管理运筹学后习题参考答案汇总

管理运筹学后习题参考答案汇总
管理运筹学后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案

第1章线性规划(复习思考题)

1. 什么是线性规划?线性规划的三要素是什么?

答:线性规划(Lin ear Programmi ng , LF)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2. 求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;

(2)多重最优解:无穷多个最优解;

(3)无界解:可行域无界,目标值无限增大;

(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3. 什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?

答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项 ' ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业 来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明 “遅 约束的左边取值大于右边规划值,出现剩余量。

4?试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关 系。

答:可行解:满足约束条件 扎—‘丸 的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解

最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示:

5 ?用表格单纯形法求解如下线性规划

解:标准化

1

可行基:对应于基可行解的基,称为可行基。

基可行解

SA] +

S 2

s.t

.

列出单纯形表

/4 3/2

0 1/2 [8]

/8

3/2

/6

/8 1/8]

5/4 /4

1/2

/8 1/4/(1/8

3/4 13/2/(1/4

12 5

故最优解为二「 - 1,即——二凡八,此时最优值为「产J 士匚

6.表1 —15中给出了求极大化问题的单纯形表,问表中1为何值及变

量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

表1 —15某极大化问题的单纯形表

■■-::i 兀0

".倉. b -'i

0 d 4

解: (1)

,■ 11;

(2) 阮存①匚監D {小口中至少有一个为零). 7

(3)

八d 3

c. >0, a, > 0* — > ——

4 心.

▲7

(4)

为人工变量,且为包含M的大于零的数,

量,且为包含M的大于零的数,".

(5) 为人工变7 ?用大M法求解如下线性规划

max Z = 5A,+3X; +6州

2^ + x2 4 3咼<16

A;4■凡 +比=10

解:加入人工变量,进行人造基后的数学模型如下:

列出单纯形表

5

3

6

0 M

b

v

.

-

8

1

1 2

1 1

8/1

6

1

2 1 3]

[

0 6/3

M

1

1 1

1 0 0/1

+M

5 +M

3

6+M 0 0 0

31/35/301

8/3

1

1/3 8/5

2/31/310

6/3

1

/3 6

1/3[2/3]00

M4/31/3 4/2

00-0

1一

001

1/2/2 5/2

3[1/2]010

/2 1/2

71/2100

1/2 /2 4

1000

123/2

40011

610 2 0

1

4010

11

00-1021-M

故最优解为卅=(640,400)「,即1臥辿-5此时最优值为Z (卅)= 42 .

8. A, B, C三个城市每年需分别供应电力320, 250和350单位,由I ,11两个电站提供,它们的最大可供电量分别为400单位和450单位,单位费用如表

1 —16所示。由于需要量大于可供量,决定城市A的供应量可减少0?30单位,城市B 的供应量不变,城市C的供应量不能少于270单位。试建立线性规划模型,求将可供电量用完的最低总费用分配方案。

表1 —16单位电力输电费(单位:元)

电站城

I 15 18

2

II 21 25

6

解:设为第i电站向第j城市分配的电量”(i=1,2; j=1,2,3),建立模型如

下:

max Z= 15 +18x]2 +22^ + 21^, +25 屉 + 16 心

九I * + 心-450

片 + x3l> 290

x u+ x3l< 320

x., + = 250

a

+ X:3> 270

若j + < 350

s.t. 口“小

9?某公司在3年的计划期内,有4个建设项目可以投资:项目I从第一年到第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目II需要在第一年初投资,经过两年可收回本利150%,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资不得超过20万元;项目III需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资不得超过15万元;项目IV需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资不得超过10万元。在这个计划期内,该公

司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润?

朴 | (2)( J)解:设表示第一次投资项目i,设?表示第二次投资项目i,设?表示第

三次投资项目i,(i=1,2,3,4),则建立的线性规划模型为

max Z -+ 1,6彳"+ ] ,4 A?1

牢+叩M 30

f黑乜]2屮+ 30_岸"_老‘

申+ 叩=1挣+ L5Z h+ 1.2岸1+ 30-屮-宅-

叩<20

聲乜15

时£)0

通过LINGO软件计算得:「■…' 1 - 1

10?某家具制造厂生产五种不同规格的家具。每种家具都要经过机械

成型、打磨、上漆几道重要工序。每种家具的每道工序所用的时间、每道工序的可用时间、每种家具的利润由表1—17给出。问工厂应如何安排生产,使总利润最大?

