统计学之概率分布与抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
第5、6、7章
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7

常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。

统计学第3章-概率、概率分布与抽样分布

统计学第3章-概率、概率分布与抽样分布
3-15
互斥事件及其概率
(例题分析)

解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6


合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

概率与统计中的抽样分布与假设检验

概率与统计中的抽样分布与假设检验

概率与统计中的抽样分布与假设检验概率与统计是一门研究随机事件及其规律的学科,其中抽样分布与假设检验是概率与统计学中至关重要的概念。

本文将介绍抽样分布的概念及其重要性,并探讨假设检验的原理和应用。

一、抽样分布在统计学中,抽样是指从总体中选取一部分样本进行观察和测量,通过对样本的分析和推断,得出对总体特征的结论。

而抽样分布则是在多次抽取样本的基础上得到的一组统计量的概率分布。

抽样分布的重要性在于它为统计推断提供了理论基础。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

这意味着通过对样本数据的分析,我们可以对总体特征进行合理的推断和估计。

二、假设检验假设检验是概率与统计学中常用的分析方法,用于检验关于总体参数的某种假设。

它基于样本数据,通过比较样本统计量与假设值之间的差异,来判断是否拒绝或接受某个假设。

假设检验的基本步骤包括:1. 建立原假设(H0)和备择假设(H1):原假设通常是关于总体特征的某种陈述,而备择假设则是与原假设相对立的假设。

2. 选择适当的检验统计量:根据具体问题选择合适的统计量进行计算和分析。

3. 确定显著性水平(α):显著性水平是进行假设检验时预先设定的一个界限,用来判断是否拒绝原假设。

通常将显著性水平设定为0.05或0.01。

4. 计算检验统计量的观察值:通过对样本数据进行计算,得到实际的检验统计量的值。

5. 判断检验统计量的观察值是否落在拒绝域内:拒绝域是指在显著性水平下,根据分布函数得到的一组临界值。

如果观察值落在拒绝域内,则拒绝原假设;否则,接受原假设。

6. 得出结论:根据判断结果,对于原假设的合理性进行结论。

假设检验在实际问题中有着广泛的应用。

例如,在医学研究中,可以使用假设检验来判断新药物是否对疾病有显著疗效;在工商管理中,可以使用假设检验来判断某种市场策略是否能够提高销售业绩。

总结:概率与统计中的抽样分布与假设检验是概率与统计学的重要概念。

袁卫《统计学》(第3版)课后习题-概率、概率分布与抽样分布(圣才出品)

袁卫《统计学》(第3版)课后习题-概率、概率分布与抽样分布(圣才出品)

5.离散型随机变量和连续型随机变量的概率分布的描述有哪些不同?连续型随机变量
的概率密度与分布函数之间是什么关系?
答:(1)离散型随机变量 X 只取有限个可能的值 x1,x2,…, xn ,而且是以确定的概
率取这些值,即
P(X=xi)=pi( i =1,2,…,n)。因此,可以列出 X 的所有可能取值 x1,x2,…, xn ,以 及取每个值的概率 p1,p2,…, pn ,将它们用表格的形式表现出来,就是离散型随机变量
1 / 26
圣电子书

(3)主观概率
十万种考研考证电子书、题库视频学习平台
古典概率和统计概率都属于客观概率,它们的确定完全取决于对客观条件的理论分析或
是大量重复试验的事实,不以个人的意志为转移。而有些事件,特别是未来的某一事件,既
不能通过等可能事件个数来计算,也不能根据大量重复试验的频率来估计,但决策者又必须

对于连续型随机变量,其均值和方差分别为:
= E(X ) = xf (x)dx, 2 = E(X 2) − E2(X ) = − x2 f (x)dx


7.二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
答:(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后
对其进行估计从而作出相应的决策,那就需要应用主观概率。
主观概率需要人们根据经验、专业知识、对事件发生的众多条件或影响因素进行分析,
以此确定主观概率。
3.概率密度函数和分布函数的联系与区别表现在哪些方面? 答:(1)区别 概率密度函数只是给出了连续型随机变量某一特定值的函数值,这一函数值不是真正意 义上的取值概率,连续型随机变量在给定区间内取值的概率对应的是概率密度函数 f(x)曲 线(或直线)在该区间上围成的面积,这一特征恰恰意味着连续型随机变量在某一点的概率 值为 0,因为它对应的面积为 0。而分布函数 F 在 x 处的取值,就是随机变量 X 的取值落在 区间(-∞,x)的概率。 (2)联系

