神经干细胞的研究及其应用新进展
神经科学的新进展与发展趋势

神经科学的新进展与发展趋势神经科学是研究神经系统的结构、功能及其相关疾病的科学。
近年来,随着技术的进步和研究方法的不断改进,神经科学研究得到了迅速的发展和进展,也带来了更多的发现和研究方向。
本文将介绍神经科学的新进展和未来的发展趋势。
神经成像技术的发展神经科学研究最重要的任务之一是研究大脑结构和功能的关系,而神经成像技术的发展为科学家们提供了无以伦比的方法。
例如,磁共振成像(MRI)和功能性磁共振成像(fMRI),它们使科学家能够在活体大脑中观察神经活动的变化,从而研究不同脑区之间的相互作用。
此外,还出现了更加先进的技术,例如磁共振弹性成像(MRE)和散射光学成像(SOI),这些技术可以帮助研究人员更深入地了解大脑结构和功能之间的关系。
神经干细胞研究的突破神经干细胞是指具有自我复制和多效性分化能力的细胞,它们可以通过分化为各种神经细胞来为治疗神经系统疾病提供有益的治疗手段。
最近的研究表明,通过使用神经干细胞移植技术,可以有效治疗帕金森氏病、脊髓损伤和脑损伤等神经系统疾病。
但是,神经干细胞研究仍然存在很大的挑战,例如如何促进神经干细胞的增殖和分化,如何控制它们的存活和成熟,以及如何克服自免疫反应等方面的难题。
脑机接口的发展脑机接口技术是指将大脑信号转换为计算机可读的数据,从而实现与外部设备的通信。
这种技术的应用非常广泛,包括假肢控制、语音恢复、脑部疾病治疗等。
近年来,随着神经成像技术的发展,脑机接口技术也得到了重大进展。
例如,脑机接口技术可以实现通过思维控制机器人的移动,也可以通过神经信号控制人工假肢的运动。
未来,随着技术的不断改进,脑机接口技术将会在医疗健康和人机交互方面实现更加广泛的应用。
神经系统疾病的早期诊断神经系统疾病的早期诊断对于及早治疗和改善患者生存质量都非常重要。
幸运的是,现在神经成像技术的快速发展可以帮助科学家更早地发现神经系统疾病。
例如,通过使用基于MRI的脑区成像技术,可以早期发现阿尔茨海默病和帕金森氏病等神经系统疾病。
神经干细胞研究前沿

神经干细胞研究前沿神经干细胞研究是神经科学领域备受关注的研究方向之一。
随着科学技术的不断进步,神经干细胞研究取得了许多重要突破,对于神经系统疾病的治疗和再生有着巨大的潜力。
本文将从不同角度探讨神经干细胞研究的最新进展和前沿技术。
神经干细胞简介神经干细胞是一类具有自我更新和分化为多种神经细胞潜能的细胞。
它们在成体神经系统中起着重要的作用,参与着神经元的生长、发育和修复过程。
研究人员通过对神经干细胞的深入了解,希望能够找到治疗神经系统疾病的新途径。
神经干细胞在神经再生中的应用神经干细胞具有重要的神经再生潜能,可以分化为多种神经元和胶质细胞,用于修复受损的神经组织。
研究人员正在探索利用神经干细胞治疗脑卒中、帕金森病、阿尔茨海默症等神经系统疾病的可能性,取得了一定的进展。
干细胞技术在神经科学中的应用随着干细胞技术的不断发展,神经干细胞研究也得到了极大的推动。
诱导多能性干细胞(iPSCs)技术的出现为神经再生医学带来了新的希望,研究人员可以通过重新编程成体细胞获得iPSCs,再进一步诱导其分化为神经干细胞,为神经系统疾病的治疗提供更多可能性。
单细胞转录组学在神经干细胞研究中的应用近年来,单细胞转录组学技术的快速发展为神经干细胞研究带来了新的视角。
研究人员可以通过对单个神经干细胞的基因表达谱进行分析,深入了解不同类型的神经干细胞及其分化过程,揭示神经系统发育和疾病发生机制的复杂性。
光遗传学在神经干细胞研究中的应用光遗传学作为一种独特的基因调控技术,为神经干细胞研究提供了全新的工具。
研究人员可以利用光遗传学手段精准操控神经干细胞的功能和命运,实现对神经系统疾病的更精准治疗,为神经再生医学带来新的可能性。
结语神经干细胞研究前沿的不断拓展和突破为神经科学领域带来了新的希望和挑战。
借助先进的技术和不懈的努力,我们有理由相信,在未来的日子里,神经干细胞研究将继续为神经系统疾病的治疗和再生提供更多有效的解决方案。
以上是对神经干细胞研究前沿的简要介绍,希望能对您有所帮助和启发。
神经干细胞的调控机制和治疗应用研究

