m/s、超始距 离:50mm、终止距离:100mm 参数并分别按“确认”键。 (如图八)
图七
三、操作注意事项
注意校准试块滑落砸伤。
记录前沿值 接收探头线 插 座 打印机及通讯 插座
四、健康安全环保规范正确ຫໍສະໝຸດ 戴劳保用品:安全帽、工作服、劳保鞋。
图八
设 审 批 标 记 处 数 更改文件号 签 字 日 期
计(日期) 核(日期) 准(日期) 共 页 第 页
图三
依次填好声速、起始距 离、终止距离
图二
数码飞梭旋钮 对应的选择确认键
图六
6、将斜头探头放置在 CSK-IA 试块的 R50mm 和 R100mm 的圆心处,来回移动探头,直到两面回波同 时出现在波形显示区内,按下波峰记忆寻找最高波。 (如图五) 7、按“自动调校”后设备开始自动校准,校准完后会滚动出一个“自动校准完毕! ”的提示信息, 如果校准不成功请解决问题后按上面的步骤再校一次。 (如图六) 8、 测量前沿值, 用手固定探头不动, 用钢尺测量出探头前端到 CSK-IA 试块 R100mm 端边距离 X, 100-X 就是探头的前沿值,并在参数栏里填好前沿值。 (如图七)
超声波探伤仪时基线和灵敏度的调整

标准化!""#年第!$卷第%期!Q 8X ^C _A !A W W @超声波探伤仪时基线和灵敏度的调整8*$?%.&+2(&’Y %-%.&’$#!!P 1&+".*$’(Q J ")’$"&’*$M "+&A !D %$.’&’Y ’&,"$?F "$#%D %&&’$#!!中图分类号!*+!!’#"&!!!文献标识码!;!!!文章编号!!(((-$$’$""((’#(&-(R "V -($译者语时基线和灵敏度的调整是,型显示超声波探伤仪最基本的操作技能!关系到缺陷定位"定量"定性的准确性和检测结果的可靠性#而曲面试件的横波探伤$包括管"棒"椭圆封头及管座类试件%!涉及到参考试块和参考反射体类型"尺寸的选择!斜探头接触面的修整!探头入射角"折射角及曲底面声束入射角的测定!也涉及到在凸曲面或凹曲面上扫查时!缺陷深度和水平位置的修正计算!以及检测灵敏度的传输修正等问题#对这些关键技能的运作与校验!国内相关标准$如Z ^R V %(和+^!!%R ’等%均未展开细述!但8]’&%&"’"((!可令操作者茅塞顿开!眼明心亮#相信标准中的那些图"表"公式!特别是附录^!;!8的内容!能对国内超声检测人员的基本功起到夯实和强化作用#另外!也望本标准的引见!能为超声检测常规技术的国际接轨!献一孔之见#前言欧洲标准8’&%""!"((!由技术委员会;8]#*;!%&无损检测专委会$秘书国为法国%制订&本欧洲标准应立为国家标准’至迟于"((!年V 月前发布相同文本或予以认可&凡与此有抵触的国家标准应在"((!年V 月前废止&本欧洲标准系欧洲委员会和欧洲自由贸易协会授权欧洲标准化委员会$;8]%制订&本欧洲标准可视为产品标准及其应用的支撑标准’而产品标准又支承新法规的基本安全要求’并参照了本欧洲标准&本欧洲标准由以下各部分组成!8]’&%"!!无损检测!超声检验!第!部分!基本原理8]’&%""!无损检测!超声检验!第"部分!时基线和灵敏度调整8]’&%"%!无损检测!超声检验!第%部分!一发一收法8]’&%"R !无损检测!超声检验!第R 部分!板厚方向缺陷的检测8]’&%"’!无损检测!超声检验!第’部分!缺陷表征和定量8]’&%"$!无损检测!超声检验!第$部分!衍射时差法探伤和定量按;8]#;8]8c 8;内部规定’下列成员国$共!)个%的国家标准化机构应执行本欧洲标准’即奥地利(比利时(捷克(丹麦(芬兰(法国(德国(希腊(冰岛(爱尔兰(意大利(卢森堡(荷兰(挪威(葡萄牙(西班牙(瑞典(瑞士和英国&@!范围本标准该部分规定手工操作的,扫描显示超声波探伤仪时基线和灵敏度调整的通用规则’旨在使反射体的位置和回波高度的测量值有重复性&本标准适用于单探头$单晶或双晶%接触法探伤’不适用于水浸法和多探头法&A !