北师大版七年级数学上丰富的图形世界培优讲义
七年级数学上册第1章《丰富的图形世界》优质教案(北师大版)

第一章丰富的图形世界复习课一、学情与教材分析1.学情分析本章内容从学生生活中熟悉的图形展开认识研究,能够充分调动学生的兴趣。
通过学习学生已经了解了柱体、锥体、球体等常见几何体的特征,初步形成了图形的空间观念,在此基础上所掌握的知识进行系统的归纳、复习、整理和概括,对学生已有几何知识的进一步深化,对学生的要求较高。
2.教材分析本章内容从生活中常见的立体图形入手,使学生在丰富的现实情境中,在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截、从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念;最后,由立体图形转向平面图形,在丰富的活动中使学生认识一些平面图形的简单性质。
整章内容是对学生已有几何知识的进一步深化,强调学生的动手操作和主动参与,为以后几何知识的学习打下基础,且能培养并发展学生的空间思维及想象能力,提高学生解决实际问题的能力。
二、教学目标:知识技能:1.会辨认基本几何体(直棱柱、圆柱、圆锥、球等);2.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;3.能想象基本几何体的截面形状;4.会画基本几何体的形状图,会判断简单物体的形状图,能根据形状图描述几何体或实物原型;5. 掌握几何体与平面图形的相互转换,能进行几何体与其三种形状图、展开图之间的转化。
过程与方法:1.初步建立空间观念,发展几何直觉,进一步丰富对空间图形的认识和感受;2.获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。
情感态度与价值观:1.体验数学知识之间的内在联系,初步形成对数学整体性的认识。
2.进一步丰富数学学习的成功体验,激发学生对空间与图形学习的好奇心,增强观察能力,形成积极主动参与活动并与他人合作交流的意识。
三、教学重难点:重点:点、线、面等最基本的图形与基本几何体的相互转换。
难点:在面与体的变化中如何抓住特征。
四、教法建议1、由于本章内容与学生生活结合紧密,因此,在本章课程的讲授中,应以生活中的具体模型为教具,让学生感受到数学与生活的相关性以及数学的价值;2、本章教学应当以学生活动为主。
七年级数学上丰富的图形世界培优讲义最新版本

丰富的图形世界一对一讲义## ### 七年级### 性别## 教学课题丰富的图形世界2教学目标知识点:1、截一个几何体2、几何体的三视图考点:1、会画几何体的三视图。
2、会判断常见几何体的截图。
3、由三视图判断几何体方法:讲解和练习重点难点重点:常见几何体的截图、三视图。
难点:常见几何体的截图、三视图。
课前检查作业完成情况:优□良□中□差□建议__________________________________________教学内容丰富的图形世界知识点:截一个正方体:截面:用一个平面去截一个几何体(包括圆柱、球、棱柱、棱锥、长方体、正方体等等〕,截出的平面图形叫截面。
1、用一个平面截正方体,可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形截面为四边形的情况:〔2〕2、用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。
3、用一个截面去截圆锥,截面可能是等腰三角形、圆、抛物线形或椭圆。
4、三棱锥的截面可以是三角形、长方形、四边形。
其中四边形可以是特殊的矩形、梯形。
5、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续介绍这两种几何体的截面.〔1〕圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:〔2〕棱锥由于棱锥同时具有棱柱的侧面是平面的特点,又具备了圆锥的锥点的特征.所以截面形状必须兼顾这两方面.截面可能出现的形状是三角形、多边形、梯形.※用一个平面去截一个正方体,假设这个平面与这个正方体的几个面相交,那么截面就是几边形。
【典型例题】例1、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。
例2、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是〔〕A.①②④B.①②③C.②③④D.①③④【变式1】如图,截去正方体一角变成一个多面体,这个多面体有_________个面,有_________条棱。
北师大版七年级上册第1章丰富的图形世界复习 课件

3、如图中是正方体的展开图的有( B )个
A、2个 B、3个 C、4个 D、5个
1
2
3
4
5
6
4.你知道正方体下列各展开图中任何一个面 的对面是哪一个吗?
