人工智能化(A星算法)

合集下载

人工智能A星算法

人工智能A星算法

人工智能A星算法
人工智能A星算法(A* Algorithm)是一种启发式算法,它能够解决从一个起始点到特定终点的最短路径问题。

该算法是利用基于启发式的算法和最优子结构性质,该算法在空间中生成了一条最佳路径,既可以简单而又可靠。

A*算法通过评估每条路径的风险和代价,来确定最佳路径。

对于一个节点,算法将图上的所有可能路径的代价总和折算成一个“分数”,把这些“分数”比较,选择最低分的路径为最优路径。

(1)定义一个空间,在这个空间中有起点到终点的路径,并且定义一些实体:路点、障碍物、起点、终点等;
(2)将起点放入开放列表,开始;
(3)从开放列表中取出一个节点(称作当前节点),检查是否为终点,如果是,结束,如果不是,将当前节点放入关闭列表;
(4)在开放列表中寻找临近节点,将临近节点放入开放列表,并对每一个节点计算从起点到该节点的代价F,该代价由起点到当前节点的距离G和该节点距离终点的估价H之和;
(5)重复以上步骤,直到从开放列表中取出的节点是终点;
(6)返回最佳路径。

a星算法求解八数码问题python

a星算法求解八数码问题python

a星算法求解八数码问题python一、介绍八数码问题是一种经典的智力游戏,也是人工智能领域中的经典问题之一。

在这个问题中,有一个3×3的棋盘,上面摆着1至8这8个数字和一个空格,初始状态和目标状态都已知。

要求通过移动数字,将初始状态变换成目标状态。

其中空格可以和相邻的数字交换位置。

为了解决这个问题,我们可以使用A*算法。

本文将详细介绍如何用Python实现A*算法来求解八数码问题。

二、A*算法简介A*算法是一种启发式搜索算法,常用于寻找最短路径或最优解等问题。

它基于Dijkstra算法,并加入了启发式函数来加速搜索过程。

在A*算法中,每个节点都有两个估价值:g值和h值。

g值表示从起点到该节点的实际代价,h值表示从该节点到目标节点的估计代价。

启发式函数f(n) = g(n) + h(n) 表示从起点到目标节点的估计总代价。

A*算法采用优先队列来保存待扩展的节点,并按照f(n)值从小到大排序。

每次取出队头元素进行扩展,并将扩展出来的新节点按照f(n)值插入队列中。

当扩展出目标节点时,算法结束。

三、八数码问题的状态表示在八数码问题中,每个状态都可以表示为一个3×3的矩阵。

我们可以用一个一维数组来表示这个矩阵,其中0表示空格。

例如,初始状态可以表示为[2, 8, 3, 1, 6, 4, 7, 0, 5],目标状态可以表示为[1, 2, 3, 8, 0, 4, 7, 6, 5]。

四、A*算法求解八数码问题的步骤1.将初始状态加入优先队列中,并设置g值和h值为0。

2.从队头取出一个节点进行扩展。

如果该节点是目标节点,则搜索结束;否则,将扩展出来的新节点加入优先队列中。

3.对于每个新节点,计算g值和h值,并更新f(n)值。

如果该节点已经在优先队列中,则更新其估价值;否则,将其加入优先队列中。

4.重复第2步至第3步直到搜索结束。

五、Python实现以下是用Python实现A*算法求解八数码问题的代码:```import heapqimport copy# 目标状态goal_state = [1,2,3,8,0,4,7,6,5]# 启发式函数:曼哈顿距离def h(state):distance = 0for i in range(9):if state[i] == 0:continuerow = i // 3col = i % 3goal_row = (state[i]-1) // 3goal_col = (state[i]-1) % 3distance += abs(row - goal_row) + abs(col - goal_col)return distance# A*算法def A_star(start_state):# 初始化优先队列和已访问集合queue = []visited = set()# 将初始状态加入优先队列中,并设置g值和h值为0heapq.heappush(queue, (h(start_state), start_state, 0))while queue:# 取出队头元素进行扩展f, state, g = heapq.heappop(queue)# 如果该节点是目标节点,则搜索结束;否则,将扩展出来的新节点加入优先队列中。