引用标准本欧洲标准引用了其它现行标准或旧标准构成新条文&这些引用标准引述于文中相应处’篇名如下&对旧标准只引用含修改条文的修订版’而对现标准则引用最新版&8]!"""%!超声检测!号校准试块技术条件8]"V )$%!钢焊缝超声检测"号校准试块8]!"$$&"%!超声检测设备表征和校验!第%部分!组合设备C !概述C B @!定量参数和符号本标准该部分所用定量参数和符号意义见附录,&C B A !试件$试块和参考反射体对试件(试块和参考反射体的一般几何特点要求见附录^&C B C !试件分类&*#万方数据时基线和灵敏度调整要求取决于试件的几何形状和尺寸!试件分五类"见表!!表@!试件几何形状分类类别特!!点I向截面J向截面+上下两表面平行#如平板$#单向平行曲面#如管子%筒体$"多向平行曲面#如蝶形封头%椭圆封头$0实心圆截面#如圆棒$1复杂形状#如管座%管接头$C B U!探头修整对几何形状为#!1类的试件"为避免探头移动时摇摆不定"保证声耦合良好"并使试件中声束角度不变"探头接触面要作修整!只有支座是硬性塑料的探头才可作修整#通常是双晶直探头或有斜楔的斜探头$!对不同的几何形状#表!和图!$"有以下三种修整情况#!$+类!无论沿I或J向扫查"探头接触面均无需修整!#"$)类和*类!作I向扫查时"探头接触面要修整为纵向曲面&作J向扫查时"探头接触面要图!!在曲面试件上探头楔块的长度<N 和宽度QN修整为横向曲面!#%$+类和,类!无论沿I或J向扫查"探头接触面须修整为纵横双向曲面!用接触面修整好的探头"时基线和灵敏度须在曲率与试件类似的参考试块上调整"或通过数学修正系数进行调整!遵循式#!$或#"$所限定的条件"可避免超声低能传输或声束偏移的问题!%?R?!!纵向曲面探头%?R?!?!!扫查面为凸曲面时在凸曲面上扫查"试件外径$/与探头楔块长度<N有如下关系时"则探头接触面应作修整$/1!(<N#!$ %#R#!#"!扫查面为凹曲面时在凹曲面上扫查"探头接触面总要作修整"除非试件曲面半径很大"可获得适当耦合!%#R#"!横向曲面探头%#R#"#!!扫查面为凸曲面时在凸曲面上扫查"试件外径$/和探头楔块宽度QN有如下关系时#图!$"则探头接触面应作修整$/1!(Q N#"$ %#R#"#"!扫查面为凹曲面时在凹曲面上扫查"探头接触面总要作修整"除非试件曲率半径很大"可获得适当耦合!%#R#%!纵横双向曲面探头探头接触面应满足%#R#!和%#R#"的要求!U!探头入射点和折射角的测定U B@!概述对直探头"无需测探头入射点和折射角"因入射点总在探头接触面中心"折射角为零!用斜探头时"这些参数必须测定"以便测出反射体在试件中相对于探头的位置!所用测试方法和参考试块取决于探头接触面的形状!测出的折射角取决于参考试块的声速!若试块不是用非合金钢制作"应测出其声速并作出记录!U B A!平面探头R#"#!!校准试块法应视探头尺寸大小"分别按8]!"""%或8]"V)$%规定"测定入射点和折射角!R#"#"!参考试块法也可用8]!"$$&’%给出的参考试块#内含至少%个横孔$测定入射点和折射角!’*#万方数据!!!""#年第!$卷第%期!""#年第!$卷第%期!U B C !纵向曲面探头R #%#!!机械测定修整探头接触面前!应按R #"#!所述测定探头入射点和折射角"探头入射角-应根据测出的折射角.和始于入射点而平行于入射声束的中心线求出!并标定在探头侧面#图"$"图"!纵向曲面探头入射点的确定!?入射点位移后的标定线!"?修整后的入射点%?修整前的入射点入射角-由下式给出-’D 43\!#D 43.R c !R 6"$#%$式中!R c !%%%探头楔块中纵波声速#有机玻璃通常为"V %(B &D$R 6"%%%试块中横波声速#非合金钢通常为%"’’e !’B &D $探头修整后!入射点会沿标线移动!其新位置可用机械方法在探头侧面直接量出#图"$"图%!