概率论第3章习题详解

合集下载

概率论~第三章习题参考答案与提示

概率论~第三章习题参考答案与提示
设二维随机变量xy的概率密度为6第三章习题参考答案与提示?2121yxyxyxf?xy?其中1yx?和2yx?都是二维正态密度函数且它们对应的二维随机变量的相关系数分别为13和13它们的边缘密度函数所对应的随机变量的数学期望都是0方差都是1
第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论第3章习题解答 袁德美

概率论第3章习题解答 袁德美

概率教材第三章勘误说明:红线为要纠正的部分.(一)70页习题3.2答案:1a b +=且0,0a b ≥≥. (二)76页例3.6(2) ()(),d d x yP X Y f x y x y >>=∫∫10041d d d d 42Gxx y xy x xy y ===∫∫∫∫.(三)77页例3.7()||1000P X Y ≤−()||1000,d d x y f x y x y −≤=∫∫61d d 610Hx y =×∫∫400010006200030001d d 610x x y +=×∫∫ 1.3= (四)79页习题3.13(2)答案应为0.3 . (五)84习题3.18 单位:千小时.第3章 二维随机变量及其分布二维随机变量及其分布习题3.13.1比较二维随机变量与一维随机变量的分布函数的性质有何异同?3.2 设1(,)F x y 和2(,)F x y 都是联合分布函数,试问常数a ,b 满足什么条件时,12(,)(,)aF x y bF x y +也是联合分布函数?解:因为1(,)F x y 和2(,)F x y 都是联合分布函数,有1(, )1F ∞∞=,2(, )1F ∞∞=.若12(,)(,)aF x y bF x y +也是联合分布函数,则12(, )(, )1aF bF ∞∞+∞∞=,即1a b +=.又因为联合分布函数12(,)(,)aF x y bF x y +满足单调性,所以0,0a b ≥≥.可以验证,当0,0a b ≥≥且1a b +=时, 12(,)(,)aF x y bF x y +是联合分布函数.3.3 设二维随机变量1+, 0,0,(,)~(,) 0, x y x y xy e e e x y X Y F x y −−−−− −−≥≥=其它. 求:(1)()0.5,0.3P X Y ≤≤;(2)()0.5,0.3 1.3P X Y ≤<≤;(3)()10, 12P X Y −<≤<≤.解: (1)()0.50.30.950.5,0.3(0.5,0.3)1P X Y F ee e −−−≤≤==−−+;(2)()()()0.5,0.3 1.30.5, 1.30.5,0.3P X Y P X Y P X Y ≤<≤=≤≤−≤≤(0.5,1.3)(0.5,0.3)F F =−0.3 2.45 1.30.95e e e e −−−−=+−−;(3)()10, 12(0,2)(1,1)(0,1)(1,2)P X Y F F F F −<≤<≤=+−−−− 00000=+−−=.*3.4 设()10,00,0.1, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤<其它或或 和()20, 00,0.2, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤< 其它或或是两个不同的分布函数,验证它们关于X 和关于Y 的边缘分布函数相同.解: 当 0x <时, ()1,0F x y =,有1(,)0F x ∞=.当01x ≤<时,()10, 0,,0.1,01,0.5, 1.y F x y y y <=≤< ≥ 有1(,)0.5F x ∞=.当1x ≥时,()10, 0,,0.5,01,1, 1.y F x y y y <=≤< ≥有1(,)1F x ∞=.因此()1,F x y 关于X 的边缘分布函数为10,0,(,)0.5, 01,1,x F x x <∞=≤< 其它.类似可求()1,F x y 关于Y 的边缘分布函数为10,0,(,)0.5, 01,1,y F y y <∞=≤< 其它.()2,F x y 关于X 和关于Y 的边缘分布函数为20, 0,(,)0.5, 01,1,x F x x < ∞=≤< 其它 与 20,0,(,)0.5, 01,1,y F y y <∞=≤<其它.因此它们关于X 和关于Y 的边缘分布函数相同.习题3.23.5 盒子里装有2只白球,2只红球,3只黑球,在其中任取4只球,以X 表示取到白球的只数,以Y 表示取到黑球的只数,求(,)X Y 的联合分布列及边缘分布列.解: 按古典概率计算,从7只球中取4只球,共有4735C =种取法.在4只球中,白球有i 只,黑球有j 只(剩下4i j −−只红球)的取法数为: 4232iji j C C C −−种. 因此 (,)X Y 的联合分布列为423247(,)ij i jC C C P X i Y j C −−===,0,1,2i =,0,1,2,3j =,24i j ≤+≤. 