第9章齿轮传动讲述
第9章_齿轮传动

直齿
斜齿 人字齿轮
外啮合 内啮合
齿轮齿条 直齿
两轴相交 圆锥齿轮传动 斜齿
空间齿轮传动 (两轴不平形)
两轴交错
蜗杆传动
曲齿
交错轴斜齿轮传动
三、齿轮结构
• 齿轮轴:齿轮与轴做成一体,一般用于直 径很小的齿轮。
• 制造工艺复杂,同时制造,同时报废。
• 实心式齿轮:齿顶圆直径da≤160mm • 齿轮与轴分开制造
当基圆半径趋 于无穷大时,渐开 线成为斜直线。它 就是渐开线齿条的 齿廓。
C3
C2
C1
K
N1 N2
ri
rb2
O2
O
3
8
推论
➢ 同一基圆上渐开线形状相同
➢ 同一基圆所生成的同向渐开
线为法向等距曲线
A2
A1
➢ 两反向渐开线公法线处处相
等(等于两渐开线间的基圆
弧长)
➢ 同一基圆上任意两条渐开 线的公法线处处相等
C1
N1 N2
C3
N1 K1
N2
N
K2
O
4、 基圆以内无渐开线。
弧长等于发生线, 基圆切线是法线, 曲线形状随基圆, 基圆内无渐开线。
5、渐开线上点K的压力角
在不考虑摩擦力、重力和惯性力
的条件下,一对齿廓相互啮合时,齿
轮上接触点K所受到的法线与受力点
速度方向之间所夹的锐角,称为齿轮
齿廓在该点的压力角。
2、承载能力大 即要求齿轮传动能传递较大的动力,且体积
小、重量轻、寿命长。
为了满足基本要求,需要对齿轮齿廓曲线、啮 合原理和齿轮强度等问题进行研究。
第二节 齿廓啮合的基本定律
齿轮传动的基本要求之一就是要保证传动平 稳。所谓平稳,是指啮合过程中瞬时传动比:
齿轮传动讲解.pptx

渐开线齿轮的切削加工
➢ 仿形法 铣床
铣直齿
第28页/共35页
铣斜齿
渐开线齿轮的切削加工
➢ 展成法 插齿加工
滚直齿
第29页/共35页
滚斜齿
根切现象
➢ 展成法加工标准齿 轮时,如果齿数太 少,会出现轮齿根 部的渐开线齿廓被 部分切除的现象, 这种现象称为根切。
➢ 为保证不发生根切, 齿数应不少于17, 即: zmin≥17
第22页/共35页
➢ 2006年会考(8分) ➢ 有一对正常齿制的标准圆柱齿轮,已知
n1=900r/min,n2=300r/min,a=200mm, m=5mm,求齿数z1,z2,齿顶圆直径da1, 分度圆直径d2
第23页/共35页
➢ 2007年会考题(8分) 相啮合的一对标准直齿圆柱齿轮,齿数
第20页/共35页
➢ 2002会考(10分) ➢ 相啮合的一对标准直齿圆柱齿轮,
n1=900r/min,n2=300r/min,a=200mm, m=4mm,求齿数z1、z2各是多少?
第21页/共35页
➢ 2003年会考(10分) ➢ 已知一标准直齿圆柱齿轮,齿距
p=25.12mm,分度圆直径d=360mm,求齿 数z,圆直径da以及齿厚s分别为多少?
第25页/共35页
➢ 2010年会考(10分) ➢ 相啮合的一对标准直齿圆柱齿轮,已知
n1=1200r/min,n2=600r/min,a=150mm, m=5mm ➢ 求:(1)齿数z1,z2;
(2)齿轮1的分度圆直径d1,齿轮2 的齿根圆直径df2.