表1—17家具生产工艺耗时和利润表

生产工序所需时间(小时)每道工序可用时间(小

时)

12345

成型346233600打磨435643950上漆233432800利润(百元) 2.73 4.5 2.53

解:设表示第i种规格的家具的生产量(i=1,2,-…,), 则

max Z二+ 3乳+ 4.5.t + 2.5r +3^

3X[ + 4A,+ 6 A.+ 2 A J+ 3 < 3600

4為+ 3儿+ 5旺+ &旺+ 4A5< 3950

2州+ 3x2+ 3A,+ 4.q + 3旺< 2S00

s.t.[暫> 0,/- L2,-%5

通过LINGO软件计算得:—厂黑"识氏-讥?-沁I -沁】

11 ?某厂生产甲、乙、丙三种产品,分别经过A, B, C三种设备加工。已知

生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—

10所示。

表1 —18产品生产工艺消耗系数

甲乙丙

备能力

A (小时)111

10

B (小时)1045

60

30

C (小时)226

单位产品利

润(元)1064

(1)建立线性规划模型,求该厂获利最大的生产计划。

(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利润增加到6,求最优生产计划。

(3)产品甲的利润在多大范围内变化时,原最优计划保持不变?

(4)设备A的能力如为100+10q,确定保持原最优基不变的q的变化范围

(5)如合同规定该厂至少生产10件产品丙,试确定最优计划的变化。

解:(1)设分别表示甲、乙、丙产品的生产量,建立线性规划模型max Z = 10 片+6X2+ 铭

I(X)

10X, + 4 v:+ < 600

2珀-2也+ 6^ < 300

S.t. > 0

标准化得

max Z = 10 ij + 6 吗 + 4 杓+ Di. +0x5 + 0 兀

%r+ x, + = 100

10 州+ 4^2+ 5* + Xj = 600

2^ 4- 2JT?+ 6 码+ ^ = 300

s

.t. 斗、耳」q > 0

列出单纯形表

106400 r,b百X.

0100111 0600[10]45 0300226 T」1064001 0 0 100 0 1 0 60 0 0 1 150

0400[3/5]1/210 200/3

1/10 106012/51/201/10 0 150

018006/550 1 150

1/5

02-10—10

6%200/3015/65/30

1/6

10100/3101/6—2/31/6 0 0100004—20 1

00—8/3—10/3—2/30

故最优解为L = 100 1

3:Xy -200 y,又由于'取整数,故四舍五入可得最优解为

=67

1

= 732

(2)产品丙的利润’变化的单纯形法迭代表如下:

106 5 000H

儿b耳町q■、

6200/3015/65/30

1/6

10100/3101/6—2/3

1/6 0

0100004—20 1 00—20/3—10/3—2/30

要使原最优计划保持不变,只要

20

Cj_T£

0 2

,即

2

6—a 6.67

3 .故当产品丙

每件的利润增加到大于6.67

时,才值得安排生产。

如产品丙每件的利润增加到6时,此时6<6.67,故原最优计划不变。

(3)由最末单纯形表计算出

,I 2 A A

打* =—I —

6 3 6,

解得. ,即当产品甲的利润在I范围内变化时,原最优计划保持不

5/3

-1/6 (T

-2/3 1/6 0

° 1丿,新的最优解为

解得八匕鼓,故要保持原最优基不变的

(5)如合同规定该厂至少生产10件产品丙,则线性规划模型变成

max Z= 10占十6坷+ 4為

A r + ? + 舌 £ 100 10 E + 4 ,Y ? +5 .¥? < 600 * 2 州 * 2 扎 + 6 召 < 300

码> 10

s.t. S 勺小去°

通过LINGO 软件计算得到:

三沢乜"沁沁、=二总「懐

第2章对偶规划(复习思考题)

1 ?对偶问题和对偶向量(即影子价值)的经济意义是什么?

答:原问题和对偶问题从不同的角度来分析同一个问题,前者从产品产量的角

度来考察利润,后者则从形成产品本身所需要的各种资源的角度来考察利润,即利 润是产品生产带来的,同时又是资源消耗带来的。

* 5/3

-1/6

r

100 1 10 y (200 + 50g \ 1-2/3

(W

二亍

100 -20 (/ I -2 0

1

J

i 300 ,

3(100 - 20q)

X ; - B b f =

B

(4)由最末单纯形表找出最优基的逆为

对偶变量的值表示第i种资源的边际价值,称为影子价值。可以把对偶问题的解Y 定义为每增加一个单位的资源引起的目标函数值的增量。

2 ?什么是资源的影子价格?它与相应的市场价格有什么区别?

答:若以产值为目标,则是增加单位资源i对产值的贡献,称为资源的影子

价格(Shadow Pric?。即有影子价格=资源成本+影子利润”因为它并不是资源的实际价格,而是企业内部资源的配比价格,是由企业内部资源的配置状况来决定的,并不是由市场来决定,所以叫影子价格。可以将资源的市场价格与影子价格进行比较,当市场价格小于影子价格时,企业可以购进相应资源,储备或者投入生产;当市场价格大于影子价格时,企业可以考虑暂不购进资源,减少不必要的损失。

3.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?

