量子力学中几种表象及其之间的关系
量子力学的矩阵形式与表象变换

练习3:求Lz算符在(L2,Lz)的共同表象: (Y11,Y10,Y1-1)的矩阵。 答案:
0 0 Lz 0 0 0 0 0
练习4:求Lx算符在(L2,Lz)的共同表象: (Y11,Y10,Y1-1)的矩阵。(答案见周世勋书P130 习题4.5)
∆. 本征矢在自身Q表象的表示。
C)表象例子
D)不同表象间变换
设F表象,基矢为{ψ k}, F′表象,基矢为{ψ ′k},
m 由 ak k am
k m
, k )a k S mk ak -> a´=Sa am ( m
, k ) 就是么正变换矩阵 Smk ( m
Δ .本征矢的归一化:
X i X i 1
C 1 X i X i
Δ .未归一的归一化系数C:
X Ci X i
i
Δ .任意列矩阵X可用厄米矩阵的本征矢展开
Cj X j X
(练习1)
9.矩阵迹(spur or trace) 定义:spA= Ann , (或写成trA).
n
公式:sp(AB)=sp(BA).
A1 A A2 A 3
A1 A A2 A 3
以二维坐标系间变换为例。 ( e ) 相对原坐标系 1, e2 ) 顺时针 设新坐标系 (e1, e2 转过θ角。则
c1e1 c2 e2 , e1 d1e1 d 2e2 , e2
2、算符、本征矢在自身表象的矩阵表示特点
ˆ 在自身Q表象的表示 ∆. 即 Q
。
* ˆ 分立谱:Qmn U m QU n d q n mn ,
Q是对角矩阵 ,对角元是本征值qn 。
量子力学第四章表象

第四章 表象理论4.1 态的表象变换和态的矩阵表示1.态的表象变换将F 表象中的态函数对力学量算符ˆQ 在F 表象中的本征函数组展开,则展开系数就是在Q 表象中的态函数。
这就是将F 表象中的态函数变换到Q 表象中的态函数的方法。
为了便于求出展开系数,通常要求ˆQ的本征函数组为幺正基组。
以从r 表象变换到Q 表象为例。
r 表象中的态函数为(,)r t ϕ [或()r ϕ]。
设ˆQ的本征值为分立谱Q n ,对应的本征函数为()n r φ 。
当各Q n 都无简并时,(,)r t ϕ 对()n r φ的展开式为:(,)()()n n nr t a t r ϕφ=∑(4.1-1) 若Q n 表示几个对易力学量算符本征值的集合,则上式中的n 应表示几个对应的量子数的集合。
当Q n 存在简并时,展开式为:(,)()()iiin n n r t a t r ϕφ=∑(4.1-2)其中i 为描写简并的角标。
下面只讨论无简并的情况。
在(4.1-1)式中,a n (t)是Q n 与t 的函数,a n (t)相当于a(Q n ,t)的简写。
当Q n 在整个展开系数中变动。
由于Q n 为分立谱,所以函数关系a n (t)-Q n 不是连续的。
a n (t)就是(,)r t ϕ 变换到Q表象中的态函数。
例如,将r表象中的某态函数(,,)r ϕθϕ对2ˆL 与ˆzL 的共同本征函数组(,)lm Y θφ展开: 0(,,)()(,)llm lm l m lr C r Y ϕθφθϕ∞==-=∑∑ (4.1-3)上式相当于(4.1-1)式中的n 表示两个量子数lm 的集合。
上式中的()lm C r 就是在2L 与z L 共同表象中的态函数。
2.本征态的排序本征态的排序可以化为对应的本征值的排序。
若本征值无简并,则参与排序的本征值没有相同者;若本征值有简并,则参与排序的本征值有相同者,其相同本征值的个数应与该本征值的简并度相同。
量子力学中的表象

算符的表象
描写力学量的算符的表示方式随表象不同而改变。 设在x表象中,算符 作用于波函数ψ (x,t)后得到一新的波函数
( x, t ) F ( x,i
并设在Q表象中波函数ψ (x,t)和Φ (x,t)分别以{a1(t),a2(t),…,an(t),…} 和{b1(t),b2(t),…,bn(t),…}表示,un(x)为 本征函数,则可得