第26页/共35页
常用的齿轮结构
常见的圆柱齿轮结构如图所示。齿轮轴、实心式、 腹板式、轮辐式
齿轮传动概述

齿轮传动的分类:
1、按两齿轮轴线的相对位置及轮齿的形状 2、按齿轮啮合方式 3、按齿轮传动工作条件 4、按齿轮圆周速度高低 5、按齿轮齿廓曲线的形状
1
2
3
1、按两齿轮轴线的相对位置及轮齿的形状
(1)平行轴齿轮传动 (2)相交轴齿轮传动
(3)交错轴齿轮传动
(1)平行轴齿轮传动
直齿 圆柱齿轮传动
斜齿圆柱齿轮传动
人字齿圆柱齿轮传动
轮齿与其轴线倾斜一个角 度
由两个螺旋角方向相反的 斜齿轮组成
(2)相交轴齿轮传动
直齿圆锥齿轮传动
斜齿圆锥齿轮传动
圆锥齿轮传动 曲齿
(3)交错轴齿轮传动
交错轴斜齿圆柱齿轮传动
蜗轮蜗杆传动
2、按齿轮啮合方式
外齿轮
直 齿 圆 柱 齿 轮 传 动
外啮合齿轮传动
两齿轮的转动方向相反
内齿轮 内啮合齿轮传动
两齿轮的转动方向相同
齿轮齿条啮合
齿 条
3、按齿轮传动工作条件
◆ 闭式齿轮传动
◆ 开式齿轮传动
齿轮传动的分类
按工作条件分类
①闭式齿轮传 动 齿轮传动 封闭在箱体内, 具有良好的润 滑条件,能防 尘。 ②开式齿 轮传动 齿轮外露, 润滑条件 差,不能 防尘。 ③半开式齿轮传 动 齿轮在护罩 内,但不密封, 可以设置油池润 滑,润滑条件较 好;亦有的仅把 齿轮罩上,只起 防尘作用,润滑 条件较差。
4、按齿轮圆周速度高低
◆
极低速齿轮传动
小于0.5m/s 0.5~3 m/s 3~15 m/s 大于15m/s
◆ 低速齿轮传动 ◆ 中速齿轮传动 ◆ 高速齿轮传动
5、按齿轮齿廓曲线的形状
◆ 渐开线齿轮传动
齿轮传动工作原理

齿轮传动工作原理
齿轮传动是一种常见的机械传动形式,它通过两个或多个齿轮的相互啮合来传递动力和扭矩。
在齿轮传动中,一个齿轮作为驱动件,另一个齿轮作为从动件。
当驱动齿轮转动时,从动齿轮会随之转动,并将力量传递给相邻的机械装置。
齿轮传动的工作原理基于齿轮的啮合运动。
当两个齿轮的齿面接触时,它们之间会发生齿面间隙,这个间隙是为了容纳齿轮的啮合过程中所产生的各种误差和运动偏差。
当驱动齿轮转动时,齿轮之间的啮合点会不断变化,同时也会有齿面的相对滑动。
这种滑动产生了齿轮传动的一些特性,例如传动比、转速和扭矩的变化。
在齿轮传动中,齿轮的齿数是非常重要的参数。
两个齿轮之间的齿数比决定了传动比,即从动齿轮转速与驱动齿轮转速的比值。
传动比可以通过齿数比计算得出,例如如果驱动齿轮有20齿,从动齿轮有40齿,则传动比为2:1,表示从动齿轮转速是驱动齿轮转速的两倍。
除了传动比外,齿轮传动还可以改变扭矩的大小。
根据力矩守恒定律,驱动齿轮的扭矩与从动齿轮的扭矩之间存在一个反比关系,并且与它们的齿数比有关。
即驱动齿轮的扭矩乘以传动比等于从动齿轮的扭矩。
这意味着当传动比增大时,从动齿轮的扭矩会减小,反之亦然。
总之,齿轮传动通过齿轮的啮合运动来传递动力和扭矩。
它的工作原理基于齿轮之间的齿面接触和滑动,通过选择不同的齿
数比可以改变传动比和扭矩的大小。
齿轮传动在机械领域中得到广泛应用,它具有结构强度好、传动效率高等优点,因此被广泛应用于各种机械设备中。
2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
第九章齿轮传动改

弧齿(曲线齿)
交错轴斜齿轮传动 交错轴 蜗杆传动
准双曲面齿轮传动
1)平行轴间齿轮传动
2) 空间非平行轴传动,如图所示。