A
BC EF D
N MH K W
O
12 3 45 6
A和D,B和E,C和F H和W,M和K,N和O
复习检测4
1.画出图中几何体 的从三个方向看得 到的图
从正面看
从左面看
从上面看
2.某一几何体的从三面看的图是完全一样的 三个图形,则这个几何体的可能是_____。 3、如图所示是由几个小立方体所组成几何 体的从上面看的图,小正方形中的数字表示 在该位置的小立方体的个数,请画出这个几 何体从正面看和从左面看的图。
复习检测3 1.根据图示,选择截面的形状.
A
B
2、用一个平面去截某一几何体,若
截面是圆,则原来的几何体可
是
(填三个) 。
3、用一个平面去截某一长方体,多 边形截面边数最少是 三角 形 ,最多 是 _六__ 边形。
复习指导4
回忆从三个方向看物体的形状. 思考以下问题:
1.怎样根据从上面看得到的图画从正面 看和从左面看的图? 3.如何根据从三个方向看得到的图判断 组成几何体的小正方体的个数?
数,棱数和面数
名称
顶点(个) 棱(条) 面(个)
三棱柱
6
9
5
四棱柱
8
12
6
五棱柱
10
15
7
六棱柱
12
18
8
……
……Βιβλιοθήκη …………n棱柱
北师大版七年级上册数学第一章丰富的图形世界讲义 第1讲 几何图形、棱柱及有关概念、截一个正

【本节知识框架】知识点一:几何图形知识点二:棱柱及其有关概念知识点三:截一个正方体【知识点讲解】知识点一:几何图形1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)例题1 填空。
1、圆锥是由________个面围成,其中________个平面,________个曲面。
2、面与面相交成______,线与线相交得到_______,点动成______,线动成_________,面动成_______ 。
【变式练习】图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整.例题 2 已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
【变式练习】将左边的正方体展开能得到的图形是()能力提升:探索规律:用棋子按下面的方式摆出正方形。
①按图示规律填写下表:图形编号(1)(2)(3)(4)(5)(6)棋子个数②按照这种方式摆下去,摆第n个正方形需要多少个棋子?③按照这种方式摆下去,第第20个正方形需要多少个棋子?知识点二:棱柱及其有关概念1、棱柱及其有关概念:3—3型2—2—2型AC棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
(完整版)北师大数学七年级上册第一章丰富的图形世界(提高)

丰富的图形世界(提高)知识讲解【学习目标】1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体;2.认识点、线、面、体的基本含义,了解点、线、面、体之间的关系;3.能辨认和画出从不同方向观察立方体及其简单组合体得到的形状图;4.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.【要点梳理】要点一、立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形. 要点诠释:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱. 通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.要点二、展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点三、截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.要点四、从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.(如下图)【典型例题】类型一、立体图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体. 【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、点、线、面、体2. 18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x+y 的值.【思路点拨】根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(F )、棱数(E )之间存在的关系式,再用这个关系式解答后面的问题.【答案与解析】解:(1)6, 6, V+F-E =2;(2)20;(3)这个多面体的面数为x+y ,棱数为条,243362⨯=根据V+F-E =2可得24+(x+y)-36=2,∴ x+y =14.【总结升华】欧拉公式:V (顶点数)+F (面数)-E (棱数)=2【变式】(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是( )be i ng ar e五棱柱B. 六棱柱C. 七棱柱D. 八棱柱【答案】B解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A 、五棱柱共15条棱,故A 误;B 、六棱柱共18条棱,故B 正确;C 、七棱柱共21条棱,故C 错误;D 、八棱柱共24条棱,故D 错误;3.将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( )A .从正面看相同B .从左面看相同C .从上面看相同D .三个方向都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体从不同方向看所得到的图形做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状. 举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的立体图形是( ) A .B .C .D .【答案】Bngsinthe类型三、展开与折叠4.(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A. 全B. 明C. 城D. 国【答案】C【解析】由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.举一反三:【变式】说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?【答案】 (1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.