答:(1)最优性定理:设?’分别为原问题和对偶问题的可行解,且

= h!\f,则X」分别为各自的最优解。

(2)对偶性定理:若原问题有最优解,那么对偶问题也有最优解,而且两者的目标函数值相等。

(3)互补松弛性:原问题和对偶问题的松弛变量为'和、,它们的可行解

;为最优解的充分必要条件是

(4)对偶问题的最优解对应于原问题最优单纯形表中,初始基变量的检验数

的负值。若’对应于原问题决策变量x的检验数,则对应于原问题松弛变量的检验数。

4.已知线性规划问题

mai Z二铭+ 山+ lx、

河* 3心* "玄2 (第”种资源)

* 6旺4- x2+ Xj < K (第二种资源)

(1)求出该问题产值最大的最优解和最优值。

(2)求出该问题的对偶问题的最优解和最优值。

(3)给出两种资源的影子价格,并说明其经济含义;第一种资源限量由2变

为4,最优解是否改变?

(4)代加工产品丁,每单位产品需消耗第一种资源2单位,消耗第

种资源3单位,应该如何定价?

解:(1)标准化,并列出初始单纯形表

2 0 0

管理运筹学基础 答案

课程学习 《管理运筹学基础》 判断正误 线性规划问题的一般模型中不能出现等式约束。 正确答案:说法错误 2.在线性规划模型的标准型中,b j(j=1,2,…m)一定是非负的。正确答案:说法正确 解答参考: 3. 判断正误 线性规划问题的基本解一定是基本可行解 正确答案:说法错误 解答参考: 5. 判断正误 同一问题的线性规划模型是唯一的。 正确答案:说法错误 解答参考: 12.第一个顶点和最后一个顶点相同的闭链叫回路。 正确答案:说法错误 解答参考: 14. 判断正误

Djisktra算法可求出非负赋权图中一顶点到任一顶点的最短距离。 正确答案:说法正确 解答参考: 15.简述编制统筹图的基本原则。 参考答案:统筹图是有向图,箭头一律向右;统筹图只有一个起始点。一个终点,没有缺口;两个节点之间只能有一个作业相连;统筹图中不能出现闭合回路。 17.简述西北角法、最小元素法、差值法确定运输问题初始基本可行解的过程并指出那种方法得出的解较优。 参考答案:西北角法:按照地图中的上北下南,左西右东的判断,对调运表中的最西北角上的空格优先满足最大供应,之后划去一行或一列,重复这种做法,直至得到初始可行解。最小元素法:对调运表中的最小运价对应的空格优先没醉最大供应,之后划去一行或一列,重复这种做法,直至得到初始可行解。差值法:在运价表中,计算各行和各列的最小运价和次最小运价之差,选出最大者,它所在某行或某列中的最小运价对应的空格优先满足最大供应,重复这种做法,直至得到初始可行解。一般来讲,用差值法求出的初始可行解最接近最优解,也就是最优的。 2. 用图解法求最优解时,只需求出可行域顶点对应的目标值,通过比较大小,就能找出最优解。 正确答案:说法正确 单纯形法计算中,选取最大正检验数对应的变量作为换入变量,将使目标函数的值增加更快。 正确答案:说法错误 解答参考: 6.若原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。 正确答案:说法正确 解答参考: 8.表上作业法中,任何一种确定初始基本可行解的方法都必须保证有(m + n -1)个变量。正确答案:说法正确 解答参考: 9.用分枝定界法求解一个极大化整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界 正确答案:说法正确

管理运筹学后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案 第1章线性规划(复习思考题) 1. 什么是线性规划?线性规划的三要素是什么? 答:线性规划(Lin ear Programmi ng , LF)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2. 求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3. 什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项 ' ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业 来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明 “遅 约束的左边取值大于右边规划值,出现剩余量。 4?试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关 系。 答:可行解:满足约束条件 扎—‘丸 的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5 ?用表格单纯形法求解如下线性规划 解:标准化 1 可行基:对应于基可行解的基,称为可行基。 基可行解 SA] + S 2

管理运筹学(本科)(参考答案)学习版.doc

上交作业课程题目可以打印,答案必须手写,否则该门成绩0分。 管理运筹学 作业题 一、名词解释(每题3分,共15分) 1. 可行解:满足某线性规划所有的约束条件(指全部前约束条件和后约束条件)的任意一 组决策变量的取值,都称为该线性规划的一个可行解,所有可行解构成的集合称为该线性规划的可行域(类似函数的定义域),记为K 。 2. 最优解:使某线性规划的目标函数达到最优值(最大值或最小值)的任一可行解,都称 为该线性规划的一个最优解。线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。 3. 状态:指每个阶段开始时所处的自然状态或客观条件。 4. 决策树:决策树(Decision Tree )是在已知各种情况发生概率的基础上,通过构成决策 树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。 5. 最大最小准则:最大最小准则又称小中取大法或悲观法。为不确定型决策的决策准则之 一,其决策的原则是“小中取大”。这种决策方法的思想是对事物抱有悲观和保守的态度,在各种最坏的可能结果中选择最好的。决策时从决策表中各方案对各个状态的结果选出最小值,即在表的最右列,再从该列中选出最大者。这种方法的基本态度是悲观与保守。其基本思路是首先找出最不利情况下的最大收益。 二、 简答题(每题6分,共24分) 1. 简述单纯形法的基本步骤。 答:(1)把一般线形规划模型转换成标准型;(2)确定初始基可行解;(3)利用检验数j σ对初始基可行解进行最优性检验,若0≤j σ ,则求得最优解,否则,进行基变换;(4)基变换找新的可行基,通过确定入基变量和出基变量,求得新的基本可行解;(5)重复步骤(3)、(4)直至0≤j σ,求得最优解为止。 2. 简述动态规划的基本方程。 答:对于n 阶段的动态规划问题,在求子过程上的最优指标函数时,k 子过程与k+1过程有如下递推关系: 对于可加性指标函数,基本方程可以写为 n k s f x s r s f k k k k k s D x k k opt k k k ,,2,1)}(),({)(11) ( =+=++∈ 终端条件:f n+1 (s n+1) = 0