神经干细胞的调控机制和治疗应用研究神经干细胞(neural stem cells,NSCs)是一类具有自我更新和多向分化能力的细胞,在神经系统发育和修复中起到重要作用。
神经干细胞的调控机制和治疗应用是当前神经生物学领域的热点研究方向。
本文将探讨神经干细胞的调控机制和治疗应用的最新研究进展。
神经干细胞的调控机制主要包括内源性和外源性因素的调控。
内源性因素指的是神经干细胞自身的调控机制,包括遗传和表观遗传调控。
研究发现,一些关键的转录因子在神经干细胞的自我更新和分化中起到关键作用,如Sox2、Nestin和Bmi1等。
此外,表观遗传调控也对神经干细胞的命运决定起至关重要的作用,包括DNA甲基化和组蛋白修饰等。
外源性因素主要包括细胞外基质、细胞因子和神经环境等。
细胞外基质可以提供细胞黏附和定位的支持,影响神经干细胞的命运决定。
细胞因子,如FGF、EGF和Wnt等,可以促进神经干细胞的自我更新和增殖。
神经环境在神经干细胞的分化和连接中起到至关重要的作用,包括电信号、分子信号和细胞间相互作用等。
神经干细胞的治疗应用主要包括神经系统发育缺陷、神经退行性疾病和神经系统损伤的修复。
大量研究表明,神经干细胞具有广泛的临床应用前景。
例如,神经干细胞可以用来治疗帕金森病、阿尔茨海默病和脊髓损伤等神经退行性疾病。
此外,神经干细胞还可以用于神经系统发育缺陷的修复,如脑积水和脑脊髓畸形等。
在神经损伤的修复方面,神经干细胞可以促进受损组织的再生和重建,提高患者的神经功能恢复。
然而,目前神经干细胞治疗还面临许多挑战和难题。
首先,如何保证神经干细胞的安全性和有效性仍然是一个关键问题。
患者的免疫系统对移植的神经干细胞可能产生排异反应。
其次,神经干细胞在移植后可能会出现异常增殖和分化的风险,导致肿瘤的形成。
此外,如何有效地引导神经干细胞分化成特定的神经类型也是一个难题。
最后,神经干细胞的临床应用仍然需要更多的临床试验和研究来证明其疗效和安全性。
再述神经干细胞的研究及其应用前景

新 的神经支配环路 。
神 经 干 细 胞 的增 殖和 迁 移 以及 体 内移 植 神 经 干 细 胞 治 疗 实验 性 脑 外伤 、 脑缺 血 等 所 引起 的 神 经 功 能 障 碍 ,这 充 分 说 明 了几 年 来 我 国在 神 经 干细 胞 的研 究 中所 取 得 的成 就 ,在 国 际 上 为 我 国争 得 一 席 之地 。 神 经 干 细胞 具 有 两 个 显 著 特 征 : 一是 具 有 高 度
维普资讯
20 02年 9月 第 l 8卷 第 5 期
C i hn
・
述 评 ・
再 述 神 经 干 细 胞 的 研 究 及 其 应 用 前 景
杨树 源 安 沂 华
我 刊 去 年 曾刊 出题 为 “ 极 开 展 神 经 干 细胞 的 积
后 随 其 生 长 发 育 ,该 能 力 不 断下 降 。 然 而 ,在 一定 条 件 下 , 即使 移植 到 成 体 体 内, 神 经 干 细 胞 也 能较
究 领 域 取 得 了突 飞 猛进 的进 展 。 我 刊 于本 期 刊 出 的
有 关 神 经 干 细 胞 的研 究 报 道 ,其 内容 涉及 神 经 干 细
胞 的体 外 培 养 、诱 导分 化 、实 验 性 脑 外伤 后 内源 性
提 高 ,提 示 损 伤 或 神 经 变 性 可 以重 新 激 活机 体 中所
元 用 于 移 植 , 它们 才 能 在 宿 主 体 内较 好 地 存 活 和 生
神经干细胞在临床的应用进展