2、按照齿轮传动工作情况分:
1)开式
2)闭式
3)半开式
3、按照齿面硬度(350HBS)分: 1)软齿面齿轮
2)硬齿面齿轮
4、按照齿轮圆周速度分:
1)低速 (v<3m/s)
2)中速
分度圆、模数
z 设 d r为任意圆的直径, 为齿轮的齿数,根据齿距的定义可得 d p 或 pr r d r r z mr z z
分度圆 上式中含有无理数“ ”,为了便于设计、制造及互换使用,我 pr 们在齿轮上取一圆,使该圆上的 值等于一些比较简单的数值, 并使该圆上齿廓的压力角等于规定的某一数值,这个圆称为分度 圆。分度圆上的压力角以 表示,我国采用20°为标准值,其他 各国常用的压力角还有15°、14.5°等等。 模数 分度圆上的齿距对 的比值以m 来表示,称为模数。
啮合弧 齿距 p
DC
标准圆柱齿轮的重合度的近似计算
标准圆柱齿轮的重合度可按下式近似计算:
1 1 1.88 3.2 cos z 1 z2
对于直齿圆柱齿轮, 0 。若大、小齿轮的齿数 z 2 z1 17 ,代 入上式得 1.504 。可见,一般情况下 总大于1。齿轮精度高。 允许的 值可小些;反之,精度愈低, 值就要求大些。
*
d f 2 ( z 2 2ha 2c * )m (70 2 1 2 0.25) 2 135mm
*
h (2ha c* )m (2 1 0.25) 2 4.5mm d d2 m 2 a 1 ( z1 z 2 ) (20 70) 90mm 2 2 2
机械设计基础第9章齿轮传动

9.2 渐开线和渐开线齿廓
9.2.1 渐开线的形成及性质
当一直线BK 沿半径为rb的圆作纯 滚动时,该直线上任一点K 的轨迹
就是该圆的渐开线。
渐开线的性质
展角
1)发生线沿基圆滚过的长度,等 于基圆上被滚过的圆弧长度,即:
AB = BK
2)渐开线上任意点的法线必切于基圆。
3)渐开线距基圆越远的部分,曲率半 径愈大,反之亦然。
标准值,单位为mm.
◆ d=mz,p= m
◆ 齿数相同的齿轮,模数越大,尺寸越大。
分度圆压力角
任意圆压力角 基圆a上i 的压ar力cc角os等rrbi于0
分度圆压力角a (齿形角) a arccos rb
r
rb r cosa
分度圆大小相同的齿轮,其齿廓渐开线的形状随压力角
渐开线齿轮传力性能好。
(3)渐开线齿轮具有可分性
中心距变动不影响传动比
O1N1P ∽ O2N2P
i12
1 2
O2 P O1P
rb2 rb1
渐开线齿轮的传动比取 决于两轮基圆半径的比
传动的可分性 指渐开线齿轮传动中心距变化
不影响其传动比的特性
(4)四线合一 啮合线、啮合点的公法线、两齿轮基圆内公切线、 啮合点的受力方向线
(3)渐开线的极坐标参数方程
rk= rb/cos ak qk = inv ak= tg ak - ak
(4)渐开线的直角坐标方程
x rb sin u rbu cos u y rb cos u rbu sin u
9.3 渐开线直齿圆柱齿轮
9.3.1 渐开线齿轮各部分名称及符号
第9章 齿轮传动
9.1、齿轮传动的特点与基本类型
齿轮传动的原理

齿轮传动的原理
齿轮传动是一种常见的机械传动方式,通过齿轮之间的啮合来传递力量和转速。
其基本原理如下:
1. 齿轮的作用:齿轮是一种带有齿条的圆盘状零件,其主要作用是传递运动和力量。
齿轮分为驱动齿轮和从动齿轮两种类型。
2. 啮合传动:驱动齿轮和从动齿轮之间的齿条通过啮合,使得两个齿轮同步运动。
齿轮啮合是通过齿轮的齿条与齿条之间的相互接触来实现的。