3-理论分布与抽样分布

3-理论分布与抽样分布

68-95-99.7规则
➢ 正态分布有其特定的数据分布规则: ▪ 平均值为, 标准差为σ的正态分布 ▪ 68%的观察资料落在的1σ之内 ▪ 95%的观察资料落在的2σ之内 ▪ 99.7%的观察资料落在的3σ之内
19
20
三、68-95-99.7规则
68.26% 的资料 95.45% 的资料 99.73% 的资料 -3 -2 -1 0 1 2 3 -3s -2s -s +s +2s +3s
体称为样本平均数的抽样总体。其平均数和标准差分
别记为 和 。x
s x
是样s x本平均数抽样总体的标准差,简称标准误 (standard error),它表示平均数抽样误差的大小。统 计学上已证明x总体的两个参数与x 总体的两个参数有 如下关系:
u=(x-μ)/σ
x~N(0,1)
上一张 下一张 主 页 退12出
3.3.3 正态分布的概率计算 1. 标准正态分布的概率计算
设u服从标准正态分布,则u在[u1,u2 )内取 值的概率为:
=Φ(u2)-Φ(u1)
(3-16)
Φ(u1)与Φ(u2)可由附表1查得。
上一张 下一张 主 页 退13出
例如,u=1.75时,由附表1可以查出 Φ(1.75)=0.95994
图3-6 μ相同而σ不同的3个正态分布比较大 8
(6)分布密度曲线与横轴所围成的区间面积为1, 即:
(7) 正态分布的次数多数集中在平均数μ的附 近,离均数越远,其相应次数越少,在3σ以外的 极少,这就是食品工业控制中的3σ 原理的基础。
上一张 下一张 主 页 退 9出
3.3.2 标准正态分布
上一张 下一张 主 页 退16出
(1) P(u<-1.64)=0.05050 (2) P (u≥2.58)=Φ(-2.58)=0.024940 (3) P (|u|≥2.56)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单随机抽样的优缺点
▪ 优点:简单随机抽样是最符合随机原则的 抽样方法,能保证总体的每个成员具有已 知的且同等的被选为样本单位的机会,因 此,产生的样本,不论其多大都是总体的 一个有效代表。
•标准正态分布的分布函数表示为
•标准正态分布的图形
•例1 •解
•查表标准正态分布函数表
解 查标准正态分布表
正态分布的转换
1. 任何一个一般的正态分布,可通过下面的线性 变换转化为标准正态分布
X-μ表示将一般正态分布的曲线平衡到标准正态分布的 位置
除以σ表示将一般正态分布的曲线形状转换为标准正态 分布
简单随机抽样
(simple random sampling)
1. 从 得总 每体一N个个总、单体也最位单称基中位纯本随都随的机有机抽地相抽样抽同样方取的,法n机个是之会单应一(位用概作最率为多)被样抽本中,使 2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
➢ 简单、直观,在抽样框完整时,可直接从中抽取样本 ➢ 用样本统计量对目标量进行估计比较方便 ➢ 但是当N很大时,不易构造抽样框 ➢ 抽出的单位很分散,给实施调查增加了困难 ➢ 没有利用其他辅助信息以提高估计的效率
分布函数的性质 • 1、单调不减性:若x1<x2, 则F(x1)F(x2); • 2、归一 性:对任意实数x,0F(x)1,且
•3、右连续性:对任意实数x,
•反之,具有上述三个性质的实函数,必是某个 随机变量的分布函数。故该三个性质是分布函 数的充分必要性质。
•试求出X的分布函数。 •解
连续型随机变量与概率密度
•称为随机变量X的分布函数。 • 有了分布函数定义,任意x1,x2∈R, x1<x2,随 机变量X落在(x1,x2]里的概率可用分布函数来计算:
•P {x1<X x2}=P{X x2}-P{Xx1}= F(x2)-F(x1).
• 在这个意义上可以说,分布函数完整地描述了随机 变量的统计规律性,或者说,分布函数完整地表示了 随机变量的概率分布情况。
正态分布
(例题分析)
•【例】定某公司职员每周的加班津贴服从均值为50元、标 准差为10元的正态分布,那么全公司中有多少比例的职员每 周的加班津贴会超过70元,又有多少比例的职员每周的加班 津贴在40元到60元之间呢?
•解:设=50, =,X~N(50,102)
3.3 常用的抽样方法
▪ 3.3.1 简单随机抽样 ▪ 3.3.2 分层抽样 ▪ 3.3.3 系统抽样 ▪ 3.3.4 整群抽样
统计学之概率分布与抽 样分布
2020年4月29日星期三
第 3 章 概率分布与抽样分布
3.1 随机变量 3.2 正态分布 3.3 常用的抽样方法 3.4 抽样分布 3.5 中心极限定理的应用
3.1 随机变量
(random variables)
1.对随机事件的数值性描述
--例如:抛硬币的结果,正面定义为1,反 面定义为0
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望
2. 方差
3.2 正态分布
(normal distribution)
1. 正态分布是最重要的一种概率分布。正态分布概 念是由德国的数学家(Carl Friedrich Gauss, 1777—1855)和天文学家Moivre于1733年首次 提出的,但由于Gauss率先将其应用于天文学 家▪研究正,态故分正布态是分许布多又统叫计高方法斯的分理布论。基础:
2.一般用 X,Y,Z 来表示 3.根据取值情况的不同分为
离散型随机变量:数轴上可列个孤立的点 连续型随机变量:数轴上一个或多个区间
离散型随机变量
1. 随机变量 X 取有限个值或所有取值都可以 逐个列举出来 x1 , x2,…
2. 以确定的概率取这些不同的值 3. 离散型随机变量的一些例子
连续型随机变量
5. 经典统计推断的基础
正态分布
= 正态随机变量X的均值 = 正态随机变量X的方差 = 3.1415926; e = 2.71828
x = 随机变量的取值 (- < x < )
则称X服从参数为 、 的正态分布,记作 X~N( , )
正态分布函数的性质
1. 图形是关于x=对称钟形曲线,且峰值在x= 处 2. 均值和标准差一旦确定,分布的具体形式也惟一确
1. 连续型随机变量可以取某一区间或整个实数轴 上的任意一个值
2. 它取任何一个特定的值的概率都等于0 3. 不能列出每一个值及其相应的概率 4. 通常研究它取某一区间值的概率 5. 用概率密度函数和分布函数的形式来描述
分布函数的定义