于是2232473(0,2)35C C P X Y C ====, 3132472(0,3)35C C P X Y C ====, 112232476(1,1)35C C C P X Y C ====, 1212324712(1,2)35C C C P X Y C ====, 1323472(1,3)35C C P X Y C ====, 2222471(2,0)35C C P X Y C ====,211232476(2,1)35C C C P X Y C ====, 2223473(2,2)35C C P X Y C ====, (,)X Y 的联合分布列与边缘分布列为3.6 一批产品工有100件,其中一等品60件,二等品30件,三等品10件. 从这批产品中有放回的任取3件,以X 和Y 分别表示取出的3件产品中一等品、二等品的件数,求:(1) (,)X Y 的联合分布列;(2) (1,2)P X Y ≤≤.解: (1) 因为X 和Y 的可能取值为0,1,2,3, 事件{,}X i Y j ==表示取出的3件产品中一等品有i 件、二等品有j 件(三等品有3i j −−件)的取法, 取法总数为3!!!(3)!i j i j −−种,而对于每种取法的概率为 3631101010ij i j−−,因此(,)X Y 的联合分布列为33!631(,)!!(3)!101010iji jP X i Y j i j i j −−===−− , ,0,1,2,3i j =,3i j +≤.(,)X Y 的联合分布列与边缘分布列为(2)(1,2)(0,0)(0,1)(0,2)P X Y P X Y P X Y P X Y ≤≤===+==+==(1,0)(1,1)(1,2)0.325P X Y P X Y P X Y +==+==+===.3.7 设事件A ,B 满足1()4P A =,1(|)(|)2P B A P A B ==. 记 1, 0 A X A =若发生,,若不发生, 1, 0 B Y B =若发生,,若不发生. 求,)X Y (的联合分布列及边缘分布列.解(1)由于()111()()428P AB P A P B A ==×=,()()181()124P AB P B P A B ===, 所以,1(1,1)()8P X Y P AB ====,1(1,0)(()()8P X Y P AB P A P AB ====−=, 1(0,1)()()(),8P X Y P AB P B P AB ====−=(0,0)()1()P X Y P AB P A B ====−U =51()()()8P A P B P AB −−+=,所以(,)X Y 的联合分布列及边缘分布列为3.8 (,)X Y 的联合分布列为求:(1) (0)P X =;(2) (2)P Y ≤;(3) (1,2)P X Y <≤.解 (1) (0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y ====+==+==0.10.10.30.5=++=;(2) (2)1(3)1(0,3)(1,3)P Y P Y P X Y P X Y ≤=−==−==−==10.30.250.45=−−=;(3)(1,2)(0,1)(0,2)0.10.10.2P X Y P X Y P X Y <≤===+===+=.习题3.33.9 设二维随机变量()35(1)(1), 0,0,,~(,)0, x y e e x y X Y F x y −− −−≥≥= 其它.试求,)X Y (的联合概率密度(, )f x y .解 当0,0x y >>时,35(,)(1)(1)x y F x y e e −−=−−.对(, )F x y 求二阶偏导,得(, )X Y 的联合概率密度为()2,(,)F x y f x y x y∂=∂∂(35)15x y e −+=.当0x <或0y <时, (,)0F x y =, ()2,(,)0F x y f x y x y∂==∂∂.于是,)X Y (的联合概率密度(35)15, 0,0,(, )0, x y e x y f x y −+ ≥≥= 其他.3.1010 设二维随机变量()22,(,),(1)(1)AX Y f x y x y =++ 求:(1)常数A ;(2)联合分布函数(,)F x y ;(3) 概率()(),P X Y D ∈,其中D 是以(0,0),(0,1),(1,0),(1,1)为顶点的正方形区域.解 (1)由联合概率密度(,)f x y 的正则性,221(,)d d d d (1)(1)A f x y x y x y x y +∞+∞+∞+∞−∞−∞−∞−∞==++∫∫∫∫2π1A ==, 得21πA =. (2) 2221(,)(,)d d d d (1)(1)x yxyF x y f s t s t s t s t π−∞−∞−∞−∞==++∫∫∫∫21(arctan )(arctan 22x y πππ=++. (3)()(),(1,1)(0,0)(0,1)(1,0)PX Y D F F F F ∈=+−−913311648816=+−−=. 