管理学管理运筹学课后答案——谢家平

管理运筹学 ——管理科学方法谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待 定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制, 保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式, 有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数

管理运筹学--答案

09 <<运筹>>期末考试试卷(A)答案 一、不定项选择题(每小题2分共20分) 1、A 2、B 3、ABCD 4、ABC 5、D 6、C 7、B 8、ABCD 9、ABC 10、ABC 二、名词解释(每小题4分,共20分) 1、运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用期并提供优化决策方案的科学。 2、线性规划是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。 3、如果系统中包含元素A、B、C、K….等,按照经典意义(非模糊,非统计意义)的原则来聚类。 4、系统的综合性原则是指系统内部各组成部分的联系与协调,包含要素间的协调及系统与环境问题的协调。 5、TSP问题称为“旅行推销员问题”,是指:有N个城市A、B、…….等,它们这间有一定的距离,要求一条闭合路径,由某城市出发,每个城市经历过一次,最终返回原城市,所经历的路程最短。 三、简答题(每小题5分,共28分) 1、列出一些企业产品结构优化的柔性模型约束条件。 (1)关键设备的生产能力(2)各类能源的约束(3)工艺的约束 (4)产品类结构关系,以及物流过程中上、下游产品供需的约束 (5)某些产品的下限约束(6)非负约束 2、排队规则:损失制等待制:先到先服务、后到先服务、随机服务、优先权 服务混合制 3、运筹学的特点:(1)以最优性为核心。(2)以模型化为特征(3)以计算机为主要实现手段。(4)多学科交融 4、神经元的功能:(1)整合功能(2)兴奋与抑制(3)突触延时与不应期(4)学习、遗忘与疲劳

四、应用题。(每题15分,共45分) 1、设A、B的产量为X、Y 模型:目标MAX利润=500X+900Y 约束条件:9X+4Y≤360 4X+5Y≤200 3X+10Y≤300 X、Y均大于或等于零 图解略 最优解:X=20千克 Y=24千克利润31600元 2、企业在选择运用“农村包围城市”还是“城市中心”的指导思想时,应考虑自己的条件,竞争对手的情况,宏观和中观形势。 如,我国不少实力较弱的汽车企业,在发展之初,面临国内合资企业和国外汽车巨头的压力下,以农村,或三、四线城市为突破口,先在这些国内合资企业和国外汽车巨头不太重视的地区发展市场,在积累资金、经验、管理、技术等生产经营资源后,向大城市等竞争激烈的地区进军。 如果企业与国外合资,或在资金、技术、品牌、管理等方面有较大的优势,企业可以一开始就以广州等一线城市为主战场。 3、(1)如果两国没有任何的协调,A国最终会选择报复,因为只要A国选择报复,不论B国如何选择,对A国来说都最佳选择。反之亦然。 (2)如果两国协调,如果协调成功两国的对策是都不报复,如果两国协调不成功,两国都会选择报复。

2019管理运筹学课后答案

第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数的值仍然保持原值。如果同时存在最小θ值,说明有离基变量,则该问题在两个顶点上同时达到最优,为无穷多最优解。无界解:若某个非基变量xNk 的检验数σk> 0 ,但其对应的系数列向量P k' 中,每一个元素a ik' (i=1,2,3,…,m)均非正数,即有进基变量但找不到离基变量。

最全的运筹学复习题及答案

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10b-1f g X32C O11/5 X l a d e01 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

管理运筹学整理答案

第二章 2.5 表2-3为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为 12max 53z x x =+,约束形式为≤,34,x x 为松弛变量,表中解代入目标函数后得10z =。 (1)求a ~g 的值; (2)表中给出的解是否为最优解。 解:a=2,b=0,c=0,d=1,e=4/5,f=0,g=5;表中给出的解为最优解。 2.6 表2-4中给出某求最大化线性规划问题的初始单纯形表及迭代后的表,45,x x 为松弛变量,求表中a ~l 的值及各变量下标m ~t 的值。 解:a=-3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=-5,k=3/2,l=0;变量的下标为m —4,n —5,s —1,t —6 2.10下述线性规划问题:

2.11某单位加工制作100套工架,每套工架需用长为2.9m 、2.1m 和1.5m 的圆钢各一根。已知原材料长7.4m 。问如何下料使得所用的原材料最省? 解:简单分析可知,在每一根原材料上各截取一根2.9m,2.lm 和1.5m 的圆钢做成一套工架,每根原材料剩下料头0.9m ,要完成100套工架,就需要用100根原材料,共剩余90m 料头。若采用套截方案,则可以节省原材料,下面给出了几种可能的套截方案,如表2-5所示。 实际中,为了保证完成这100套工架,使所用原材料最省,可以混合使用各种下料方案。 设按方案A,B,C,D,E 下料的原材料数分别为x 1,x 2,x 3,x 4,x 5,根据表2-5可以得到下面的线性规划模型 12345124345 1235min 00.10.20.30.82100 22100..3231000,1,2,3,4,5 i z x x x x x x x x x x x s t x x x x x i =++++++=??++=?? +++=??≥=? 用大M 法求解此模型的过程如表2-6所示,最优解为:x *=(0,40,30,20,0)T ,最优值为z *=16。

管理运筹学课后习题答案

《管理运筹学》作业题参考答案 一、简答题 1. 试述线性规划数学模型的结构及各要素的特征。 2. 求解线性规划问题时可能出现哪几种结果,哪些结果反映建模时有错误。 3. 举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。 4. 什么是资源的影子价格,同相应的市场价格之间有何区别,以及研究影子价格的意义。 5. 试述目标规划的数学模型同一般线性规划数学模型的相同和异同之点。 (答案参考教材) 二、判断题 1. (√) 2. (√) 3. (×) 4. (√) 5. (√) 三、计算题 1. 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。 (a) min z =6x 1+4x 2 (b) min z =4x 1+8x 2 ??? ??≥≥+≥+0,5.1431 2.st 2 12121x x x x x x ??? ??≥≥+-≥+0,101022.st 2 12121x x x x x x (c) min z =x 1+x 2 (d) min z =3x 1-2x 2 ?????? ?≥≥-≥+≥+0 ,4212642468.st 2122 121x x x x x x x ??? ??≥≥+≤+0,4221 .st 2 12121x x x x x x (e) min z =3x 1+9x 2 ????? ????≥≤-≤≤+-≤+0 ,0 5264 2263.st 212 122121x x x x x x x x x 2. (a)唯一最优解,z* =3,x 1=1/2,x 2= 0;(b)无可行解;(c)有可行解,但max z 无界;(d )无可行解;(c )无穷多最优解,z*=66;(f )唯一最优解,z*=.3/8,3/20,3 2 3021==x x

管理运筹学课后习题答案

0后退" 地址匹I hi ip://wvw.doc in. c om/p-34224062, html 笫2章线性规划的图解法 a 可行城为OABC b ?聲值线为图中W 线所示。 C.IIIRH 可知.加优解为B 点,衆优M : x, = y x 2 = y , 69 〒 文件匕)編辑电)查看电)版藏逻 工具① 帮 址优JI 杯沥数们:

b 无可行解 C 无界斛 d 无可行解 e 尢穷多解 20 戈厂三 92 f 冇唯一解 ?两数值为学 8 3 3、Vh a 标准形式: max / = 3? + 2r 2 + 0打 + 0s 2 + 0% max / = 一4* 一 6X 3 - 0刁-0孔 v =()2 冇呱一解宀―“函数值为3.6 x 2 ■ 0.6

3勺 _ 兀2 一 B ■ 6 X] + 2X2+s2 = 10 7.v1 - 6A2二 4 f汕』2 2 0 C标准形式:max f =-?i; + 2.v s一2x; - 0片 - Qs2 -a— + 5X2-5A* +斗二70 2A; - 5.Vj + 5xj 二50 3x\ + 2x z一2r; - s2 =- 30 f 2 , *2,?,*2 2 ° 4、斡 标浪形式:max c = 10A(十5.v2十0、十0.T2 3\ + 4.V2 +耳二9 5x1 + 2X2 +52 = 8 兀“工2?亠? 0 5 .餅: 标ME形式:min f - 11xj + + 5 + O.v2 + O.v3 10A,+2X2 - 51— 20 3.V, + 3.V2-s2 =18 4x1 + 9X2一内=36 斗=0,y2 =0,^ = 13 6 >贻 b 1 s q 兰 3 c 2Sq S6 x2 = 4 e 斗G(4,8)x2 = 16 -2v1 2 f变化。廉斜率从-彳变为-1