启发式搜索A星算法

启发式搜索A星算法

启发式搜索——初识A*算法A*在游戏中有它很典型的用法,是人工智能在游戏中的代表。

A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,先说说何谓启发式算法。

一、何谓启发式搜索算法在说它之前先提提状态空间搜索。

状态空间搜索,如果按专业点的说法,就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。

通俗点说,就是在解一个问题时,找到一个解题的过程,应用这个过程可以从求解的开始得到问题的结果。

由于求解问题的过程中分支有很多,主要是求解过程中求解条件的不确定性、不完备性造成的,使得求解的路径很多,这样就构成了一个图,我们说这个图就是状态空间。

问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。

这个寻找的过程就是状态空间搜索。

常用的状态空间搜索有深度优先和广度优先。

广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序,先查找完一个分支,再查找另一个分支,直至找到目标为止。

这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。

前面说的广度和深度优先搜索有一个很大的缺陷就是:他们都是在一个给定的状态空间中穷举。

这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不可预测的情况下就不可取了。

他们的效率实在太低,甚至不可完成。

在这里就要用到启发式搜索了。

启发式搜索就是在状态空间中搜索时,对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直至找到目标。

这样可以省略大量无谓的搜索路径,提高了效率。

在启发式搜索中,对位置的估价是十分重要的。

采用了不同的估价可以有不同的效果。

我们先看看估价是如何表示的。

启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n)其中f(n)是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n节点到目标节点最佳路径的估计代价。

在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。

A星算法详解

A星算法详解

初识A*算法写这篇文章的初衷是应一个网友的要求,当然我也发现现在有关人工智能的中文站点实在太少,我在这里抛砖引玉,希望大家都来热心的参与。

还是说正题,我先拿A*算法开刀,是因为A*在游戏中有它很典型的用法,是人工智能在游戏中的代表。

A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,我看还是先说说何谓启发式算法。

一、何谓启发式搜索算法在说它之前先提提状态空间搜索。

状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。

通俗点说,就是在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。

由于求解问题的过程中分枝有很多,主要是求解过程中求解条件的不确定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间。

问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。

这个寻找的过程就是状态空间搜索。

常用的状态空间搜索有深度优先和广度优先。

广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。

这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。

前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。

这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。

他的效率实在太低,甚至不可完成。

在这里就要用到启发式搜索了。

启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。

这样可以省略大量无畏的搜索路径,提到了效率。

在启发式搜索中,对位置的估价是十分重要的。

采用了不同的估价可以有不同的效果。

我们先看看估价是如何表示的。

启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n)其中f(n)是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。