( x, t ) a (t )u (t )d
aλ (t)就是Q表象中的波函数,坐标表象、动量表象就属于这类表象。 从上面的叙述可以看出,同一状态可以用不同表象中的波函数来描写。表 象的概念与几何学中坐标系的概念类似。 一个特定的Q表象→一个特定的坐标系 本征函数→基矢 波函数是态矢量ψ 在各基矢方向“分量”→坐标分量
) ( x, t ) x
b (t )u ( x) a (t ) F ( x,i x ) u ( x)
n n n n n n
以
乘等式两边,再对整个空间积分,得 bm (t ) Fmn an (t ), (m 1,2, )
n
其中
Fmn um ( x) F ( x,i
w( x, t )dx ( x, t ) dx
2
由c(p,t)可知,粒子动量在p到p+dp之间的概率
w( p, t )dp c( p, t ) dp
2
如果ψ (x,t)所描写的状态是具有动量p’的自由粒子的状态,即 ψ (x,t)=ψ p’(x,t),则
iEp't / c( p, t ) p' ( x, t ) dx p ( x)dx p ' ( x) p ( x)e
量子力学 第四章

∫
∫
* * * ˆ ˆ Fnm == (Fu n)u m dx = u m Fu n dx = Fmn
= a1 t) + a2 t) + L + an t) + L ( ( (
2 2 2
例题3、 中运动的粒子, 例题 、在一维无限深势阱 0 < x < a 中运动的粒子,所 处的状态是归一化波函数 Ψ = 1 sin π x + sin 3π x)所描写 ( 的状态,求它在能量表象中的表示。 的状态,求它在能量表象中的表示。
i Pa h
)
表象中的表示式, 已知一个状态在 x 表象中的表示式,就可以求出这个状态在 动量表象中的表示式。 动量表象中的表示式。 具体做法是: 表象中的表示式(波函数) 具体做法是:把状态在状态在 x 表象中的表示式(波函数) r 按 P 的本征函数(在 x 表象中的表示式)展开, 的本征函数( 表象中的表示式)展开, Ψ ( x, t) 展开式的系数就是Ψ(x,t) 表示的状态在动量表象中的波函数 例题2、描写一个粒子状态的波函数是 例题 、
∫
数列
a1 t)、a2 t)、 L a(t)、a(t) ( ( L n q
Ψ
+ * * * * = a(t) a(t) L a(t) a(t) 1 2 n q
( a1 t) a(t) 2 Ψ = M a(t) n a(t) q
(
)
a
π 2 nπ 2 3π 1 2 nπ 2 sin xdx + ∫ sin x• sin xdx ] = [∫ sin x• a a a a a 2 a a a 0
= 1 (δ n1 + δ n 3 ) 2
第五章量子力学的矩阵形式和表象变换

例题: 例题:一维粒子运动的状态是
Axe , x ≥ 0 ψ ( x) = { 0, x ≤ 0
求1)粒子动量的几率分布; )粒子动量的几率分布; 2)粒子的平均动量 )
∞
− λx
∫x
0
ν −1 − µx
e
dx =
1
µ
ν
(ν − 1)! (ν ∈ N 0 )
解:由于波函数为归一化,首先要对波函数进行归一化 由于波函数为归一化,
∫
∞
0
( x − λx )e
2
− 2 λx
dx
3. 能量表象
考虑任意力学量Q本征值为λ 考虑任意力学量 本征值为λ1, λ 2,…, λ n…,对应的正交本 本征值为 对应的正交本 则任意波函数ψ ) 征函数 u1(x), u 2 (x),… u n (x) …, 则任意波函数ψ(x)按Q的 的 本征函数展开为 本征函数展开为
P2 H = T +V = + Fx 2m
在动量表象中, 的 在动量表象中,x的 算符表示为
1 ψ p (x) = e 1/ 2 (2πh)
i px x h
i px x h
d i 1 ψ p ( x) = x e 1/ 2 dp h (2πh )