类型四、截一个几何体5.用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【思路点拨】当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【答案与解析】(1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示.【总结升华】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.类型五、从三个方向看物体的形状6.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?主视图俯视图【答案】几何体的形状不唯一,最少需要小方块的个数: ,3222110++++=最多需要小方块的个数: .3323116⨯+⨯+=丰富的图形世界(提高)巩固练习【巩固练习】(资料联系QQ :1061139820)一、选择题1.(2015•新乐市一模)下面四个图形是多面体的展开图,其中不是棱柱的展开图的是( )A.B.C. D.2.用一个平面去截一个圆柱体,截面的形状不可能是( ).A .长方形B .圆C .椭圆D .等腰梯形 3.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是如图中的( ).4.如图是由几个相同的小正方体搭成的几何体从正面、左面、上面观察所得到的图形,则搭成这个几何体的小正方体的个数是( ).A .5 B .6 C .7 D .85.(2016•福建龙岩市)如图所示正三棱柱的主视图是( )eAl l th i n ggA .B .C .D .6.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( ).A .B .C .D .二、填空题7.(2016•宁夏)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是__________个.8.一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A ,B ,C 三种状态所显示的数字,可推出“?”处的数字是________.9.(2015•青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .10.如图所示,是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成.11.用一个平面去截三棱柱,截面的边数最多是_______,用一个平面去截四棱柱,截面的边数最多是_______,用一个平面去截五棱柱,截面的边数最多是_______,12. (1)一张纸对折后,纸上会留下一道折痕,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);(2)黑板擦在黑板上擦出一片干净的区域,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);(3)数学课本绕它的一边旋转,形成了一个圆柱体,用数学知识可解释为________,与之原13.如图所示,一长方体的长、宽、高分别是10 cm 、8 cm 、6 cm ,有一只蚂蚁从A 点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到A 点时,最多爬行多少厘米?并把蚂蚁所爬行的路线用字母按顺序表示出来.14.(1)一个梯形ABCD ,如图所示,画出绕AB 所在直线旋转一周所形成的几何体从正面看,从上面看,从左面看所得到的图形.(2)梯形绕BC 所在直线旋转一周形成什么图形?(3)梯形绕DC 所在直线旋转一周形成什么图形? 15.(2014秋•扶沟县期末)将图中的几何体进行分类,并说明理由.【答案与解析】一、选择题1.【答案】D【解析】A 、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B 、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C 、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.D 、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确.2.【答案】D 3.【答案】D【解析】选项A 中圆柱是以长方形绕其一边所在直线旋转得到的,选项B 中圆锥是以直角三角形绕其直角边所在直线旋转得到的,选项C 中几何体是以直角梯形绕其下底所在的直线旋转得到的,选项D 中几何体是两个圆锥倒放在一起的,以直角三角形绕其斜边所在直线旋转得到的,故选D .4.【答案】B【解析】如图,其中正方形中的数字表示该位置上的小正方体的个数. 5.【答案】B【解析】解:正三棱柱的主视图中前面正对的一条棱是可以看到的,要用实线标出,所以其主视图平行排列的两个矩形.故选B .6.【答案】C【解析】由原正方体知,带图案的三个面相交于一点,而通过折叠后A 、B 都不符合,且D 折叠后图案的位置正好相反,所以能得到的图形是C .二、填空题7.【答案】5【解析】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.8.【答案】6【解析】与l 相邻的四个面分别为4、5、2、3,则1的对面为6,再由B 可知3的对面为4,由A 可知5的对面为2,可推出“?”处的数字为6.9.【答案】19,48.【解析】∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48.10.【答案】4 【解析】如右图,其中长方形中的数字表示该位置上的小长方体的个数.11.【答案】5、6、7【解析】截面能经过几个面,得到的形状就是几边形.12.【答案】(1)面与面相交得到线,相邻的墙面相交所成的线;长方体的六个面相交所成的线;圆柱的侧面与底面相交所成的曲线等.(2)线动成面,汽车的雨刷在挡风玻璃上刷出一片干净的区域;刷漆时刷子刷出的漆面.(3)面动成体,半圆绕它的直径旋转形成一个球面.三、解答题13.【解析】解:10×4+8×2+6×2=68(cm),所以最多爬行68cm.路线:A→B→C→D→H→G→F→E→A.14.【解析】如图所示.解:(1)(2)梯形ABCD绕BC所在直线旋转一周形成是的圆台.(3)梯形ABCD绕DC所在直线旋转一周形成的是圆柱和一段圆柱挖去同底的一个圆锥的复合体.15.【解析】解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.。
七年级数学上册第一章丰富的图形世界1生活中的立体图形课件(新版)北师大版

例2 根据几何体的特征,填写它们的名称.