peem nat rset e osra oa td J Arhvso rt i ns pop c v bevt n ls y[]. i r f :a i i u c e f
【 摘要 】 干细胞是一类具有 自我更新和 多向分化潜能的特殊细胞 ,它可以分化为 多种组织和 器官,因此成为近年 来研 究的热
点。本 文通过对神经干细胞的 自身特点 ,存在部位及 临床 应用进行研 究概述 ,发现神经干 细胞在修复神 经组 织缺损 、促进神 经 系 统功能恢复方面起 到极 为重要 的作 用,尤其在缺血性 疾病及神 经退行性疾病方面具有广泛的应用前景 。
( 责任编 辑 :常海庆 )
ua up t a oi rt m i a t l otu t pee n ns r ri n r f
2 6 21 . 0 — 2
. o a l y 2 0 , 3(): Nen oo , 0 8 9 3 t g
[】 E 一 h f hA B ryD Was , t . ice ia makr m yi 9 1K u a , a , l K e a Boh m cl res a s r h 1 —
d ni rtr ifnswih a p tn u tsa tro u thg ik o e tf p eem na t t ae td cu reis sa ih rs f y
d a rsvr nrvnr ua am r ae[ A cie sae et o eeeitae tclrhe or g J hv so Di s h i h ]. r f e
神经干细胞研究进展

神经干细胞研究进展一、引言神经干细胞(neural stem cell,NSC)是指存在于神经系统中,具有分化为神经神经元、星形胶质细胞和少突胶质细胞的潜能,从而能够产生大量脑细胞组织,并能进行自我更新,并足以提供大量脑组织细胞的细胞群[1]。
狭义的神经干细胞是指成体神经干细胞,指的是分布于胚胎及成人中枢及周围神经系统的干细胞。
简单的说,就是在成年哺乳动物的大脑中分离出来的具有分化潜能和自我更新能力的母细胞,它可以分化各类神经细胞,包括神经元、星形胶质细胞和少突胶质细胞。
我们所讲的神经干细胞指的就是成体中存在于脑中的中枢神经干细胞,其实在外周也有一些“神经干细胞”称为“神经嵴干细胞”,可以分化成外周神经细胞、神经内分泌细胞和施旺细胞,还可横向分化成色素细胞和平滑肌细胞[2]。
神经干细胞具有以下特征:(1)有增殖能力;(2)由于自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个自细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可以分化为多种神经细胞;(3)具有多向分化潜能,在不同因子下,可以分化为不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化,自我更新能力和多向分化潜能是神经干细胞的两个基本特征[3]。
需要注意的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。
神经干细胞的治疗机理是:(1)患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。
由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位;(2)神经干细胞可以分泌多种神经营养因子,促进损伤细胞的修复;(3)神经干细胞可以增强神经突触之间的联系,建立新的神经环路[4]。
二、研究现状1.新研究阐明大脑干细胞的身份[5]人神经系统具有复杂的结构,它将来自大脑的电信号发送到身体的其他部位,使我们能够移动和思考。
神经再生的最新研究进展

神经再生的最新研究进展神经再生是一个新兴的研究领域,众多研究人员正致力于探索如何帮助受损神经系统自我修复。
神经再生的研究不仅可以帮助治疗神经系统疾病,还可以为人类提供更深刻的认识和了解神经系统的方式。
一. 神经干细胞治疗神经干细胞疗法是一种新的治疗方法,它通过使用特定的细胞,即干细胞,促进神经再生。
一些研究人员试图使用干细胞来替换受损的神经细胞,这项技术被称为细胞移植。
干细胞能够分化为身体的不同种类的细胞。
在神经系统中,干细胞可以分化为神经元和胶质细胞。
虽然神经干细胞疗法仍在研究阶段,但已经取得了一些成功的成果。
保罗·克诺兹教授是为数不多的专门从事干细胞研究的科学家之一。
他的团队已经成功地使用干细胞治疗了小鼠的神经疾病,并取得了非常好的疗效。
研究表明,干细胞可以增加新的神经元,帮助从受损中恢复。
二. 神经电生理学神经电生理学是研究神经系统电活动的一种科学方法。
它被广泛用于帮助诊断和治疗神经系统疾病,同时也是研究神经再生的重要方法之一。
通过观察神经元之间的电信号,医生和科学家可以了解受损的神经系统的情况,并制定合理的治疗方案。
神经电生理学也有助于揭示神经再生的新机制。
研究表明,神经干细胞在成熟的神经网络中有着很好的成活率和功能。
因此,对于神经科学家来说,了解神经干细胞在神经网络中的整体功能非常重要。
三. 化学刺激神经细胞的再生可以通过多种方式来进行刺激。
一种方法是使用化学物质刺激神经细胞,促进神经再生。
研究表明,多种化学物质都具有促进神经再生的作用,包括环磷酰胺、肌醇、少量的糖皮质激素等。
咖啡因也被证明可以促进神经细胞的再生。
研究表明,咖啡因可以提高神经细胞的生存率,增加神经元的数量。
此外,咖啡因还可以加速神经细胞的成长和分化,从而促进神经再生。
四. 点状刺激另一种方法是使用点状刺激来促进神经再生。
该方法使用电刺激、磁刺激或光刺激等方法,刺激神经系统的表面区域来促进神经再生。
研究表明,点状刺激可以促进神经元和胶质细胞的生长和分化,这可能有助于改善神经损伤的恢复。
干细胞的研究进展及其临床应用