人工智能A星算法解决八数码难题程序代码

人工智能A星算法解决八数码难题程序代码

#include "Stdio.h"#include "Conio.h"#include "stdlib.h"#include "math.h"void Copy_node(struct node *p1,struct node *p2);void Calculate_f(int deepth,struct node *p);void Add_to_open(struct node *p);void Add_to_closed(struct node *p);void Remove_p(struct node *name,struct node *p);int Test_A_B(struct node *p1,struct node *p2);struct node * Search_A(struct node *name,struct node *temp);void Print_result(struct node *p);struct node // 定义8数码的节点状态{int s[3][3]; //当前8数码的状态int i_0; //当前空格所在行号int j_0; //当前空格所在列号int f; //当前代价值int d; //当前节点深度int h; //启发信息,采用数码"不在位"距离和struct node *father; //指向解路径上该节点的父节点struct node *next; //指向所在open或closed表中的下一个元素} ;struct node s_0={{2,8,3,1,6,4,7,0,5},2,1,0,0,0,NULL,NULL}; //定义初始状态struct node s_g={{1,2,3,8,0,4,7,6,5},1,1,0,0,0,NULL,NULL}; //定义目标状态struct node *open=NULL; //建立open表指针struct node *closed=NULL; //建立closed表指针int sum_node=0; //用于记录扩展节点总数//***********************************************************//********************** **********************//********************** 主函数开始**********************//********************** **********************//***********************************************************void main(){int bingo=0; //定义查找成功标志,bingo=1,成功struct node s; //定义头结点sstruct node *target,*n,*ls,*temp,*same; //定义结构体指针Copy_node(&s_0,&s); //复制初始状s_0态给头结点s Calculate_f(0,&s); //计算头结点的代价值Add_to_open(&s); //将头结点s放入open表while(open!=NULL) //只要open表不为空,进行以下循环{n=open; //n指向open表中当前要扩展的元素ls=open->next;Add_to_closed(n);open=ls; //将n指向的节点放入closed表中if(Test_A_B(n,&s_g)) //当前n指向节点为目标时,跳出程序结束;否则,继续下面的步骤{bingo=1;break;}elseif(n->j_0>=1) //空格所在列号不小于1,可左移{temp=n->father;if(temp!=NULL&&temp->i_0==n->i_0&&temp->j_0-1==n->j_0) //新节点与其祖父节点相同;else //新节点与其祖父节点不同,或其父节点为起始节点{temp=(struct node *)malloc(sizeof(struct node)); //给新节点分配空间Copy_node(n,temp); //拷贝n指向的节点状态temp->s[temp->i_0][temp->j_0]=temp->s[temp->i_0][temp->j_0-1]; //空格左移temp->s[temp->i_0][temp->j_0-1]=0;temp->j_0--;temp->d++;Calculate_f(temp->d,temp); //修改新节点的代价值temp->father=n; //新节点指向其父节点if(same=Search_A(closed,temp)) //在closed表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比closed表中相同状态节点代价小,加入open表{Remove_p(closed,same); //从closed表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else;}else if(same=Search_A(open,temp)) //在open表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比open表中相同状态节点代价小,加入open表{Remove_p(open,same); //从open表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else ;}else //新节点为完全不同的新节点,加入open表{Add_to_open(temp);sum_node++;}}}//end左移if(n->j_0<=1) //空格所在列号不大于1,可右移{temp=n->father;if(temp!=NULL&&temp->i_0==n->i_0&&temp->j_0+1==n->j_0) //新节点与其祖父节点相同;else //新节点与其祖父节点不同,或其父节点为起始节点{temp=(struct node *)malloc(sizeof(struct node)); //给新节点分配空间Copy_node(n,temp); //拷贝p指向的节点状态temp->s[temp->i_0][temp->j_0]=temp->s[temp->i_0][temp->j_0+1]; //空格右移temp->s[temp->i_0][temp->j_0+1]=0;temp->j_0++;temp->d++;Calculate_f(temp->d,temp); //修改新节点的代价值temp->father=n; //新节点指向其父节点if(same=Search_A(closed,temp)) //在closed表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比closed表中相同状态节点代价小,加入open表{Remove_p(closed,same); //从closed表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else;}else if(same=Search_A(open,temp)) //在open表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比open表中相同状态节点代价小,加入open表{Remove_p(open,same); //从open表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else ;}else //新节点为完全不同的新节点,加入open表{Add_to_open(temp);sum_node++;}}}//end右移if(n->i_0>=1) //空格所在列号不小于1,上移{temp=n->father;if(temp!