3. 转速传递:由于齿轮上的齿条数量不同,驱动齿轮和从动齿轮的转速也不同。
转速传递的基本原理是,两个齿轮之间的转矩和功率保持不变,但转速之间存在一定的比例关系。
4. 齿轮传动的比例关系:齿轮传动的转速比由两个齿轮的齿条数量决定。
当驱动齿轮和从动齿轮的齿条数量分别为N1和
N2时,转速比为N2/N1。
转速比决定了从动齿轮的转速相对
于驱动齿轮的转速是加速还是减速。
5. 动力传递:驱动齿轮通过与从动齿轮的啮合,将力量传递给从动齿轮。
当驱动齿轮受到外力作用时,齿轮之间的啮合迫使从动齿轮跟随转动,从而实现力量传递。
总之,齿轮传动通过齿轮间的啮合来传递力量和转速,利用齿轮的不同齿条数量和大小实现转速比的变化。
齿轮传动以其稳定可靠、传动效率高等特点,在机械传动领域得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1 齿轮传动的主要参数
• 1)模数----d=mz,人为规定的整数,标准 化表9.1
• 2)中心距----推荐用表9.2 • 3)基本齿廓----表9.3
4)传动比i、齿数比u
i
n1 n2
d2 d1
z 2 (从动轮) z(1 主动轮)
减速传动:i>1 增速传动:i<1
3)↓表面粗糙度,↑加工精度
4)↑润滑油粘度
三、齿面胶合——严重的粘着磨损 现象:齿面沿滑动方向粘焊、撕脱,形成沟痕。 原因:高速重载——v↑,Δt ↑,油η↓,油膜破坏,表
面金属直接接触,
融焊→相对运动→撕裂、沟痕。 低速重载——P↑、v ↓,不易形成油膜
→冷胶合。
后果:引起强烈的磨损和发热,传动不平稳, 导致齿轮报废。
3、短期过载传动
过载折断 齿面塑变
静强度计算
9.3 齿轮材料及其热处理
9.3.1 齿轮材料应具有的特征
1)齿面具有足够的硬度,以获得较高的抗点蚀、抗 磨粒磨损、抗胶合和抗塑性流动的能力;
2)在变载荷和冲击载荷下有足够的弯曲疲劳强度; 3)具有良好的加工和热处理工艺性; 4)价格较低。
表面硬、芯部韧、较好的加工和热处理性能
2)正变位;
↑抗弯强度
3)提高齿面硬度(HB↑)→[σF] ↑;
4)↑齿根过渡圆角半径;
↓应力集中
5)↓表面粗糙度,↓加工损伤;
6)↑轮齿精度; 改善载荷分布
7)↑支承刚度。
二、齿面接触疲劳磨损(齿面点蚀) 常出现在润滑良好的闭式软齿面传动中。 现象:节线靠近齿根部位出现麻点状小坑。 原因:σH>[σH] 脉动循环应力
改善措施:
1)采用抗胶合性能好的齿轮材料对。 2)采用极压润滑油。 3)↓表面粗糙度,↑HB。 4)材料相同时,使大、小齿轮保持一定硬度差。 5)↓m→↓齿面h→↓齿面vs(必须满足σF)。 6)角度变位齿轮,↓啮合开始和终了时的vs。 7)修缘齿,修去一部分齿顶,使vs大的齿顶不起作
用。
四、齿面磨粒磨损 常发生于开式齿轮传动。 现象:金属表面材料不断减小 原因:相对滑动+硬颗粒(灰尘、
3)不适于中心距大的场合。
9.1.2 齿轮传动的主要类型 1、按两轴线位置分
2、按工作条件分(失效形式不同) 开式传动:低速传动,润滑条件差,易磨损; 半开式传动:装有简单的防护罩,但仍不能严 密防止杂物侵入; 闭式传动:齿轮等全封闭于箱体内,润滑良好, 使用广泛。
3、按齿面硬度分(失效形式不同)
② 齿根应力集中(形状突变、刀痕等),加速裂 纹扩展→折断
• 过载折断 受冲击载荷或短时过载作用,突然折断,尤
其见于脆性材料(淬火钢、铸钢)齿轮。
后果:传动失效
直齿轮