运筹学考试试题答案与整理出来的复习题

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章线性规划的基本概念 一、填空题 1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 2.图解法适用于含有两个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有约束条件的解。 4.在线性规划问题的基本解中,所有的非基变量等于零。 5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关 6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。7.线性规划问题有可行解,则必有基可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。 9.满足非负条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。 13.线性规划问题可分为目标函数求极大值和极小_值两类。 14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解 16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。 18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。 19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。 20.表达线性规划的简式中目标函数为max(min)Z=∑c ij x ij。 21..(2.1 P5))线性规划一般表达式中,a ij表示该元素位置在i行j列。 二、单选题 1.如果一个线性规划问题有n个变量,m个约束方程(m

《管理运筹学》(第二版)课后习题答案

《管理运筹学》(第二版)课后习题参考答案 第1章线性规划(复习思考题) 1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0 b, ≥ i 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0 b AX,的解,称为可行解。 =X ≥ 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示:

(完整版)管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案 (由于该课程理论性强,采用开卷考试的形式) 一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策 二、简答题 1.简述运筹学的工作步骤。 2.运筹学中模型有哪些基本形式? 3.简述线性规划问题隐含的假设。 4.线性规划模型的特征。 5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解? 6.简述对偶理论的基本内容。 7.简述对偶问题的基本性质。 8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。 9.简述运输问题的求解方法。 10.树图的性质。 11.简述最小支撑树的求法。 12.绘制网络图应遵循什么规则。 三、书《收据模型与决策》 2.13 14. 有如下的直线方程:2x1+x2=4 a. 当x2=0时确定x1的值。当x1=0时确定x2的值。 b. 以x1为横轴x2为纵轴建立一个两维图。使用a的结果画出这条直线。 c. 确定直线的斜率。 d. 找出斜截式直线方程。然后使用这个形式确定直线的斜率和直线在纵轴上的截距。答案: 14. a. 如果x2=0,则x1=2。如果x1=0,则x2=4。 c. 斜率= -2 d. x2=-2 x1+4 2.40

你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。模型的代数形式如下所示。 Maximize 成本=15 x1+20 x2 约束条件 约束1:x1+ 2x2≥10 约束2:2x1-3x2≤6 约束3:x1+x2≥6 和 x1≥0,x2≥0 a.用图解法求解这个模型。 b.为这个问题建立一个电子表格模型。 c.使用Excel Solver求解这个模型。 答案: a.最优解:(x1, x2)=(2, 4),C=110 3.2 考虑具有如下所示参数表的资源分配问题: 单位贡献=单位活动的利润 b.将该问题在电子表格上建模。 c.用电子表格检验下面的解(x1, x2)=(2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), 哪些是可行 解,可行解中哪一个能使得目标函数的值最优? d.用Solver来求解最优解。 e.写出该模型的代数形式。 f.用作图法求解该问题。 答案:

《管理运筹学》第四版课后习题答案

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 1 ? = 0.6 《管理运筹学》第四版课后习题解析(上 ) 第2章 线性规划的图解法 1.解: (1)可行域为OABC 。 (2)等值线为图中虚线部分。 (3)由图2-1可知,最优解为B 点,最优解 x = 12 , x = 15 1 7 2 7 图2-1 ;最优目标函数值 69 。 7 2.解: (1)如图2-2所示,由图解法可知有唯一解 ?x 1 = 0.2 ,函数值为3.6。 ?x 2 图2-2 (2)无可行解。 (3)无界解。 (4)无可行解。

2 ? (5)无穷多解。 ? x = (6)有唯一解 ? 1 ? 20 3 ,函数值为 92 。 8 3x = ?? 2 3 3.解: (1)标准形式 max f = 3x 1 + 2x 2 + 0s 1 + 0s 2 + 0s 3 9x 1 + 2x 2 + s 1 = 30 3x 1 + 2x 2 + s 2 = 13 2x 1 + 2x 2 + s 3 = 9 x 1, x 2 , s 1, s 2 , s 3 ≥ 0 (2)标准形式 min f = 4x 1 + 6x 2 + 0s 1 + 0s 2 3x 1 - x 2 - s 1 = 6 x 1 + 2x 2 + s 2 = 10 7x 1 - 6x 2 = 4 x 1, x 2 , s 1, s 2 ≥ 0 (3)标准形式 min f = x 1' - 2x 2' + 2x 2'' + 0s 1 + 0s 2 -3x 1 + 5x 2' - 5x 2'' + s 1 = 70 2x 1' - 5x 2' + 5x 2'' = 50 3x 1' + 2x 2' - 2x 2'' - s 2 = 30 x 1', x 2' , x 2'' , s 1, s 2 ≥ 0 4.解: 标准形式 max z = 10x 1 + 5x 2 + 0s 1 + 0s 2 3x 1 + 4x 2 + s 1 = 9 5x 1 + 2x 2 + s 2 = 8 x 1, x 2 , s 1, s 2 ≥ 0