(1)上下两个底面是大小相同的圆,侧面是一个曲的面: (2)6个面都是长方形: (3)6个面都是正方形: ; ; . ;
(4)上下底面是形状、大小都相同的七边形,侧面是长方形: 答案 (1)圆柱 (2)长方体 (3)正方体 (4)七棱柱
知识点三 图形的构成要素
(2)观察上表,你能发现一个平面图形的顶点数、区域数、边数之间的 关系吗?如果能,写出你所发现的关系. 解析 (1)填表如下:
图形 ① 顶点数 4 区域数 3 边数 6
②
③ ④
8
6 10
5
4 6
12
9 15
(2)能.边数=顶点数+区域数-1.
答案 8;18;12
解析 六棱柱有6个侧面,2个底面,共8个面.上、下底面与侧面相交,共 有12条棱,侧面两两相交,共有6条侧棱,故六棱柱有18条棱,12个顶点.
知识点三 图形的构成要素 7.(2016甘肃兰州永登期末)汽车的雨刷把玻璃上的雨水刷干净属于 的实际应用. ( A.点动成线 )
B.线动成面
常见的几何体如图1-1-1所示.
图1-1-1
2.常见的几何体的分类
立体图形除了按照柱体、锥体、球体、台体分类外,也可以按照其他标 准分类: (1)按照围成几何体的面有无曲面分类:①有曲面:圆柱、圆锥、球等;② 无曲面:棱柱、棱锥等.
(2)按照有无顶点分类:①有顶点:圆锥、正方体、长方体等;②无顶点:圆 柱、球等. 例1 指出下列物体的形状类似于哪一种几何体: 足球、篮球、砖、易拉罐、铅锤. 解析 足球、篮球的形状类似于球;砖的形状类似于长方体;易拉罐的 形状类似于圆柱;铅锤的形状类似于圆锥.
答:当绕长、宽所在的直线旋转时,得到的圆柱的体积分别为36π cm3和4
新北师大版七年级上册 第一章丰富的图形世界复习 讲义

例 4、画出下列立方体的三视图,
3
例 5、下图是用小立方块搭成的几何体的俯视图,小正方形的数字表亦该位置的小立方块的个数,请画出 它的主视图和左视图。
例 6、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示。这样的几何体只有一种吗?它最少 需要多少个小立方块?最多需要多少个小立方块?
例 7.如图,已知一个由小正方体组成的几何体的左视图和俯视图 (1)该几何体最少需要几块小正方体?(2)最多可以有几块小正方体?
2
6、多边形及其相关知识
多边形:由不在
直线上的线段
相连组成的封闭图形.
扇 形:由
和经过这条弧的端点的
组成的图形。
(1)从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分成
个三角形,可以得到
条对角线,这个 n 边形共有
条对角线。
(2)从一个多边形内部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成
号码是
.
我喜 欢数 学课 6 题图
4
7.平面内有 5 个点,每两个点都用直线连接起来,则最多可得______条直线,最少可得______条直线。
平面内的三条直线可把平面分割成最少______部分,最多_____部分
8. 如 下 图 是 由 四 个 相 同 的 小 立 方 体 组 成 的 立 体 图 形 的 主 视 图 和 左 视 图 , 那 么 原 立 体 图 形 可 能
第一章
【知识要点】 1、常见的几何体分类及其特点:
丰富的图形世界
长方体: 有 8 个顶点,12 条棱,6 个面,且各面都是长方形(正方形是特殊的长方形)正方体是特殊的 长方体。
棱 柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。 圆 柱:有上下两个底面和一个侧面,两个底面是半径相等的圆。 圆 锥:有一个底面和一个顶点,且侧面展开图是扇形。
北师大七年级(上)第一章 丰富的图形世界讲义学生版

第一章丰富的图形世界考点1:点、线、面、体1. 如图,直角三角形绕直线l旋转一周,得到的立体图形是()A、B、C、D、2. 下列几何图形中,属于圆锥的是()A、B、C、D、3. 下列图形中,属于立体图形的是()A、B、C、D、4. 一些立体图形可由一些平面图形绕一条直线旋转而得到,这样的几何体叫旋转体,试思考:(1)以长方形的一边为轴把长方形绕轴旋转﹣周得到的立体图形是什么?你能画出示意图吗?(2)把直角三角形以直角边为旋转轴旋转一周得到的几何体又是什么?以斜边呢?你能画出示意图吗?(3)知果把图绕虚线旋转一周所得的图形是怎样的呢?你能画出示意图吗?5. 现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是.6. 一个棱锥的棱数是24,则这个棱锥的面数是.7. 如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.8. (2014秋•莲湖区校级期末)一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=43πR3,V圆锥=13πr2h).(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是.(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?考点2:几何体的展开图1. 一个几何体的展开图如图所示,则该几何体的顶点有()A、10个B、8个C、6个D、4个2. 如图,若要把一个正方体纸盒沿棱剪开,平铺在桌面上,则至少需要剪开的棱的条数是( ).A、5条B、6条C、7条D、8条3. (2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、4. 