齿宽b较小时,载荷易均布 ——整体折断
齿宽b较大时,易偏载 斜齿轮:接触线倾斜
——载荷集中在齿一端
——局部折断
改善措施:
1)d一定时,z↓,m↑; 齿根厚度↑
参照表9.4选择,一般机械常用:7、8级
9.1.5 圆柱齿轮传动的几何关系 表9.3
9.2 失效形式 典型机械零件设计思路:
分析失效现象 →失效机理(原因、后果、措施) →建立简化力学模型 →强度计算→主要参数尺寸 →结构设计。
9.1.1 齿轮常见的失效形式
齿轮的失效发生在轮齿,其它部分很少失效。
轮齿折断 失效形式
齿面损伤
齿面接触疲劳磨损(齿面点蚀) 齿面胶合
齿面磨粒磨损
齿面塑性流动
一、轮齿折断 常发生于闭式硬齿面或开式传动中。 现象:①局部折断 ②整体折断
位置:均始于齿根受拉应力一侧。 原因: 疲劳折断
① 轮齿受多次重复弯曲应力作用,齿根受拉一 侧产生疲劳裂纹。
齿根弯 曲应力 最大 σF>[σF]
金属屑末等) 润滑不良+表面粗糙。
后果:正确齿形被破坏、 传动不平稳, 齿厚减薄、抗弯能力↓→折断
改善措施: 闭式:1)↑HB,选用耐磨材料;
2)↓表面粗糙度; 3)↓滑动系数; 4)润滑油的清洁; 开式:5)加防尘罩。
五、齿面塑性流动 该失效主要出现在低速重载、频繁启动和过载场合。 齿面较软时,重载下,Ff↑——材料塑性流动(流动方向沿Ff) 主动轮1:齿面相对滑动速度方向vs指向节线,所以Ff背离节 线,塑变后在齿面节线处产生凹槽。
第九章 齿轮传动
9.1 齿轮传动的特点
9.1.1优缺点: 齿轮传动是机械传动中应用最广泛的一种传动形式。
主要优点: 1)工作可靠,寿命长;; 2)瞬时i 为常数 3)效率高(0.98~0.99) 4)结构紧凑,外廓尺寸小; 5)功率和速度适用范围广
缺点: 1)制造费用大,需专用机床和设备; 2)精度低时,振动、噪音大;
传动不平稳 ,接触面↓,承载能力↓
软齿面齿轮:收敛性点蚀,相当于跑合;
跑合后,若σH仍大于[σH], 则成为扩展性点蚀。 硬齿面齿轮:点蚀一旦形成就扩展,直至齿面完全破坏。 ——扩展性点蚀 开式传动:无点蚀(∵v磨损>v点蚀)
改善措施: 1)HB↑——[σH] ↑
↑接触强度
2)↑ρ(综合曲率半径)(↑d1、↑xΣ)
u z 大齿轮 1 z 小齿轮
减速传动:u=i 增速传动:u=1/i
5)变位系数
径向变位齿轮: 加工时刀具从标准位置移动一径向距离xm。
刀具移远
齿
正变位
根
变
Hale Waihona Puke 厚刀具移近 齿负变位
根
变
薄
9.1.4 精度等级选择
GB规定:12个等级 1(高)——12(低) 查《公差》
每个等级分为 三个组
Ⅰ组:运动准确性 Ⅱ组:传动的平稳性 Ⅲ组:载荷分布均匀性
9.2.2计算准则
失效形式→相应的计算准则 1、闭式齿轮传动
主要失效为:点蚀、轮齿折断、胶合 一般只进行接触疲劳强度和弯曲疲劳强度的计算
软齿面:主要是点蚀、其次是折断, 按σH设计,按σF校核
硬齿面:与软齿面相反
高速重载主要是点蚀,还要进行抗胶合计算
2、开式齿轮传动
主要失效为:主要磨粒磨损、其次轮齿折断 按σF设计,增大m考虑磨损
1)齿面受多次交变应力作用,产生接触疲劳裂纹; 润滑油进入裂缝,形成封闭高压油腔,楔挤作用使 裂纹扩展。
(油粘度越小,裂纹扩展越快)
点蚀机理
点蚀实例
2)节线处常为单齿啮合,接触应力大; 节线处为纯滚动,靠近节线附近滑动速度小, 油膜不易形成,摩擦力大,易产生裂纹。
后果:齿廓表面破坏,振动↑,噪音↑, 传动失效