d i ˆ = xψ p ( x) x = ih dp h
总结
直角坐标系中,矢量 的方向由 三个单位矢量基 直角坐标系中,矢量A的方向由i,j,k三个单位矢量基 三个单位矢量 决定,大小由 三个分量(基矢的系数)决定。 矢决定,大小由Ax,Ay,Az三个分量(基矢的系数)决定。
在量子力学中,选定一个 表象 表象, 在量子力学中,选定一个F表象,将Q的本征函数 的本征函数 u1(x), u2(x),… un(x),…看作一组基矢,有无限多个。 看作一组基矢 看作一组基矢,有无限多个。 大小由a1(t), a2(t), …an(t),…系数决定。 大小由 系数决定。 系数决定 所以,量子力学中态矢量所决定的空间是无限维的 所以,量子力学中态矢量所决定的空间是无限维的 空间函数,基矢是正交归一的波函数。 空间函数,基矢是正交归一的波函数。数学上称为 希尔伯特( 希尔伯特(Hilbert)空间 )空间. 常用的表象有坐标表象、动量表象、 常用的表象有坐标表象、动量表象、能量表象和角 动量表象
关于量子力学中的表象

给粒子编号, 因为自动满足全同性原理的要 求。 描述全同多粒子系统状态的这一方法 所用的态矢是 n1 , n2 ,......nv ...... ,相应的表 象称为福克表象。其中,对于玻色子nv =0, 1,2……;而对于费米子,由于必须满足泡 利不相容原理,因此nv =0,1。
3 表象变换
设力学量 F 和 G 在各自表象中的本征方 程为 F i = fi i 和 G n = g n n ,那么, 如果我们定义 S = n i 以及 S = i n , 那
†
参考文献
[1] 刘连寿.理论物理基础教程.高等教育 出版社.2003.pp.373-379. [2] 曾谨言.量子力学教程(第二版).科学 出版社.2008.pp.82-84. [2] 钱伯初 曾谨言.量子力学习题精选与 剖 析 ( 第 三 版 ) . 科 学 出 版 社.2008.pp.259-260.
c ( p, t ) =
i − px 1 h ψ x t e dx ( , ) ∫ 2π h
(12)
其中,在表象表换时,我们要特别注意 一下两点:
1、表象变换矩阵的幺正性。即表象变 换算符 S 为要争算符, S † S = 1 。 2、表象变换下量子力学的基本公式不 变,物理观测结果不变。其具体包括: a、表象变换不改变算符之间的对易关 系。 b、表象变换不改变力学量的本征值。 c、表象变换不改变矢量的内积。
∑n
v =1
∞
v
= N 。这种方法从一开始就不
1 表象与绘景
在量子力学中, 表象和绘景是两个完全 不同的概念。 由于希尔伯特空间中的基底选择不同, 而使量子力学原理有不同的表象。 表象是选 定基底使态矢量和算符有具体的表示形式。 也可以这样说, 表象就是希尔伯特空间中的 “坐标系” 。 由于对时间演化的处理方式不同, 使量 子力学有不同的绘景。 绘景是描述状态随时 间变化的图像,在同一绘景中,还可以有不 同的表象。 在量子力学中, 已知我们可以直接观测 的是力学量 F 在状态 a 中取不同值的概率 分布 P = n a
量子力学4 态和表象-1qz

动量表象
C ( p, t ) ( p p) exp[ iE ]
1 2 p ( x ) ( ) exp[ipx / ] 2
1
C ( p) ( p p)
ˆ p p ( x) p p ( x)
ˆ p ( p p) p ( p p)
am * (t )an (t ) mn
m n
m
n
an * (t )an (t )
n
写成 矩阵形式
14
a1 ( t ) a2 (t ) an (t )
归一化可写为
共轭矩阵
a1 ( t ) *
11
(二)力学量表象
推广上述讨论: x, p 都是力学量,分别对应有坐标表象和动量表象, 因此可以对任何力学量Q都建立一种表象,称为力 学量 Q 表象。 那末,在任一力学量Q表象中, Ψ (x,t) 所描写的态又如何表示呢?