3.1.111设二维随机变量(),(,)X Y f x y ,则(1)P X >等于 (A) 1d (,)d x f x y y ∞−∞−∞∫∫. (B) 1d (,)d x f x y y ∞∞−∞∫∫.(C)1(,)d f x y x −∞∫. (D)1(,)d f x y x ∞∫.解 选(B).因为1(1)(1,)d (,)d P X P X Y x f x y y ∞∞−∞>=<<∞−∞<<∞=∫∫.3.12 设二维随机变量() (6), 02,24,,~(,)0, k x y x y X Y f x y −−<<<< =其它. 求:(1) 常数k ;(2) (1,3)P X Y <<;(3) ( 1.5)P X <;(4) (4)P X Y +<.解(1)由于联合概率密度(,)f x y 满足正则性,于是2421(,)d d d (6)d 8f x y x y x k x y y k +∞+∞−∞−∞==−−=∫∫∫∫所以81=k . (2)130213(1,3)d (6)d 88P X Y x x y y <<=−−=∫∫. (3) 1.5402127( 1.5)( 1.5,)d (6)d 832P X P X Y x x y y <=<<∞=−−=∫∫.(4)(,)f x y 的非零区域与{4}x y +<的交集{(,)|02,24}G x y x y x =<<<<−.()24024112(4),d d (6)d d d (6)d 883x x y GP X Y f x y x y x y x y x x y y −+<+<==−−=−−=∫∫∫∫∫∫.3.13 设二维随机变量()(2),01,0,,~(,)0,cy x x y x X Y f x y −≤≤≤≤ =其它. 求:(1)常数c ;(2)(1)P X Y +≤;(3)边缘概率密度.解(1)由于联合概率密度(,)f x y 满足正则性,于是1051(,)d d d (2)d 24xf x y x y x cy x y c +∞+∞−∞−∞==−=∫∫∫∫, 所以 4.8c =.(2)(,)f x y 的非零区域与{1}x y +≤的交集1{(,)|1,0}2G x y y x y y =≤≤−≤≤.()11201(1),d d 4.8(2)d d d 4.8(2)d 0.3y yx y GP X Y f x y x y y x x y y y x x −+≤+≤==−=−=∫∫∫∫∫∫.(3) , X Y ()关于X 的边缘密度函数204.8(2) 2.4(2)01()(,)0x X y x dy x x x f x f x y dy +∞−∞−=−≤≤== ∫∫其它.关于Y 的边缘密度函数124.8(2) 2.4(34)01()(,)0y Y y x dx y y y y f y f x y dx +∞−∞−=−+≤≤== ∫∫其它.3.14 设二维随机变量(,)X Y 在由x 轴、y 轴及直线22x y +=所围成的三角形区域上D 服从均匀分布,求边缘概率密度()X f x 和()Y f y .解 区域}01,0{(,)|22x y D x y x ≤≤≤≤=−的面积为1(22)d 1S x x =−=∫.因此(,)X Y 的联合概率密度为01,0122(,)0x y x f x y ≤≤≤≤− = , ,,其他., X Y ()关于X 的边缘密度函数220d 22, 01()(,)d 0, xX y x x f x f x y y −+∞−∞=−≤≤== ∫∫其它.关于Y 的边缘密度函数220d 1, 02()(,)d 20, y Y yx y f y f x y x −+∞−∞=−≤≤ ==∫∫其它. 3.15设(,)X Y 的联合概率密度分别为(1) 4,01,01,(,)0,xy x y f x y ≤≤≤≤ =其它.(2) 21, 01,02,(,)30, x xy x y f x y +<<<< = 其它.(3) , 0,(,) 0, y e x y f x y − <<= 其它.试分别求, X Y ()的边缘概率密度.解 (1) 因为, X Y ()关于X 的边缘密度函数14d 2, 01()(,)d 0, X xy y x x f x f x y y +∞−∞=≤≤ == ∫∫其它.关于Y 的边缘密度函数104d 2,01,()(,)d 0, ,Y xy x y y f y f x y x +∞−∞=≤≤==∫∫其它(2) 因为, X Y ()关于X 的边缘密度函数222012()d 2, 01()(,)d 330, X x xy y x x x f x f x y y +∞−∞+=+<< == ∫∫其它.