• 定义 设X是一随机变量,X是任意实数,则实值函数 •F(x)=P {Xx}, x∈(-∞,+∞)
设X是随机变量,如果存在定义在整个实数轴上的 函数f(x),满足条件
•则称X是连续型随机变量,f(X)称为X的概率密度函
数,简称概率密度。
注意f(x)不是概 率
• 概率密度函数的性质
•1) •2)
•1
•这两条性质是判定一 •个函数 f(x)是否为某 •个随机变量X的概率 •密度函数的充要条件
•3) X落入区间[a,b]内的概率=
的面积给出,而且其曲线下的总面积等于1
•正态概率密度函数的几何特征
•μ决定曲线的位置,σ决定曲线的“胖瘦”
•正态分布下的概率计算
•方法一:利用统计软件计算
•方法二:转化为标准正态分布查表计算
•标准正态分布
(standardize the normal distribution)
•标准正态分布的概率密度表示为
2. 描述连如续t分型布随、机F变分量布的、最χ2分重布要都的是分在布正态分 3. 许多现布象的都基可础以上由推正导态出分来布的,来此描外述,t分布 4. 可用于、态近二分似项布离分,散布 在型、 一随定Po机条is变件so量下n分,的布可分的以布极按限正为态正分
➢ 例布如布:原理二项来分处布理当。n越来越大,越近似服从正态分
定,不同参数正态分布构成一个完整的“正态分布族”
3. 均值可取实数轴上的任意数值,决定正态曲线的具
体位置;标准差决定曲线的“陡峭”或“扁平”程度
。越大,正态曲线扁平;越小,正态曲线越高陡峭 4. 当X的取值向横轴左右两个方向无限延伸时,曲线的
两个尾端也无限渐近横轴,理论上永远不会与之相交 5. 正态随机变量在特定区间上的取值概率由正态曲线下
相关文档
最新文档