明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A、B、C、D、5. (2016•微山县校级一模)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A、12B、13C、14D、166. 小林同学在一个正方形盒子的每个面都写有一个字,分别是:每、天、进、步、一、点,其平面展开图如图所示,那么在该正方体盒子中,和“每”相对的面所写的字是()A、进B、步C、一D、点7. “仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是.8. 如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是 cm39. 如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是10. 如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y= .11. 如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)、如果1点在上面,3点在左面,几点在前面?(2)、如果5点在下面,几点在上面?12. 小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.13. 如图所示是长方体的表面展开图,折叠成一个长方体后.(1)和数字1所在的面相对的面是哪个数字所在的面?(2)若FG=3cm,LK=8cm,EJ=18cm,则该长方体的表面积和体积分别是多少?考点3:截取一个几何体1. 用一个平面截圆柱,则截面形状不可能是()A、圆B、正方形C、长方形D、梯形2. 用平面去截下列几何体,截面的形状不可能是圆的几何体是()A、球B、正方体C、圆锥D、圆柱3. 一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是()A、圆锥B、长方体C、八棱柱D、正方体4. 如下左图,用水平的平面截几何体,所得几何体的截面图形标号是()A、B、C、D、5. 如图是将正方体切去一个角后的几何体,则该几何体有()A、7个面,14条棱B、6个面,12条棱C、7个面,12条棱D、8个面,13条棱6. 如图所示几何体的截面是()A、四边形B、五边形C、六边形D、五棱柱7. 用平面去截如图所示的三棱柱,截面形状不可能是()A、三角形B、四边形C、五边形D、六边形8. (2015秋•深圳校级期末)用一个平面去截一个正方体,截面的形状不可能是()A、梯形B、五边形C、六边形D、七边形9. 如图中几何体的截面分别是.10. 用一个平面去截一个几何体,若截面是长方形,则该几何体可能是(写三个).11. 用一个平面去截长方体、三棱柱、圆柱和圆锥,其中截面不能截成三角形的是,不能截出圆形的几何体是12. 如图1至图3是将正方体截去一部分后得到的多面体.根据要求填写表格:13. 用一个平面去截几何体,截面是三角形,则原几何体可能是(填出一种几何体即可).14. 如果用一个平面去截一个几何体,如果截面是圆,那么原来的几何体可能是什么?15. 如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)考点4:几何体的三视图1. 如右图所示,一个几何体恰好能通过两个小孔,这个几何体可能是( )A、圆锥B、三棱锥C、四棱柱D、三棱柱2. 如图是一个立体图形的三视图,则这个立体图形是()A、圆锥B、球C、圆柱D、三棱锥3. 若一个几何体的三种视图如图所示,则该几何体是()A、正方体B、圆柱体C、圆锥体D、球体4. 如图,下列选项中不是正六棱柱三视图的是()A、B、C、D、5. 图所示,该几何体的主视图是()A、B、C、D、6. (2016•锦江区模拟)如图所示某几何体的三视图,则这个几何体是()A、三棱锥B、圆柱C、球D、圆锥7. (2016•合肥一模)某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A、B、C、D、8. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A、B、C、D、9. 已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.10. (2013秋•昆山市期末)如图①所示的组合几何体,它的下面是一个长方体,上面是一个圆柱.(1)图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”);(2)根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留π)11. 如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).12. 任意放置以下几何体:正方体、圆柱、圆锥,则三视图都完全相同的几何体是.13. (2015•江西校级模拟)已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为.14. (2015秋•埇桥区期末)苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是.15. (2016春•潮南区月考)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一辅导
考点一:几何图形的分类:
1、你能否将下列几何体进行分类?并请说出
分类的依据。
2、下列图形中是柱体的是_____(填代码即
可);______是圆柱,_______是棱柱.