关于Y 的边缘密度函数120111()d ,02,()(,)d 3360, .Y x xy x y y f y f x y x +∞−∞+=+<< ==∫∫其它 (3) 因为, X Y ()关于X 的边缘密度函数≤>===∫∫+∞−−∞+∞−0,00,),()(x x e dy e dy y x f x f xx y X 关于Y 的边缘密度函数≤>===∫∫−−∞+∞−,0,0,0,),()(0y y ye dx e dx y x f y f y y y Y习题3.43.16 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 与Y 分别表示甲和乙的命中次数,试求(,)X Y 的联合分布列及边缘分布列.解 甲命中次数(2.0.2)X B ,乙命中次数(2,0.5)Y B ,且X 与Y 相互独立,于是(,)X Y 的联合分布列为2222(,)()()0.20.80.50.5ii i j j j P X i Y j P X i P Y j C C −−======,(,0,1,2)i j =.因此(,)X Y 的联合分布列及边缘分布列为3.17 [1999[1999年1]1]设随机变量X 与Y 相互独立,试完成下表:1x a 1/8 b g 2x 1/8 c d h j p g1/6ef1解 设表中空格数据为由11211p p p +=g ,即1186p +=,得1124p =; 由于X 与Y 相互独立,有1111p p p =?g g ,即111246p =?g ,得114p =g ;由1112131p p p p ++=g ,即131112484p ++=,得13112p =;由1221p p p =?g g ,即21184p =?g ,得212p =g ;由12222p p p +=g ,即221182p +=,得2238p =;由1231p p p ++=g g g ,即311162p ++=g ,得313p =g ;由13233p p p +=g ,即2311123p +=,得2314p =;由121p p +=g g ,即2114p +=g ,得234p =g .填表如下:3.18 [1990年3]一电子仪器由两个部件构成,随机变量X 与Y 分别表示这两个部件的寿命(单位:千小时) ,已知()2221, 0,0,,~(,) 0, x y x y e e e x y X Y F x y +−−− −−+≥≥= 其它.(1) 问X 与Y 是否相互独立?(2) 求这两个部件的寿命都超过100小时的概率.解(1)(, )X Y 关于X 的边缘分布函数为()()0.51,0,,0,0,x X e x F x F x x − −≥=∞=< (, )X Y 关于Y 的边缘分布函数为()()0.51,0,,0,0,y Y e y F y F y y − −≥=∞=<因为()()(),X Y F x y F x F y =,故X 与Y 相互独立.(2)()()()()()()()0.10.1,0.10.10.110.110.1X Y P X Y P X P Y F F e−>>=>>=−−=.3.19 设X 与Y 独立同均匀分布[1,3]U ,并且13a <<,记事件{}A X a =≤,{}B Y a =≥,且()7/9P A B =U ,求常数a .解 因为X 与Y 相互独立,所以事件A 与事件B 也相互独立. 因此111()()d 22aa P A P X a x −=≤==∫,313()()d 22a aP B P Y a x −=≥==∫, ()(1)(3)()()4a a P AB P A P B −−==.于是()()()()13(1)(3)72249a a a a P A B P A P B P AB −−−−=+−=+−=U ,解得53a =或73.3.2020 某码头只能容纳一只船,现预知某日将有两只船独立来到,且在24小时内各时刻来到的可能性相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一只船要在江中等待的概率.解 设X ,Y 分别表示此二船到达码头的时间,则X , Y 的概率密度函数分别为1,024()240, ,X x f x ≤< = ,其它 1,024()240, ,Y y f x ≤< = ,其它则X 与Y 相互独立,其联合概率密度为()21,024,024,,()()240,X Y x y f x y f x f y ≤<≤<== 其他, 于是按题意,所求概率为(34).P Y X −≤−≤ 区域{(,)|024,024,34}G x y X Y Y X =≤≤≤≤−≤−≤ 所求概率为(34)P Y X −≤−≤21(,)d d 24Gf x y x y G ==×∫∫的面积3110.271152==. 3.21 设X 与Y 独立同均匀分布[0,1]U ,求方程20t Xt Y ++=有实根的概率. 解 X , Y 的概率密度分别为1, 01()0, ,X x f x << = ,其它 1, 01()0, ,Y y f x << =,其它由于X 与Y 相互独立,其联合概率密度为()1,01,01,,()()0,X Y x y f x y f x f y <<<< ==其他. 