纵向曲面探头折射角.的测定折射角应在横孔试块上使横孔回波最大时测出!此横孔应满足附录^的条件"折射角可直接在试件上或在参考试块上或坐标图上测出#图%$"折射角也可根据在参考试块上用机械方法量出的声程长度!用下式求出"这一步可与’#R #R 所述时基线的调整一起完成".’0<D ,!#(?’/$")2",!")2/)!$/$/#2)(?’/$#R $式中符号意义见图%"校准用的曲率半径应为试件曲率半径的e !(U 以内"R #%#"!参考试块法此法与R #"#"所述要点相似!但试块曲率半径需在试件曲率半径的e !(U 内"U B U !横向曲面探头R #R #!!机械测定探头接触面修整前!探头入射点和折射角应按R #"所述测定"探头接触面修整后’#!$始于入射点而代表入射声束的中心线!应标定在探头侧面"探头入射点新的位置应如图R 所示!在探头侧面测量"图R !横向曲面探头入射点位移的测定!#入射点位移标线!"#修整后入射点!%#修整前入射点#"$探头入射点位移距离2"由下式求出0"’E (@9-#’$!!#%$对有机玻璃楔块和非合金钢试件!三种常用折射角的探头入射点位移距离2"!应按修整深度E 由图’读出"图’!斜探头有机玻璃延迟声程中入射点位移距离2"在探头修整过程中!声束折射角不应改变"但如果沿探头长度方向上的修整深度位置未知!或有变化!则应在适当修整的参考试块上!用横孔测定#此横孔应满足附录^给出的条件$"声束折射角的确定应在坐标纸上!将横孔与探头入射点连成一直线或按图$布置用下式求出.’@9,!/P )",0!#$$"*#万方数据图$!用横孔测探头折射角R#R#"!参考试块法与R#"#"所述要点相似!除非试块接触面横向曲率与探头相似!且(#!3<%3K%(#%3<"3<为试件曲率半径!3K为试块曲率半径#$U B X!双向曲面探头除非可避免探头接触面呈多向曲面"如用尺寸较小的探头#!双向曲面探头应按R#"!R#%和R#R规定的方法进行修整$U B]!用于合金钢材料的探头若材料声速明显不同于非合金钢材!探头入射点位置和折射角也会明显改变$用!号校准试块或"号校准试块的圆弧面测试!会使结果产生偏差$若声速已知!则折射角可用下式求出.P’D43\!D43.%R6PR6"V#式中!.&&&非合金钢校准试块中的声束折射角.P&&&试件中的声束折射角R6&&&非合金钢校准试块中的横波声速R6l&&&试件中的横波声速若声速未知!则折射角可用试样材料中的横孔回波测定"图$#!或按R#%#!或R#R#!所述测定$X!时基范围的调整X B@!概述用脉冲回波法检测时!超声仪示波屏上时基线的调整应能代表声程传播时间!更确切地说!能代表与之直接相关的参数!如反射体的声程距离!在探测面下的埋藏深度!或其水平距离!或其简化的水平距离"图V#$除非另行说明!以下所述方法均指时基图V!简化的水平距离调整时基线线代表声程距离"实际回波为双声程#$时基线的调整应使用相隔间距或时间已知的两参考回波进行$根据所选用的调整方法!应已知有关声程’深度’水平距离或简化的水平距离$上述方法能保证声波通过延迟块"如探头斜楔#的时间自动校准$对使用电子校准时基线的仪器!只要参考试块声速已知!用一个回波校准即可$在时基范围内!参考回波之间的距离应尽量拉大$应使用水平和微调旋钮在时基线上将每个回波的前沿调至预定的位置"即按所谓声程法!深度法或水平法调整&&&译注#$如可能!应对照一个校验信号进行校准!此信号不应与调整的信号相重叠!但应显示在标定的示波屏位置上$X B A!参考试块和参考反射体检测铁素体钢时!可用8]!"""%规定的!号校准试块或8]"V)$%规定的"号校准试块$若用参考试块或试件本身进行校准!可用不同已知声程的适当反射体或利用与检测面相对的另一表面$参考试块的声速与试件相比!误差应%e’U!或对两者声速差求出修正值$X B C!直探头’#%#!!单一反射体法此法要求参考试块厚度不大于所需调整的时基范围!