(1)具有分立本征值的情况 (2)含有连续本征值情况
12
(1)具有分立本征值的情况 设 算符Q的本征值为: Q1, Q2, ..., Qn, ..., 若Ψ, un都是归一 化的,则 an(t) 也 是归一化的。
波函数也可以选用其它变量的函数,力学量则 相应的表示为作用于这种函数上的算符。
4
§4.1 态的表象
5
量子力学中表象的定义
表象:量子力学中态和力学量的具体表示方式称 为表象。以前采用的是坐标表象,下面我们要介 绍其他表象。
(一)动量表象 (二)力学量表象 (三)讨论
6
(一)动量表象
在坐标表象中,体系的状态用波函数Ψ(x,t)描 写,这样一个态如何用动量为变量的波函数描 写? 首先我们看动量本征函数: 1 展开系数 ipx /
「量子力学的矩阵形式和表象变换」

§4.5 量子力学的矩阵形式和表象变换态和力学量算符的不同表示形式称为表象。
态有时称为态矢量。
力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。
1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e,见图其标积可写成下面的形式)2,1,(),(==j i e e ijj i δ我们将其称之为基矢的正交归一关系。
平面上的任一矢量A可以写为2211e A e A A +=其中),(11A e A =,),(22A e A=称为投影分量。
而),(21A A A = 称为A在坐标系21X OX 中的表示。
现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e,且同样有)2,1,()','(==j i e e ijj i δ而平面上的任一矢量A此时可以写为 ''''2211e A e A A +=其中投影分量是),'('11A e A =,),'('22A e A=。
而)','(21A A A = 称为A在坐标系'X 'OX 21中的表示。
现在的问题是:这两个表示有何关系?显然,22112211''''e A e A e A e A A+=+=。
用'1e 、'2e分别与上式中的后一等式点积(即作标积),有),'(),'('2121111e e A e e A A+= ),'(),'('2221212e e A e e A A+=表成矩阵的形式为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛212212211121),'(),'(),'(),'(''A A e e e e e e e e A A由于'1e 、1e 及'2e 、2e的夹角为θ,显然有⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ或记为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛2121)(''A A R A A θ 其中⎪⎪⎭⎫⎝⎛-=θθθθθcos sin sin cos )(R 是把A在两坐标中的表示⎪⎪⎭⎫ ⎝⎛''21A A 和⎪⎪⎭⎫⎝⎛21A A 联系起来的变换矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学中几种表象及其之间的关系摘要体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。
态还可以用其他变量的函数作为波函数来描写体系的状态。
微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。
常用的表象有坐标表象、动量表象和能量表象。
而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。
关键词态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。
ψ(x,t)和c(p,t)之间的变换关系是式中 是动量的本征函数,dxx t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ⎰=⎰=ψψψ/2/1)2(1)(ipx p ex -=πψ称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。
由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。
那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。
将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成dx t x dx t x w 2),(),(ψ=dpt p c dp t p w 2),(),(=dx e x x dx x t x t p c t iEp pp p p/''')()()(),(),(-**⎰=ψ⎰=ψψψ/')'(t iEp e p p --=δ)()(),(x u t a t x n nn ∑=ψ上式两边乘 ,再对x 变化整个空间积分 即其物理意义是,体系处在ψ(x,t)所描述的状态时,力学量Q 具有确定值Qn 的几率为可以用一组数代替ψ(x,t)描写该状态。
称{an (t )}是该状态在Q 表象中的波函数。
如果Q 的全部本征值Q λ组成连续谱,对应本征函数是u λ(x )则ψ(x,t)按u λ(x )展开的式子为a λ(t)就是Q 表象中的波函数,坐标表象、动量表象就属于这类表象。
从上面的叙述可以看出,同一状态可以用不同表象中的波函数来描写。
表象的概念与几何学中坐标系的概念类似。
一个特定的Q 表象→一个特定的坐标系 本征函数→基矢波函数是态矢量ψ在各基矢方向“分量”→坐标分量)()()()()()(),(t a t a dx t a x u x u dx x u t x m mn nn n n nm m ==⎰=ψ⎰∑∑**δdxx u t x t a n n )(),()(*ψ⎰=2)(),(t a t Q w n n ={})),(,),(),(()(21⋅⋅⋅⋅⋅⋅=t a t a t a t a n n λλλd t u t a t x )()(),(⎰=ψ写力学量的算符的表示方式随表象不同而改变。