方程20t Xt Y ++=有实根的充要条件是判别式240X Y ∆=−≥,概率22211240401(40)(,)d d d d d 412x x y x P X Y f x y x y x y x −≥−≥====∫∫∫∫∫. 3.22二维随机变量(,)X Y 在区域D 上服从均匀分布,求边缘概率密度()X f x ,()Y f y ,并判断X 和Y 是否相互独立.(1){(,)|01,23}D x y x y =≤≤≤≤;(2)22{(,)|1}4y D x y x =+≤;(3)22{(,)|2}D x y x y y =+≤.解(1)因为区域D 的面积1,D S = , X Y ()的联合概率密度1, (,),(,)0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数32d 1, 01()(,)d 0, X y x f x f x y y +∞−∞=≤≤ == ∫∫其他.关于Y 的边缘密度函数10d 1, 23,()(,)d 0, ,Y x y f y f x y x +∞−∞=≤≤==∫∫其他所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y =故X 与Y 是相互独立的. (2)因为区域D 的面积2π,D S = , X Y ()的联合概率密度1, (,),(,)2π0, .x y D f x y ∈ = 其他 因为, X Y ()关于X 的边缘密度函数1()(,)d 0, X y x f x f x y y +∞−−∞=≤ ==∫∫其它. 关于Y 的边缘密度函数2()(,)d 0 Y y f y f x y x +∞−∞≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.(3)因为区域D 的面积π,D S = , X Y ()的联合概率密度1, (,),(,)π0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数111d 1()(,)d 0, X y x f x f x y y π+∞−∞=≤ ==∫∫其它.关于Y 的边缘密度函数02()(,)d 0 Y y f y f x y x +∞−∞≤≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.习题3.53.23 设(,)X Y 的联合分布列为求在1X =条件下,Y 的条件分布列.解 (1)(1,0)(1,1)(1,2)P X P X Y P X Y P X Y ====+==+==0.20.10.10.4=++= 在1X =条件下,Y 的条件分布列为(1,0)0.21(0|1)(1)0.42P X Y P Y X P X ========,(1,1)0.11(1|1)(1)0.44P X Y P Y X P X ========,(1,2)0.11(2|1)(1)0.44P X Y P Y X P X ========.或写成0 1 2111(1)24|4Y P Y k X ==.3.24 设二维随机变量(),X Y 的概率分布表为求:(1) (),X Y 关于X 的边缘分布列;(2) ()2P X Y +≤;(3)()00P Y X ==. 解 (1)(),X Y 关于X 的边缘分布列为0 20.3 0.7X P ;(2) ()()212,110.30.7P X Y P X Y +≤=−===−=.(3)()()()0,00.220000.33P X Y P Y X P X ========. 3.25 设二维随机变量 ()3, 0,0,,~(,)2 0, x xyx ex y X Y f x y −− >> =其它. 求:(1)边缘概率密度()X f x ;(2) 条件概率密度|(|)Y X f y x . 解 (1) 因为, X Y ()关于X 的边缘密度函数320d , 0,()(,)d 220, x xy xX x x e y e x f x f x y y ∞−−−∞−∞=>==∫∫其它. (2) 当0>x 时,条件概率密度|, 0,(,)(|)()0, 0.xy Y X X xe y f x y f y x f x y − >== ≤(3) 当12X =时,条件概率密度 2|11, 0,(|)220, 0.yY X e y f y y − > =≤ 3.26 设直线1x =,0y =以及曲线2y x =所围区域为G , (,)X Y 在区域G 上服从二维均匀分布,试求:(1) (,)X Y 的联合概率密度(,)f x y ;(2) 条件概率密度|(|)Y X f y x 及|(|)X Y f x y ;(3) |(|1)Y X f y 及()|1/9X Y f x .解(1) 如图,区域2}01,0{(,)|x y x G x y <<<<=的面积为1201d 3S x x ==∫因此(,)X Y 的联合概率密度为201,03(,)0x y x f x y <<<< =, ,,其他.