由!号校准试块"’B B或!((B B厚部分!或由"号校准试块!"#’B B厚部分!可获得适当的底面回波$另外!也可用厚度已知’具有两平行表面或同轴表面的参考试块"只要声速与试件相同#$’#%#"!多反射体法此法要求参考试块"或一组试块#有两个不同已知声程的反射体"如横孔等#$探头应反复移动!使每个反射体的回波达到最大!即对最近反射体的回波位置!要通过水平"或零位#旋钮!而对另一个反射体的回波位置!要通过微调旋钮!分别调到准确的时基刻度位置$X B U!斜探头’#R#!!圆弧面反射法"声程法+#时基线可用8]!"""%规定的!号校准试块或8]"V)$%规定的"号校准试块的圆弧面反射进行调整$’#R#"!直探头法"声程法##对横波探头!时基线也可用纵波直探头调整!将直探头放在!号校准试块)!B B厚部分!则其底面回波相当于钢中横波声程’(B B$( !#万方数据!!!""#年第!$卷第%期!""#年第!$卷第%期!用此法调整时基线时!须用实际探伤用的探头!从声程已知的适当反射体获得一个回波!并只用零位旋钮!在时基线上将该回波调到准确位置"’#R #%!参考试块法"声程法"#此法基本与’#%#"所述直探头多反射体法相同"但为获得足够的精度!要将声束入射点位置标定在试块表面#这些位置的回波幅度最大$"然后用机械方法测出这些标记点到相应反射体的距离"对随后所有的时基调整!探头要重新定位在标记处"’#R #R !曲面斜探头"声程法0#应先用平面探头调时基线#如上所述$"然后将探头放在表面已作适当修整的参考试块上!试块中至少有一个声程已知的反射体"应只用零位旋钮!在时基线上将此反射体的回波距离调至准确位置"X B X !斜探头调时基线的其它方法’#’#!!平面斜探头所调整的时基线可不代表声程!而代表反射体在检测面下的深度位置!或在探头前方的水平距离#图V $"当选定时基线代表深度或时基线时!要将具有已知声程的参考试块的回波!在时基线上调至相应的深度或水平距离"对声束角度一定的平面斜探头!深度%水平距离与声程的关系!可用坐标图或以下公式求出深度!’2&0<D .#&$水平距离/’2&D 43.#)$简化水平距离!!!/P ’2&D 43.,"#!($’#’#"!曲面斜探头用’#’#!所述方法调整时基范围时!时基线与实际深度或水平距离不呈线性关系"对非线性刻度的修正!可在声程坐标图上测出一系列位置的读数!或通过相关公式进行计算"对声波到达同心曲面试件底面的声程距离!可用附录;给出的公式求出"另外!也可用曲面试块中一组反射体!根据其回波最大时的位置进行修正!对中间值则用插值法修正#图&$"]!灵敏度调整和回波高度的评价]B @!概述时基线校准后!应使用下列方法之一调整超声探伤仪灵敏度#或增益$’#!$单一反射体法!评价同声程距离范围内的回波时!可用单一反射体法!如底面回波法"#"$距离-波幅曲线#=,;$法!此法使用一定图&!曲面探伤中用简化的水平距离和深度法调整时基线对反射体进行定位的示例参考试块中一系列声程不同的同种反射体的回波高度#见$#%$"#%$距离-增益大小#=+6$法!此法利用一系列由理论导出的反射体当量曲线!此曲线相关于声程距离%仪器增益和垂直于声束轴线的圆盘形反射体的大小#见$#R$"方法#"$和#%$旨在补偿回波幅度因声程距离增大而引起的变化"但必要时!三种方法都要作传输修正!以补偿耦合损失和材料衰减#见$#’$"用简单几何形状的理想反射体!如横孔或平底孔等对自然缺陷进行定量!给出的不是实际大小!而是当量值"缺陷实际尺寸往往比其当量值大得多"]B A !曲底面入射角用斜探头在曲面试块上以一次反射波#即二次波$进行扫查时!应考虑声束在试件曲底面上的入射角"当探头从外表面对圆筒形或管形试件扫查时!内表面的声束入射角会比探头折射角大得多"反之!探头从内表面扫查时!外表面的声束入射角会比探头折射角小得多#见附录;$"对横波探头!所选定的折射角!