设在x 表象中,算符 作用于波函数ψ(x,t)后得到一新的波函数并设在Q 表象中波函数ψ(x,t)和Φ(x,t )分别以{a1(t),a2(t),…,an(t),…} 和{b1(t),b2(t),…,bn(t),…}表示,un(x)为 本征函数,则可得以 乘等式两边,再对整个空间积分,得{Fmn}就是算符 在Q 表象中的表示。
{Fmn}可排列为一矩阵,Fmn 代表第m 行n 列元素,在 的本征值组成连续谱的情况下,也可看作是矩阵元。
),(),(),(t x xi x F t x ψ∂∂-=Φ∧∑∑∧∂∂-=nn n n n n x u x i x F t a x u t b )(),()()()( ),2,1(,)(),()(),2,1(),()(⋅⋅⋅=∂∂-⎰=⋅⋅⋅==∧*∑m dx x u xi x F x u F m t a F t b n mmn n nmn m 其中⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=nn n n n n mn F F F F F F F F F F 212222111211}{dxx u xi x F x u F )(),()(''λλλλ∂∂-⎰=∧如动量表象中算符 的矩阵元为 坐标表象中,算符 的矩阵元为坐标表象()()()222,,,2i x t V x t x t t m x ψψ⎡⎤∂∂=-+⎢⎥∂∂⎣⎦对),(t x V 不显含时间t ,则),(t x ψ 可以分离变量x 与t()()/,iEt x t ex ψψ-=并设()x n ψ是正交归一的,即()()*nm mn dx x x ψψδ=⎰'')''()'',()'''('dx x x x i x F x x F x x -∂∂--⎰=∧δδ )'()','(x x x i x F -∂∂-=∧δdxx xi x F x F p p p p )(),()(''ψψ∂∂-⎰=∧* 坐标表象的波函数 (),x t ψ给出t 时刻到粒子处于()2,x t dx ψ~x x dx +之间的几率(),x t ψ满足Schrodinger设上述定态方程的解为()(),,1,2,......n n x E n ψ=()()/,n iE t n n nx t C ex ψψ-=∑C n为迭加常数,由初始条件决定。
动量表示 ()/1ipx px eψ=)(x pψ构成正交完备集,体系的波函数),(t x ψ可以用 )(x pψ展开,即()()()*,,pp t dx x t x ϕψψ=⎰则含时Schrodinger 方程的一般解为若()(),0x t x ψϕ==则()()*n nC dx x x ψϕ=⎰动量算符p ix∂=-∂其相应的本征态为P,本征函数为两边同乘()*'p dx x ψ⎰()()()()()**'',,p pp dx x t x dx dp p t x x ψψϕψψ=⎰⎰⎰()()()()()*',,'',p pdp p t dx x dp p t p p p t ϕψψϕδϕ==-=⎰⎰⎰()(),,x t p t ψϕ与有一一对应的关系()(),,x t p t ψϕ若是归一的,则是归一的。
()()()222,,,2i x t V x t x t t m x ψψ⎡⎤∂∂=-+⎢⎥∂∂⎣⎦()()()()()22**2,,,2p p dx x i x t dx x V x t x t t m x ψψψψ⎡⎤∂∂=-+⎢⎥∂∂⎣⎦⎰⎰()()()()2',,'',2pp p i p t p t dp V t p t t m ϕϕϕ∂=+∂⎰Q 表象()()ˆˆˆmmmmmm mmmmmmQ x G x QabaQ bψϕϕϕϕ===∑∑∑∑给出t 时刻粒子的动量在之间的几率,或 是粒子的动量的几率密度。
()2,p t dp ϕ~p p dp +()2,p t ϕ(),p t ϕ满足的方程两边同乘 ()*pdx x ψ⎰111211*********2.........m m n n nm m m Q Q Q a b Q Q Q a b Q Q Q a b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭***ˆ:m m n mm n m mmm nmm nmm mnm mnmdx a Q dx b dx a Q b Q ab ϕϕϕϕϕδ===∑∑⎰⎰⎰∑∑∑表象变换**:mn mn n mn mnndx a dx b b ψψϕδ==∑∑⎰⎰S 矩阵式么正的显然,任意波函数 (),n n n nnnx t a b ϕψψ==∑∑设表象“A ”中()12A a a ψ⎛⎫⎪= ⎪ ⎪⎝⎭其基为nϕ算符()()()*ˆmn mL dx x L x x ϕϕ=⎰记 *mn mnS dx ψϕ=⎰则mn n mnS a b =∑或 ()()B A S ψψ=SL L ABS +=所以有且并不失一般性。
参考文献周世勋 《量子力学》 曾谨言 《量子力学》卷Ⅰ 还有百度百科,文库等网上资源()()()()()()()()()()()()()()()()***********ˆˆ'''''''''n n m mn m n m n mmn A n mnm mn A n mnm mn A n nmm mn A n nm m mndx c L d c ddx L dx x x dx x x Ldxdx x x x x Ldx x x Ldx x x S L Sαβαβαβαβϕϕϕϕϕψϕψϕϕψψψϕϕψ===/=/=/⋅=/∑∑⎰∑⎰∑⎰⎰∑⎰∑⎰⎰∑()BL αβ/力学量在“A ”,“B ”中的关系 在A 中 ()*ˆA mn m n L dx L ϕϕ=⎰在B 中 ()*ˆB Ldx Lαβαβψψ=⎰又有**,,n n nnn n n n nnc c dxd d dx ααββψϕϕψψϕϕψ====∑⎰∑⎰。