(2) , X Y ()关于X 的边缘密度函数 例3.26插图220 3 d 3, 01()(,)d 0, x X y x x f x f x y y +∞−∞=<<== ∫∫其它.关于Y 的边缘密度函数13(1 01()(,)d 0, Y x y f y f x y x +∞−∞=<<== ∫其它.当01x <<时,条件概率密度|(|)Y X f y x22|2031(,)(|)3() 0Y X X y x f x y f y x x xf x << ===, ,,其他. 当01y <<时,条件概率密度|(|)X Y f x y1(,)(|)() 0X Y Y x f x y f x y f y <<== ,,其他. (3) 当1x =时,条件概率密度|101(|1)0Y X y f y << =, ,,其他.当19y =时,条件概率密度|3111(|2390X Y x f x << =, ,,其他. 习题3.63.27 有一本100页的书,每页错别字数服从参数为0.01的泊松分布,假定各页错别字数相互独立,求这本书上错别字总数的概率分布. 解 设i X 表示此书第i 页上的错别字数, 则(0.01)i X P , 其中1,2,,100i =L .因为相互独立的泊松随机变量的和仍服从泊松分布,因此这本书上错别字总数1001()ii XP λ=∑ , 其中1000.011λ=×=.3.23.288设两个随机变量X 和Y 相互独立且同分布:()()111/2P X P Y =−==−=,()()111/2P X P Y ====,则下列各式成立的是(A)()12P X Y ==.(B)()1P X Y ==.(C)()104P X Y +==.(C)()114P XY ==. 解 因为X 与Y 相互独立,由边缘分布列可得联合分布列..111111442111144211122i jY p X p −− 由此得()()()1111,11,1442P X Y P X Y P X Y ===−=−+===+=,故(A)正确,(B)错误.另外,由()()()11101,11,1442P X Y P X Y P X Y +===−=+==−=+=知(C)错误,由{}00P XY ==知(D)错误.*3.29 设随机变量X 服从二项分布(,)B n p ,Y 服从二项分布(,)B m p ,且X 与Y 相互独立,证明X Y +服从二项分布(,)B n m p +. 证: 因(,)X B n p ,(,)Y B m p ,所以()(1)k kn k n P X k C p p −==−,0,1,2,,.k n =L ()(1)k k m k m P Y k C p p −==−,0,1,2,,.k m =L而X Y +可能取值为0,1,2,,n m +L ,且X 与Y 相互独立,由卷积公式有00()()()= (1)(1)iik k n k i k i km i k n m k k P X Y i P X k P Y i k C p p C p p −−−−+==+====−−−∑∑= (1)= (1)ik i k i n m i i i n m in m n m k C C p p C p p −+−+−+=−−∑,0,1,2,,i n m =+L . 注:由超几何分布列的正则性可知,01k i k in m ik n mC C C −=+=∑.因此0ik i k in m n m k C C C −+==∑. 3.30设X 与Y 独立同分布,X 的分布列为1{}2k P X k ==,1,2,k =L .试求:(1)Z X Y =+的分布列;(2) min{,}Z X Y =的分布列.解 (1)Z X Y =+可能取值为2,3,L ,且X 与Y 相互独立,由卷积公式有1111()()()()= 222nnk n k nk k nP Z n P X Y n P X k P Y n k −====+====−=∑∑,2,3,n =L . (2)min{,}Z X Y =可能取值为1,2,3,L ,且X 与Y 相互独立,()(min{,})P Z n P X Y n ===11(,)(,)(,)k n k n P X n Y n P X n Y k P X k Y n ∞∞=+=+===+==+==∑∑11()()()()()()k n k n P X n P Y n P X n P Y k P X k P Y n ∞∞=+=+===+==+==∑∑12211111111322122222412n n n k n n n k n ∞+−=+=+=+=−∑’ 即min{,}Z X Y =的分布列为3()4n P Z n ==,1,2,n =L .3.31设X 与Y 相互独立,X 服从均匀分布[0,1]U ,Y 服从参数为2的指数分布,求: (1),X Y ()的联合概率密度;(2)(1)P X Y +≤.