=NULL&&temp->i_0==n->i_0-1&&temp->j_0==n->j_0) //新节点与其祖父节点相同;else //新节点与其祖父节点不同,或其父节点为起始节点{temp=(struct node *)malloc(sizeof(struct node)); //给新节点分配空间Copy_node(n,temp); //拷贝p指向的节点状态temp->s[temp->i_0][temp->j_0]=temp->s[temp->i_0-1][temp->j_0]; //空格上移temp->s[temp->i_0-1][temp->j_0]=0;temp->i_0--;temp->d++;Calculate_f(temp->d,temp); //修改新节点的代价值temp->father=n; //新节点指向其父节点if(same=Search_A(closed,temp)) //在closed表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比closed表中相同状态节点代价小,加入open表{Remove_p(closed,same); //从closed表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else;}else if(same=Search_A(open,temp)) //在open表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比open表中相同状态节点代价小,加入open表{Remove_p(open,same); //从open表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else ;}else //新节点为完全不同的新节点,加入open表{Add_to_open(temp);sum_node++;}}}//end上移if(n->i_0<=1) //空格所在列号不大于1,下移{temp=n->father;if(temp!=NULL&&temp->i_0==n->i_0+1&&temp->j_0==n->j_0) //新节点与其祖父节点相同;else //新节点与其祖父节点不同,或其父节点为起始节点{temp=(struct node *)malloc(sizeof(struct node)); //给新节点分配空间Copy_node(n,temp); //拷贝p指向的节点状态temp->s[temp->i_0][temp->j_0]=temp->s[temp->i_0+1][temp->j_0]; //空格下移temp->s[temp->i_0+1][temp->j_0]=0;temp->i_0++;temp->d++;Calculate_f(temp->d,temp); //修改新节点的代价值temp->father=n; //新节点指向其父节点if(same=Search_A(closed,temp)) //在closed表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比closed表中相同状态节点代价小,加入open表{Remove_p(closed,same); //从closed表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else;}else if(same=Search_A(open,temp)) //在open表中找到与新节点状态相同的节点{if(temp->f<same->f) //temp指向的节点,其代价比open表中相同状态节点代价小,加入open表{Remove_p(open,same); //从open表中删除与temp指向节点状态相同的节点Add_to_open(temp);sum_node++;}else ;}else //新节点为完全不同的新节点,加入open表{Add_to_open(temp);sum_node++;}}}//end下移}if(bingo=1) Print_result(n); //输出解路径else printf("问题求解失败!");}//主函数结束//*************************************************************************//********************** **********************//********************** 计算某个节点状态的代价值**********************//********************** **********************//*************************************************************************void Calculate_f(int deepth,struct node *p){int i,j,temp;temp=0;for(i=0;i<=2;i++) //计算所有"不在位"数码的距离和{for(j=0;j<=2;j++){if((p->s[i][j])!=(s_g.s[i][j]))temp++;}}p->h=temp;p->f=deepth+p->h;}//*************************************************************************//********************** **********************//********************** 添加p指向的节点到open表中**********************//********************** **********************//*************************************************************************void Add_to_open(struct node *p){struct node *p1,*p2;p1=open; //初始时p1指向open表首部p2=NULL;if(open==NULL) //open表为空时,待插入节点即为open表第一个元素,open指向该元素{p->next=NULL;open=p;}else //open表不为空时,添加待插入节点,并保证open表代价递增的排序{while(p1!=NULL&&p->f>p1->f){p2=p1; //p2始终指向p1指向的前一个元素p1=p1->next;}if(p2==NULL) //待插入节点为当前open表最小{p->next=open;open=p;}else if(p1==NULL) //待插入节点为当前open表最大{p->next=NULL;p2->next=p;}else //待插入节点介于p2、p1之间{p2->next=p;p->next=p1;}}}//***************************************************************************//********************** **********************//********************** 添加p指向的节点到closed表中********************** //********************** **********************//***************************************************************************void Add_to_closed(struct node *p){if(closed==NULL) //closed表为空时,p指向节点为closed表第一个元素,closed指向该元素{p->next=NULL;closed=p;}else //closed表不为空时,直接放到closed表首部{p->next=closed;closed=p;}}//***************************************************************************** *********************//********************************************//********************** 在open表或closed表中搜索和temp指向的节点相同的节点**********************//********************************************//***************************************************************************** *********************struct node * Search_A(struct node *name,struct node *temp){struct node *p1;p1=name; //p1指向open表或closed表while(p1!=NULL){if(Test_A_B(p1,temp)) //找到相同的节点,返回该节点地址return p1;elsep1=p1->next;}return NULL;}//***************************************************************************** ******************//********************************************//********************** 判断两个节点状态是否相同,相同则返回1,否则返回0 **********************//********************************************//***************************************************************************** ******************int Test_A_B(struct node *p1,struct node *p2){int i,j,flag;flag=1;for(i=0;i<=2;i++)for(j=0;j<=2;j++){if((p2->s[i][j])!=(p1->s[i][j])) { flag=0; return flag; }else ;}return flag;}//***************************************************************************** *//********************************************//********************** 从open表或closed表删除指定节点**********************//********************************************//***************************************************************************** *void Remove_p(struct node *name,struct node *p){struct node *p1,*p2;p1=NULL;p2=NULL;if(name==NULL) //如果name指向的链表为空,则不需要进行删除return;else if(Test_A_B(name,p)&&name->f==p->f) //指定节点为name指向的链表的第一个元素{open=name->next;name->next=NULL;return;}else{p2=name;p1=p2->next;while(p1){if(Test_A_B(p1,p)&&p1->f==p->f) //找到指定节点{p2->next=p1->next;return;}else{p2=p1; //p2始终指向p1指向的前一个元素p1=p1->next;}}return;}}//***************************************************************************** *********//********************************************//********************** 将p1指向的节点状态拷贝到p2指向的节点中**********************//********************************************//***************************************************************************** *********void Copy_node(struct node *p1,struct node *p2){int i,j;for(i=0;i<=2;i++){for(j=0;j<=2;j++){ p2->s[i][j]=p1->s[i][j]; }}p2->i_0=p1->i_0;p2->j_0=p1->j_0;p2->f=p1->f;p2->d=p1->d;p2->h=p1->h;p2->next=p1->next;p2->father=p1->father;}//***********************************************************//********************** **********************//********************** 输出结果**********************//********************** **********************//***********************************************************void Print_result(struct node *p){struct node *path[100];struct node *temp,*temp_father;int i,j,k;for(i=0;i<=99;i++) //初始化路径指针数组path[i]=0;temp=p;printf("总共扩展%d 个节点\n",sum_node);printf("总共扩展%d 层\n",temp->d);printf("解路径如下:\n");for(i=p->d;i>=0;i--) //存储解路径上各节点的地址{path[i]=temp;temp=temp->father;}for(k=0;k<=p->d;k++) //输出解路径{temp=path[k]; //建立节点指点指针printf("第%d步",temp->d);if(k-1>=0) //输出移动策略{temp_father=path[k-1];if(temp->i_0<temp_father->i_0) printf("->上移\n");if(temp->i_0>temp_father->i_0) printf("->下移\n");if(temp->j_0<temp_father->j_0) printf("->左移\n");if(temp->j_0>temp_father->j_0) printf("->右移\n");}elseprintf("\n");printf("当前节点状态为:\n");for(i=0;i<=2;i++){for(j=0;j<=2;j++){printf("%d ",temp->s[i][j]);}printf("\n");}printf("\n");}}。