应使其曲底面入射角在%’h !V (h !否则由于波型转换!会使声能严重损失"而且!由波型转换引起的附加回波!会干扰回波信号的评定"确定声束在圆筒形或管形试件内外表面的入射角!可利用附录;给出的诺模图!也可根据声波到达内外表面的声程距离用公式计算"]B C !距离:波幅曲线!57R "法$#%#!!参考试块=,;参考试块要求在探伤用的时基范围内!有)!#万方数据!!!""#年第!$卷第%期一系列不同声程的反射体!试块和反射体的最小尺寸及布置详见附录^!附录^给出的技术条件通常适用于+类试件"如认为可以"也可用于#!1类试件!注意"由于盲区影响或近场干扰"还有小于最小声程距离无法正常评价信号的区域!=,;参考试块可为$通用试块"其衰减小而均匀"具有规定的表面粗糙度"且&K S e!(U &<#&K 为试块厚度"&<为试件厚度$!%专用试块"其声学特性%表面粗糙度%几何形状和表面曲率与试件相同!当为第一种情况时"在=,;可直接应用前"应先对衰减%曲率和耦合损失进行修正!$#%#"!=,;制作距离-波幅曲线如下所述"可直接绘在仪器示波屏面板上"或绘在单独的坐标纸上!可用电子方法支持!使用带时控增益#*;+"也称扫描增益$的仪器时"增益调整能使=,;变成一条水平线!$#%#"#!!面板=,;先将时基线调到要用的最大声程距离"再将增益调到使一组反射体的回波为"(U !&(U 满屏高!当为斜探头时"反射体可用一次波#(!(#’2$"也可用二次波#(?’!!?(2$探测!然后"在增益值不变的情况下"将各最大回波的峰值位置标在示波屏面板上"再将各点连成距离-波幅曲线!若最大回波和最小回波高度不在满屏高"(U !&(U 内"也可将=,;分开绘制"即用不同的增益值绘出分开的曲线#图)$"并将两曲线之间的增益差标明在示波屏面板上!图)!超声仪面板分割式=,;曲线另外"绘制=,;的增益值"可参照其它反射体回波"如平底面探头用!号校准试块3!((B B 的)(h圆弧面"或#%B B 横孔的回波!根据所标增益值"以后不用参考试块"也可重新调整!$#%#"#"!坐标纸=,;在单独的坐标纸上绘制=,;曲线时"一般程序与$#%#"#!所述相似"但各个反射体的最大回波都要调到同一高度#通常是&(U 满屏高$"记下增益值"并在坐标纸上绘出与声程距离的关系!$#%#"#%!传输修正对按$#%#"#!和$#%#"#"作出的距离-波幅曲线"要根据$#’测出的传输损失进行适当修正!传输修正可任选以下一种方法#!$在制作过程中修正=,;#"$绘出第二条修正过的=,;#%$在评定过程中应用适当的修正值考虑与声程有关的衰减修正时"宜用方法#!$和#"$"而方法#%$仅适用于传输补偿不变的情况!$#%#%!用=,;评价信号$#%#%#!!调整探伤灵敏度探伤灵敏度的调整方法为"移动探头"使=,;参考试块中某一参考反射体的回波高度最大"再调整增益"使回波峰值达到=,;!若传输修正值未计入=,;#以上方法#!$和#"$$"则应在相应的声程距离上"按传输补偿值提高增益!或者"距离-波幅曲线的增益已根据其它反射体作了调整"那么也可用相应的增益修正值取代!然后"按相关标准或规程规定的数值"在扫查前将增益提高或降低!$#%#%#"!回波高度的测定凡需评价的回波高度"可用有标称值的增益旋钮调节"使之达到=,;"并与绘制=,;的原始值相比较"记下增减的增益调节值!若传输损失未计入=,;"必要时应附加适当的修正值!对所得回波高度差"当增益调节值需从原始值增大"7^时"则回波高度应标为参考水平\"7^&当增益调节值需从原始值减小#7^时"则回波高度应标为参考水平g #7^!$#%#R !用基准高度评价信号用此法时"缺陷回波高度要与相同或较大声程距离的参考反射体的回波进行比较!将两信号分别用增益调节值N A 和N :调至相同屏高#即参考高度$!参考高度应为R (U !)(U 满屏高!回波高度差2!A 即可用下式求出2!A ’N :,N A #!!$"未完待续#!李!衍译!马铭刚校#*!#万方数据超声波探伤仪时基线和灵敏度的调整作者:李衍, LI Yan作者单位:刊名:无损检测英文刊名:NONDESTRUCTIVE TESTING年,卷(期):2005,27(8)被引用次数:0次本文链接:/Periodical_wsjc200508012.aspx授权使用:西安交通大学(xajtdx),授权号:e5ff1ddb-0d42-41d6-b8a9-9e90015da303下载时间:2011年2月20日。