解 (1)X 与Y 的概率密度分别为()1, 01,0, X x f x ≤≤ = 其他 与 ()22e , 00, 0y Y y f y y − = ≤ >由于X 与Y 独立,因此,X Y ()的联合概率密度为()()()22e ,01,0,0, .y X Y x y f x y f x f y − ≤≤== >, 其他(2)()11122220111(1), d d d 2e d (1e )d 22xy x x y P X Y f x y x y x y x e−−−+≤+≤===−=+∫∫∫∫∫. 3.32 设X 与Y 独立同均匀分布[0,1]U ,求Z X Y =+的概率密度. 解 Z X Y =+的概率密度1()()()d ()d Z X Y Y f z f x f z x x f z x x ∞−∞=−=−∫∫作变量变换, 令t z x =−,得1()()d zZ Y z f z f t t −=∫当0z <时, ()0Z f z =. 当 01z ≤<时, 1()()d d zzZ Y z f z f t t t z −===∫∫.当 011z ≤−<时, 即 12z ≤<时, 1111()()d d 2Z Y z z f z f t t t z −−===−∫∫.当11z −≥时, 即 2z ≥时, 11()()d 0Z Y z f z f t t −==∫.于是Z X Y =+的概率密度为, 01,()2, 12,0, Z z z f z z z <≤=−<≤当当其他.*3.33 设()(2)2,0,0,,~(,) 0, x y e x y X Y f x y −+ >>= 其它.求随机变量2Z X Y =+的分布函数.解 随机变量2Z X Y =+取值为(0,)∞当0z ≤时, ()()(2)0Z F z P Z z P X Y z =≤=+≤=; 当0z >时, 设区域{(,)|0,0,2}G x y x y x y z =>>+≤,(){}{}2Z F z P Z z P X Y z =≤=+≤()()22,2x y x y zf x y dxdy edxdy −++≤==∫∫∫∫G220d 2d 1z xzx y z z e x e y e ze −−−−−==−−∫∫.于是,随机变量Y X Z 2+=的分布函数为()1,00,0z z Z e ze z F z z −− −−≥= <.★可进一步求得随机变量Z 的密度函数为(),00,0z Z ze z f z z − ≥= <.*3.34设X 与Y 独立同标准正态分布(0,1)N ,随机变量Z =,验证Z 的概率密度为()2/2, 0,0,z z ze z f z − ≥ = 其它, 称Z 服从瑞利(Rayleigh)分布.解 已知X 、Y 的分布密度分别为22()xXf x−=,22()yYf y−=,由相互独立性得X与Y的联合密度函数为221()21(,)()()2x yX Yf x y f x f y eπ−+=⋅=由于0Z=≥,知当0z<时, ()()0ZF z P Z z=≤=;当0z≥时, ()222())()ZF z P Z z P z P X Y z=≤=≤=+≤222222221()21(,)d d d d2x yx y z x y zf x y x y e x yπ−++≤+≤==∫∫∫∫22222220011d d2[]122r r zz ze r r e eπθπππ−−−=−=−∫∫极坐标.将()ZF z关于z求导数,得Z的概率密度为()2/2,0,0,zzze zf z−≥=其它.3.35 对某种电子装置的输出测量了5次,得到的观察值为12345,,,,X X X X X. 设它们独立同分布,概率密度为2/8,0,()40,xxe xf x−>=其它.求:(1)12345max{,,,,}Z X X X X X=的分布函数;(2){4}P Z>.解(1)设12345,,,,X X X X X的分布函数为()XF x,则当0x≤时, ()0XF x=.当0x>时, 有()22x/8/8d14x xXxF x e x e−−−∞==−∫.即2/81,0,()0,xXe xF x−−>=其它.因此12345max{,,,,}Z X X X X X=的分布函数25851,0,()()(())0,.zZ Xe zF Z P Z z F z−−>=≤==其他25(2)(4)1(4)1(4)1(1)0.5167.z P Z P Z F e −>=−≤=−=−−=3.36 设随机变量,X Y ()的联合分布列为求:(1) =max(,)U X Y 的分布列;(2) =min(,)V X Y 的分布列;(3) =W X Y +的分布列;(4) (1|2)P X Y ==,(3|0)P Y X ==.解 (1)由X ,Y 的可能取值知=max(,)U X Y 的可能值为:0,1,2,3. 且有 (0)(1,0)(0,0)0.150.060.21P Z P X Y P X Y ===−=+===+=,(1)(1,1)(0,1)(1,1)(1,0)P Z P X Y P X Y P X Y P X Y ===−=+==+==+==0.020.050.150.10.32=+++=,(2)(1,2)(0,2)(1,2)P Z P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(3)1(0)(1)(2)10.310.320.220.15P Z P Z P Z P Z ==−=−=−==−−−=. 