启发式搜索A星算法

启发式搜索A星算法

启发式搜索——初识A*算法A*在游戏中有它很典型的用法,是人工智能在游戏中的代表。

A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,先说说何谓启发式算法。

一、何谓启发式搜索算法在说它之前先提提状态空间搜索。

状态空间搜索,如果按专业点的说法,就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。

通俗点说,就是在解一个问题时,找到一个解题的过程,应用这个过程可以从求解的开始得到问题的结果。

由于求解问题的过程中分支有很多,主要是求解过程中求解条件的不确定性、不完备性造成的,使得求解的路径很多,这样就构成了一个图,我们说这个图就是状态空间。

问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。

这个寻找的过程就是状态空间搜索。

常用的状态空间搜索有深度优先和广度优先。

广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序,先查找完一个分支,再查找另一个分支,直至找到目标为止。

这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。

前面说的广度和深度优先搜索有一个很大的缺陷就是:他们都是在一个给定的状态空间中穷举。

这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不可预测的情况下就不可取了。

他们的效率实在太低,甚至不可完成。

在这里就要用到启发式搜索了。

启发式搜索就是在状态空间中搜索时,对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直至找到目标。

这样可以省略大量无谓的搜索路径,提高了效率。

在启发式搜索中,对位置的估价是十分重要的。

采用了不同的估价可以有不同的效果。

我们先看看估价是如何表示的。

启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n)其中f(n)是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n节点到目标节点最佳路径的估计代价。

在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。

a星算法原理

a星算法原理

a星算法原理1. 基本思路A* 算法是基于图模型的搜索算法,其中图由若干个节点和连接这些节点的边组成。

搜索的目标是在图上寻找一条从起点到终点的最优路径。

A* 算法的基本思路如下:(1)首先将起点加入open列表(即待搜索的节点列表),定义一个空的close列表(即已搜索的节点列表)。

(2)从open列表中取出F值最小的节点,将其加入close列表。

(3)若该节点为终点,则搜索完成,否则将它的相邻节点加入open列表。

(4)对于所有加入open列表的节点,计算它们的F值,并更新它们的父节点。

(5)重复步骤2-4,直到open列表为空或者找到终点。

F值由G值和H值组成:F =G + HG值表示从起点到该节点的实际代价,H值表示从该节点到终点的启发式估价(即一个估计值,不一定是实际值,但必须保证不小于实际值)。