(a)(b)(c)(d)
考点二:运动的观点看几何图形的形成(点、线、面、体)
1.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()
A.点动成线
B.线动成面
C.面动成体
D.以上答案都不对
2、雨点从高空落下形成的轨迹说明了;车轨快速旋转时看起来象个圆面,这说明了;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.
3、将下面的直角梯形绕直线l旋转一周,可以得到右边立体图形的是()
4.如图绕虚线旋转得到的几何体是.
5、如图所示的图形绕虚线旋转一周,所形成的几何体是()
2、如图,三角形ABC的底边BC长3厘米,BC边上的高是2
厘米,将三角形以每秒3厘米的速度沿高的方向向上移动2
秒,这时,三角形扫过的面积是_______平方厘米。
(A)21 (B)19 (C)17 (D)15
有__________个.
8、如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、B 、C 分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是
9、这
时一个正方体的展开图,用它合
成原来的正方体时,边P 与
哪条边重合?
10.如图,这是一个正方开体的展开图,则“喜”代表的面所相对的面....
的号码是 .
11、.如图所示,用
1、2、3、4标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共要用5块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法。
12、请问右图是一个什么几何体的展开图?
13.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是()
Q P
L K J I H
G F E
D C B A 我 喜
欢 学 课
A B C
14、(1)把一个正三角形剖分为3个完全相同的图形,至少给出3个不同的分割方法;
(2)把一个正方形分割为4个完全相同的图形,尽量多地给出你的设计;
15、把图示的木板切成三块,再拼成一个正方形,在原图上画出示意图.
16、棱长为a的正方体,摆放成如图所示的形状.
(1)如果这一物体摆放三层,试求该物体的表面积;
(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.
17、用橡皮泥做一个棱长为4cm的正方体.
(1)如图①,在顶面中心位置处从上到下打一个边长为1cm的正方形通孔,打孔后的橡皮泥块的表面积为cm;
(2)如果在第(1)题打孔后,再在正面中心位置处(按图②中
的虚线)从前到后打一个边长为lcm的正方形通孔,那么打
孔后的橡皮泥的表面积为cm2;
(3)如果把第(2)题中从前到后所打的正方形通孔扩成一个长xcm、宽lcm的长方形通孔,能不能使所得橡皮泥块的表面积为130cm2?如果能,请求出x;如果不能,请说明理由.
18.图①是一个水平放置的小正方体木块,图②、③是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形时,小正方体木块总数应是().
A.25D.66C.91D.120
19.把两个长3cm、宽2cm、高lcm的小长方体先粘合成一个大长方体,再把它切成两个大小相同的小长方体,最后一个小长方体的表面积最多可比起初一个小长方体的表面积大cm2.
20、如图,这是一个由三个大小不同的正方体所组成的装饰物,现在要对它的表面涂油漆.假设三个正方体的边长分别为a,b,c,其中a<b<c.那么该装饰物涂漆面积最少是_______
(A)5(a2+b2+c2)(B)5a2+4b2+5c2
(C)5a2+4b2+4c2.(D)4a2+4b2+5c2
21.如图是正方体分割后的一部分,它的另一部分是下列图形中的().
考点四:截一个几何体
1、用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码。
③
④
⑤
(2)观察上表,请你归纳上述各木块的顶点数,棱数,面数之间的关系,•这种数量关系是:__________.
(3)下图是用虚线画出的正方体木块,请你想象一种与(1)题图不同的切法,•把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为______,棱数为______,面数为______,这与你在(2)中所归纳的关系是否相符?
考点五:几何体的三视图
1、下列几何体,主视图和俯视图都为矩形的是()
2、用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()
A.B.C.D.
3.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()
A.B.C.D.
4、如图是由大小一样的小正方块摆成的立体图形的三视图,它共用()个小正方块摆成。
A.5B.8C.7D.6
5.如图所示的立体图形,画出它的主视图、左视图和俯视图.
6.如图是由几个小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图。
老师课后赏识评价家庭作业:
1.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该
位置的小立方体的个数,请画出这个几何体的主视图、左视图。
2、如图,某同学在制作正方体模型的时候,在方格纸
上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,
请你给他补上一个,使之可以组合成正方体,你有几种画法,
在图上用阴影注明.。