所以=max(,)U X Y 的分布列 0 1 2 3 0.21 0.32 0.22 0.15U P (2由X ,Y 的可能取值知=min(,)V X Y 的可能值为:-1,0,1. 且有(1)(1,0)(1,1)(1,2)(1,3)P Z P X Y P X Y P X Y P X Y =−==−=+=−=+=−=+=−=0.150.020.150.070.39=+++=,(0)(0,0)(0,1)(0,2)(0,3)P Z P X Y P X Y P X Y P X Y ====+==+==+==(1,0)0.060.050.020.030.10.26P X Y +===++++=,(1)1(1)(0)10.390.260.35P Z P Z P Z ==−=−−==−−=.所以=min(,)V X Y 的分布列为 1 0 1 0.39 0.26 0.35V P − (3) 由X ,Y 的可能取值知=W X Y +的可能值为:-1, 0,1,2,3, 4. 且有 (1)(1,0)0.15P W P X Y =−==−==,(0)(1,1)(0,0)0.020.060.08P W P X Y P X Y ===−=+===+=,(1)(1,2)(0,1)(1,2)P W P X Y P X Y P X Y ===−=+==+==0.150.050.10.3=++=,(2)(1,3)(0,2)(1,1)P W P X Y P X Y P X Y ===−=+==+==0.070.020.150.24=++=,(3)(0,3)(1,2)0.030.050.08P W P X Y P X Y ====+===+=,(4)(1,3)0.15P W P X Y =====.所以=W X Y +的分布列为1 0 1234 0.15 0.08 0.3 0.24 0.08 0.15W P −. (4) (2)(1,2)(0,2)(1,2)P Y P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(0)(0,0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y P X Y ====+==+==+== 0.060.050.020.030.16=+++=,(1,2)0.055(1|2)(2)0.2222P X Y P X Y P Y ========, (0,3)0.033(3|0)(0)0.1616P X Y P Y X P X ========.。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

概率论第三章课后习题答案_课后习题答案

概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。

,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。

出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。

概率论与数理统计第3章复习题(含解答)

概率论与数理统计第3章复习题(含解答)

《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222⨯⨯222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324C 35= 324C 35= 3224C 35= 113224C C 12C 35=1324C 2C 35= 213224C C 6C 35= 2324C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y x u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V的分布律为V=max(X,Y) 0 1 2 3 4 5P 0 0.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i===351{,}{,}{,}{,}k i k iP X i Y i P X i Y iP X i Y k P X k Y i==+==≥+>====+==∑∑0,1,2,3,i=于是U=min(X,Y) 0 1 2 3P 0.28 0.30 0.25 0.17W=X+Y0 1 2 3 4 5 6 7 8P0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j 1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

相关文档
最新文档