1.启发式估价函数必须保证不小于实际代价。

2.启发式估价函数应该尽量接近实际代价,否则会影响搜索效率。

3.启发式估价函数不能产生死循环或者走回头路的情况。

2. 估价函数的选取(1)曼哈顿距离曼哈顿距离指两点之间横纵坐标差的绝对值之和。

曼哈顿距离是一种比较简单的启发式估价函数,它适用于只能沿水平或竖直方向移动的情况。

曼哈顿距离在斜着走的时候有一定的误差,不够精确。

(2)欧几里得距离欧几里得距离指两点之间的直线距离。

欧几里得距离是一种比较精确的启发式估价函数,它适用于可以在任何方向上移动的情况。

欧几里得距离会导致算法不够稳定,容易出现死循环的情况。

(3)切比雪夫距离(4)自定义估价函数如果以上的估价函数不能满足需要,还可以根据具体需求自定义估价函数。

自定义估价函数要满足启发式估价函数的基本要求,并且尽量简单易实现。

3. A*算法的优缺点(1)A*算法具有较高的搜索效率,并且能够找到最优解。

(2)A*算法能够通过启发式估价函数优化搜索路径,从而减少搜索量。

(1)A*算法的搜索效率和搜索结果非常依赖于所选择的估价函数,不同的估价函数可能产生完全不同的搜索结果。

a星算法资料

a星算法资料

A星算法A星算法是一种常用的路径规划算法,它可以在很多领域得到应用,如游戏开发、机器人导航等。

本文将介绍A星算法的原理、实现过程以及应用场景。

原理A星算法是一种启发式搜索算法,用于寻找从起点到目标点的最佳路径。

它基于Dijkstra算法和最小堆叠加了启发式因子来加速搜索过程。

A星算法在搜索过程中维护两个集合:开放集合和关闭集合。

开放集合存储待探索的节点,而关闭集合存储已经探索过的节点。

算法的核心思想是维护每个节点的估价函数f值,其中f值由节点到目标点的实际代价g值和节点到目标点的启发函数h值组成。

在每一步中,算法从开放集合中选择f值最小的节点进行拓展,并更新其邻居节点的f值。

实现过程1.初始化起点,并将其加入开放集合中,设置启发函数h值为起点到目标点的估计代价。

2.重复以下步骤直到目标节点被加入关闭集合:–从开放集合中选择f值最小的节点,将其加入关闭集合。

–针对选定节点的每个邻居节点,计算其新的f值并更新。

–如果邻居节点不在开放集合中,将其加入开放集合。

3.构建路径,反向回溯从目标节点到起点的最佳路径。

应用场景•游戏开发:A星算法可以用来实现游戏中的AI寻路,使NPC角色能够智能地避开障碍物。

•机器人导航:A星算法可以帮助机器人避开障碍物,规划出最优的路径来到目标点。

•交通规划:A星算法可以用来优化城市道路的规划,减少交通拥堵,提高车辆通行效率。

•资源调度:A星算法可以帮助企业在多个资源之间寻找最佳路径,提高资源利用率。

总之,A星算法在许多领域都有着广泛的应用,它的高效性和可扩展性使其成为一种非常有力的路径规划工具。

结语A星算法是一种非常经典的路径规划算法,其优秀的性能和广泛的应用使其成为计算机科学领域的重要研究内容。

希望本文介绍的内容对读者有所帮助,让大家更加深入了解A星算法的原理和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A*算法实验报告实验目的1.熟悉和掌握启发式搜索的定义、估价函数和算法过程2. 学会利用A*算法求解N数码难题3. 理解求解流程和搜索顺序实验原理A*算法是一种有序搜索算法,其特点在于对估价函数的定义上。

对于一般的有序搜索,总是选择f值最小的节点作为扩展节点。

因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的代价以及从节点n到达目标节点的代价。

实验条件1.Window NT/xp/7及以上的操作系统2.内存在512M以上3.CPU在奔腾II以上实验内容1.分别以8数码和15数码为例实际求解A*算法2.画出A*算法求解框图3.分析估价函数对搜索算法的影响4.分析A*算法的特点实验分析1. A*算法基本步骤1)生成一个只包含开始节点n0的搜索图G,把n0放在一个叫OPEN的列表上。