管理运筹学模拟试题及答案

四川大学网络教育学院模拟试题( A ) 《管理运筹学》 一、单选题(每题2分,共20分。) 1.目标函数取极小(minZ)的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标 函数值等于()。 A. maxZ B. max(-Z) C. –max(-Z) 2.下列说法中正确的是()。 A.基本解一定是可行解B.基本可行解的每个分量一 定非负 C.若B是基,则B一定是可逆D.非基变量的系数列向量一 定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为() 多余变量 B.松弛变量 C.人工变量 D.自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得 ()。 A.多重解B.无解C.正则解D.退化解5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足()。 A.等式约束 B.“≤”型约束 C.“≥”约束 D.非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量是()。 A.多余变量B.自由变量C.松弛变量D.非负变 量 7.在运输方案中出现退化现象,是指数字格的数目( )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8.树T的任意两个顶点间恰好有一条()。 A.边B.初等链C.欧拉圈D.回路9.若G中不存在流f增流链,则f为G的()。 A.最小流 B.最大流 C.最小费用流 D.无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验 但不完全满足() A.等式约束B.“≤”型约束C.“≥”型约束D.非负约 束 二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有() A.松弛变量 B.剩余变量 C.非负变量 D.非正变量 E.自由 变量 2.图解法求解线性规划问题的主要过程有() A.画出可行域 B.求出顶点坐标 C.求最优目标值 D.选基本解 E.选最优解 3.表上作业法中确定换出变量的过程有() A.判断检验数是否都非负 B.选最大检验数 C.确定换出变量 D.选最小检验数 E.确定换入变量 4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有()A.人工变量 B.松弛变量 C. 负变量 D.剩余变量 E.稳态变量 5.线性规划问题的主要特征有()

2014管理运筹学一---答案

试题代码:929 西南交通大学2014年硕士研究生招生入学考试 试题名称:管理运筹学一 考试时间:2014年1月考生请注意: 1、本试题共五题,共4页,满分150分,请认真检查; 2、答题时,直接将答案内容写在考场提供的答题纸上,答在试卷上的内容无 效; 3、请在答题纸上按要求填写试题代码和试题名称; 4、试卷不得拆开,否则遗失后果自负。 一判断题(20分,共5小题)(答在试卷上的内容无效) (对错误的选项应改错或说明原因) 1.对一个有n个变量m个约束条件的标准型线性规划模型,其可行域的顶点恰好为 c m 解析:可以举个例子,假设是2两个变量2个约束条件,那么可行域的顶点并不恰好为1个。

2.指派问题系数矩阵的某一行(列)各元素分别减去该行(列)的最小元素,得到 的新矩阵求得的最优解和原系数矩阵求得的最优解相同。 (v ) 3.整数规划模型的最优目标函数值一定不大于其对应的线性规划模型的最优目标函 数值。(v ) 4.对于一个动态规划问题,应用顺序解法或逆序解法可能会得到不同的结 果。 (X ) 解析:顺序法和逆序法是解决动态规划问题的两种方法,对于同一个动态规划问题,无论使用的是哪种方法,最后得出的结果是一定的,相同的。 改错:对于一个动态规划问题,应用顺序解法或逆序解法得到相同的结果。 5.存储策略就是决定补充存储数量的策略。 (X ) 解析:存储策略不止是决定补充存储数量,而且还决定补充时间,这里题目说的不全面改错:决定何时补充,补充多少数量的办法称之为存储策略。 二、简答题(20分,共2小题)(答在试卷上的内容无效)

1.( 10分)如下所示的网络,每条弧旁边的数字是(q、f ij ),(G j、侖分别表示该弧的容量和流量)。试判断该网络流是否为最大流,并找出其最小截集。 解析:这是一道考查网络的流中最大流的基础题,判断网络流是否为最大流,首先知道该如何判断,就是看网络图中还是否存在增流链,是对课本中求网络最大流方法步骤的考查,判断找出了最大流,根据被标号的点和未被标号的点就找出了最小截集,这里给出两种解法。(由于是简答题,解法一可以简略一些回答) 解法一:1、标记过程 (1)先给源V s标号(0,7 (2)对V s进行检查,从V s出发的边(V s , Vj上,f s1

管理运筹学(第四版)第三章习题答案

3.1(1)解: , 5 3351042..715min 212 1 1 21 21≥≥+≥≥++=y y y y y y y t s y y ω (2)解: 无限制 3213 21 3132 3213121,0,0 2 520474235323. .86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω 3.4解:例3原问题 6 ,,1,0603020506070 ..min 166554433221654321 =≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j 对偶问题: 6 ,,1,0111111 ..603020506070max 655443322161654321 =≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω

3.5解: (1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为 ????? ? ??-=-316102 11 B 。 由P32式(2.16)(2.17)(2.18)可知b B b 1 -=',5,,1,,1 ='-=='-j P C c P B P j B j j j j σ, 其中b 和j P 都是初始数据。设???? ??=21b b b ,5,,1,21 =???? ??=j a a P j j j ,()321,,c c c C =,则 ?????? ??=???? ???????? ??-?='-2525316102 1 211 b b b B b ,即?????=+-=25316 12521211b b b ,解得???==10521b b ????? ? ??-=???? ???????? ??-?='-021******** 102 12322211312111 a a a a a a P B P j j ,即 ???????????????=+-=-=+-==+-=0 31 6 112121316121 211 316 1021 231313221212211111a a a a a a a a a ,解得???????????==-====12 1130231322 122111a a a a a a

最新管理运筹学课后答案

最新管理运筹学课后答案 (1) 123 123123123123min 2432219 43414..524260,0,z x x x x x x x x x s t x x x x x x =++-++≤??-++≥?? --=-??≤≥? 无约束 解:(1)令11333','",'x x x x x z z =-=-=-,则得到标准型为(其中M 为一个任意大的正 数) 初始单纯形表如表2-1所示: 2.3 用单纯形法求解下列线性规划问题。 (1) 123 123123 123123max 2360 210..220,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤?? +-≤??≥? (2) 1234 123412341234 min 52322347..2223,,,0z x x x x x x x x s t x x x x x x x x =-+++++≤?? +++≤??≥? 解:(1)最优解为**(15,5,0),25T x z ==。 (2)最优解为**(0,1.5,0,0),3T x z ==-。 2.4 分别用大M 法和两阶段法求解下列线性规划问题。 (1) 123 123123123 max 2357..2510,,0z x x x x x x s t x x x x x x =+-++=??-+≥??≥? (2) 12 12123 1241234min 433 436..24,,,0 z x x x x x x x s t x x x x x x x =++=??+-=?? ++=??≥? 解:(1)最优解为**(6.429,0.571,0),14.571T x z ==。 (2)最优解为**(0.4,1.8,1,0), 3.4T x z ==。 2.6 已知线性规划问题 其对偶问题最优解为** *124/5,3/5;5y y Z ===。试用对偶理论找出原问题最优解。 解:先写出它的对偶问题 将**124/5,3/5y y ==代入约束条件可知,第2、3、4个约束为严格不等式,因此,由互 补松弛性得***2340x x x ===。又因为** 12,0y y >,所以原问题的两个约束条件应取等式,因 此有

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题解析(上 ) 第2章线性规划的图解法 1 ?解: 1 )可行域为OABC 2)等值线为图中虚线部分 2?解: 1)女图2-2所示,由图解法可知有唯一解 儿=0.2,函数值为3.6 x 2 =0.6 图2-2 2) 无可行解。 3) 无界解。 4) 无可行解。 3) 由图2-1可知,最优解为B 点,最优解x = 12,x ; 15 最优目标函数值 69 7

5)无穷多解 3?解: 1)标准形式 max f =3x i 2x 2 0s i - 0s 2 - 0s 3 9xi 2x 2 si =30 3x 1 亠2X 2 亠s =13 2x i 亠2x 2 亠S 3 =9 x i , x 2 ,S 1, S 2, S 3》0 2) 标准形式 min f =4x 1 亠6x 2 亠0$ 亠0s 2 3x i - X 2 - Si — 6 x 1 2x 2 S 2 =i0 7x i -6x 2 =4 x i , x , S i , S 2 A 0 3) 标准形式 min f =xi —2X 2 亠2X 2 亠0s 1 亠0S 2 -3x i 5x 2 -5x 2 S i =70 2x i -5x 2 5X 2: =50 3x i 2x 2 —2x 2 -S 2 =30 x i , xl X 2: Si, S 2 A 0 4?解: 标准形式 max z =10x i ' 5x 2 ' 0s i 0S 2 3x 1 4x 2 Si =9 5xi 2x 2 S 2 =8 6)有唯一解■: X 2 =20 3 ,函数值为 8 3 92 3

管理运筹学复习题以及答案

第一章 运筹学概念 一、填空题 1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。 2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。 3.模型是一件实际事物或现实情况的代表或抽象。 4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。 5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。运筹学研究和解决问题的效果具有连续性。 6.运筹学用系统的观点研究功能之间的关系。 7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。 8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,是一个科学决策的过程。 11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。 12.运筹学中所使用的模型是数学模型。用运筹学解决问题的核心是建立数学模型,并对模型求解。 13用运筹学解决问题时,要分析,定议待决策的问题。 14.运筹学的系统特征之一是用系统的观点研究功能关系。 15.数学模型中,“s·t”表示约束。 16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。 18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题 1. 建立数学模型时,考虑可以由决策者控制的因素是(A ) A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格 2.我们可以通过(C )来验证模型最优解。 A.观察 B.应用 C.实验 D.调查 3.建立运筹学模型的过程不包括(A )阶段。 A.观察环境 B.数据分析 C.模型设计 D.模型实施 4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B ) A数量 B变量 C 约束条件 D 目标函数 5.模型中要求变量取值(D ) A可正 B可负 C非正

相关文档
最新文档