超声波探伤仪操作步骤

超声波探伤仪操作步骤公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]步骤一:校准(显示区只显示A扫图像)(1)声速校准(可同时计算出楔块延时和前沿距离)1 、直探头(以厚度校准为例)①范围:根据工件的厚度确定。
将一起检测范围调节到大于工件厚度的2倍。
②声速:5950m/s。
③探头角度:0度。
④增益:调节选择适当的增益。
⑤输入参考点1和参考点2的值。
(如下图,参考点1的值为100,参考点2的值为200)⑥移动闸门A,套住第一次底波,按压校准键,则回波1已校准。
⑦移动闸门A,套住第二次底波,按压校准键,则回波2已校准。
(计算公式:v=(s2−s1)t)同时可计算出楔块延时:t delay=s2v −2(s2−s1)v2、斜探头(以半径校准为例)①范围:根据工件的厚度确定。
如上图,将扫描范围调节到大于100mm。
②声速:5950m/s。
(是否按横波和纵波)③探头角度:先输入角度参考值,稍后在校正,角度在这里没有影响。
④增益:调节选择适当的增益。
⑤移动探头,找到R100圆弧面的最高反射波,输入参考点1和参考点2的值。
(如上图,参考点1的值为50,参考点2的值为100)。
平移探头到试块带R50圆弧面的一侧,使得R50圆弧面的反射波具有一定高度。
移动闸门A,选中R50圆弧面回波,按压校准键,则回波1已校准。
移动闸门A,选中R100圆弧面回波,按压校准键,则回波2已校准。
(计算公式:v =(s 2−s 1)t)同时可计算出楔块延时:t delay =s 2v−2(s 2−s 1)v找到R100圆弧面的最高反射波,则前沿距离x=100-L 。
(2)斜探头角度(K 值)校准现在范围已调整好,声速及楔块延时已校准。
① 进入K 值校准菜单② 输入孔深:(如下图,30mm ) ③ 输入孔径:(如下图,50mm )④ 增益:调节选择适当的增益。
⑤ 移动探头,找到?50mm 圆孔最高反射波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波探伤仪内部校准记录
设备名称
规格/型号
出厂编号
公司编号
校准项目
主要校准项目:
1.仪器的垂直பைடு நூலகம்性
2.仪器的水平线性
3.仪器的动态范围
4.仪器的衰减精度
技术要求
1.仪器的垂直线性误差≤5%
2.仪器的水平线性误差≤1%
3.仪器的动态范围不小于26dB
4.仪器的衰减器在任一12dB范围内误差≤1%
为Db
4.衰减器精度的测试
将2.5P20Z探头对准CSI-5Φ2平底孔,调节衰减器,增益使其回波高为H1=20z%,记录
衰减器读数。其它旋扭不动,将探头对准CSI-4平底孔,移动探头获得最大回波,调节衰减器,衰减12Db,此时Φ4不底孔的波高H2=
则衰减器的偏差值N: N=20LgH1/H2=
校准:年月日核验:年月日
校
准
记
录
1.垂直线性偏差
D=(∣+∣)×100%=
2.水平线性偏差
测得a max为:a max=
δ=∣amax∣/0.8b×100%=b-示波屏水平满刻度值
3.仪器动态范围的测试
将2.5P20Z探头置于CSK-IA厚度为25mm处,调节增益和衰减器,使第一次底波
B1=100%。其他键不动,衰减dB后,度波高度B1接近于零。则仪器的动态范围