2)生成一个列表CLOSED,它的初始值为空。

3)如果OPEN表为空,则失败退出。

4)选择OPEN上的第一个节点,把它从OPEN中移入CLPSED,称该节点为n。

5)如果n是目标节点,顺着G中,从n到n0的指针找到一条路径,获得解决方案,成功退出(该指针定义了一个搜索树,在第7步建立)。

6)扩展节点n,生成其后继结点集M,在G中,n的祖先不能在M中。

在G 中安置M的成员,使他们成为n的后继。

7)从M的每一个不在G中的成员建立一个指向n的指针(例如,既不在OPEN 中,也不在CLOSED中)。

把M1的这些成员加到OPEN中。

对M的每一个已在OPEN中或CLOSED中的成员m,如果到目前为止找到的到达m的最好路径通过n,就把它的指针指向n。

对已在CLOSED中的M的每一个成员,重定向它在G中的每一个后继,以使它们顺着到目前为止发现的最好路径指向它们的祖先。

8)按递增f*值,重排OPEN(相同最小f*值可根据搜索树中的最深节点来解决)。

9)返回第3步。

在第7步中,如果搜索过程发现一条路径到达一个节点的代价比现存的路径代价低,就要重定向指向该节点的指针。

已经在CLOSED中的节点子孙的重定向保存了后面的搜索结果,但是可能需要指数级的计算代价。

实验步骤算法流程图#include <ctime>#include <vector>using namespace std;const int ROW = 3;//行数const int COL = 3;//列数const int MAXDISTANCE = 10000;//最多可以有的表的数目const int MAXNUM = 10000;typedef struct _Node{int digit[ROW][COL];int dist; //一个表和目的表的距离int dep; // t深度int index; //节点的位置} Node;Node src, dest;// 父节表目的表vector<Node> node_v; //存储节点bool isEmptyOfOPEN() //open表是否为空{for (int i = 0; i < node_v.size(); i++) {if (node_v[i].dist != MAXNUM)return false;}return true;}bool isEqual(int index, int digit[][COL]) //判断这个最优的节点是否和目的节点一样{for (int i = 0; i < ROW; i++)for (int j = 0; j < COL; j++) {if (node_v[index].digit[i][j] != digit[i][j])return false;}return true;}ostream& operator<<(ostream& os, Node& node){for (int i = 0; i < ROW; i++) {for (int j = 0; j < COL; j++)os << node.digit[i][j] << ' ';os << endl;}return os;}void PrintSteps(int index, vector<Node>& rstep_v)//输出每一个遍历的节点深度遍历{rstep_v.push_back(node_v[index]);index = node_v[index].index;while (index != 0){rstep_v.push_back(node_v[index]);index = node_v[index].index;}for (int i = rstep_v.size() - 1; i >= 0; i--)//输出每一步的探索过程cout << "Step " << rstep_v.size() - i<< endl << rstep_v[i] << endl;}void Swap(int& a, int& b){int t;t = a;a = b;b = t;}void Assign(Node& node, int index){for (int i = 0; i < ROW; i++)for (int j = 0; j < COL; j++)node.digit[i][j] = node_v[index].digit[i][j];}int GetMinNode() //找到最小的节点的位置即最优节点{int dist = MAXNUM;int loc; // the location of minimize nodefor (int i = 0; i < node_v.size(); i++){if (node_v[i].dist == MAXNUM)continue;else if ((node_v[i].dist + node_v[i].dep) < dist) {loc = i;dist = node_v[i].dist + node_v[i].dep;}}return loc;}bool isExpandable(Node& node){for (int i = 0; i < node_v.size(); i++) {if (isEqual(i, node.digit))return false;}return true;}int Distance(Node& node, int digit[][COL]) {int distance = 0;bool flag = false;for(int i = 0; i < ROW; i++)for (int j = 0; j < COL; j++)for (int k = 0; k < ROW; k++) {for (int l = 0; l < COL; l++) {if (node.digit[i][j] == digit[k][l]) {distance += abs(i - k) + abs(j - l);flag = true;break;}elseflag = false;}if (flag)break;}return distance;}int MinDistance(int a, int b){return (a < b ? a : b);}void ProcessNode(int index){int x, y;bool flag;for (int i = 0; i < ROW; i++) {for (int j = 0; j < COL; j++) {if (node_v[index].digit[i][j] == 0) {x =i; y = j;flag = true;break;}else flag = false;}if(flag)break;}Node node_up;Assign(node_up, index);//向上扩展的节点int dist_up = MAXDISTANCE;if (x > 0){Swap(node_up.digit[x][y], node_up.digit[x - 1][y]);if (isExpandable(node_up)){dist_up = Distance(node_up, dest.digit);node_up.index = index;node_up.dist = dist_up;node_up.dep = node_v[index].dep + 1;node_v.push_back(node_up);}}Node node_down;Assign(node_down, index);//向下扩展的节点int dist_down = MAXDISTANCE;if (x < 2){Swap(node_down.digit[x][y], node_down.digit[x + 1][y]); if (isExpandable(node_down)){dist_down = Distance(node_down, dest.digit);node_down.index = index;node_down.dist = dist_down;node_down.dep = node_v[index].dep + 1;node_v.push_back(node_down);}}Node node_left;Assign(node_left, index);//向左扩展的节点int dist_left = MAXDISTANCE;if (y > 0){Swap(node_left.digit[x][y], node_left.digit[x][y - 1]);if (isExpandable(node_left)){dist_left = Distance(node_left, dest.digit);node_left.index = index;node_left.dist = dist_left;node_left.dep = node_v[index].dep + 1;node_v.push_back(node_left);}}Node node_right;Assign(node_right, index);//向右扩展的节点int dist_right = MAXDISTANCE;if (y < 2){Swap(node_right.digit[x][y], node_right.digit[x][y + 1]); if (isExpandable(node_right)){dist_right = Distance(node_right, dest.digit);node_right.index = index;。

相关文档
最新文档