干细胞的研究进展及其临床应用随着科技的不断进步和人类对于生命本质认识的深入,干细胞技术成为了新一代医学研究领域的热点。
自从1998年人类干细胞的发现以来,干细胞技术一直在不断探索中发展壮大,将为人类健康事业带来前所未有的机遇和挑战。
本文将从干细胞技术的研究现状、应用领域以及最新研究进展等方面进行阐述。
一、干细胞技术的研究现状1. 干细胞的分类干细胞是指具有自我更新和分化为多种细胞类型的能力。
按其来源可以分为胚胎干细胞和成体干细胞。
胚胎干细胞是来源于早期胚胎的万能干细胞,可以分化为各种人体组织细胞;成体干细胞是存在于人体各种成体组织中,如骨髓、脂肪、神经等,可以分化为该组织所需的特定类型细胞。
2. 干细胞的特性干细胞具有两个基本特性:自我更新和分化潜能。
自我更新能力使得干细胞可以不断进行细胞分裂,同时维持其细胞状态的稳定性。
而干细胞的分化潜能则意味着它们可以分化为多个不同类型的细胞,这使得干细胞成为修复和再生组织的优秀候选细胞源。
3. 干细胞的研究进展自从1998年人类第一次成功从胚胎中分离出干细胞以来,干细胞技术一直在快速发展。
目前,科学家已经成功地将干细胞转化为心肌细胞、神经细胞、肝细胞等多种类型细胞,并且通过移植这些细胞,成功地修复了一些疾病组织。
二、干细胞技术的应用领域干细胞技术的应用领域十分广泛,主要包括以下几个方面。
1. 治疗退行性疾病干细胞可以分化为多个类型的细胞,这使得它们可以作为一种新型的、可再生的治疗方法,为退行性疾病的治疗带来了新的希望,如帕金森病、阿尔茨海默病等。
2. 细胞移植治疗干细胞可以用于组织的修复和再生,包括疾病的诊断和治疗、细胞移植等方面。
干细胞移植治疗已被用于治疗子宫内膜异位症、严重皮肤炎症等皮肤疾病。
3. 新药研发干细胞是一种很好的模型,可以用于测试新药的安全性、有效性和毒性。
干细胞技术已经成为新一代药物研发的重要手段。
三、干细胞技术的最新研究进展1. 制备人工合成血管目前,很多心血管疾病病人已经不能接受传统治疗方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经干细胞的研究及其应用新进展[关键词] 神经干细胞研究健康讯:崔桂萍天津市脑系科中心医院 300060 1992 年, Reynolds 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。
可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。
不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。
1. NSC 的起源、存在部位及生物学特征中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。
现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。
其中( 1 )和( 2 )是 NSC 的两个基本特征。
2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。
神经递质神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。
这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。
G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。
5-HT :许多研究表明, 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。
GABA : GABA 是成体脑发育过程中主要的抑制性神经递质。
Haydar 等发现, GABA 受体的激活可控制神经前体细胞的细胞周期; Stewart 等研究发现, GABA 和 G1u 对脑内不同区域细胞增殖的影响是不同的,内源性 GABA 激活 GABA 受体在新皮质和调节神经前体细胞增殖方面起重要作用。
G1y 及其它: G1y 受体( G1yR )通过增加突触后细胞膜 C1 - 通透性而起突触后抑制作用。
Flint 等发现, G1yR 在胚胎大鼠和初生早期脊髓中为未成熟迁移和分化的神经元中起重要作用,推测 G1yR 信号可能在突触形成中其重要作用; Ach 可通过α -7 样烟碱乙酰胆碱受体激活导致新生大鼠嗅球原代培养细胞神经突起过度生长,相反, Ach 可抑制胚胎小鼠脊髓神经元的神经突起生长。
有资料显示, NO 作为 CNS 的神经递质广泛参与神经细胞的存活、分化和可塑性的发生。
而肾上腺素和性激素则可使新生小鼠齿状回新生细胞数量减少。
细胞外基质细胞外基质( ECM )是组成间质和上皮血管中基质的不溶性结构成分,主要有胶原蛋白、弹性蛋白、蛋白多糖和糖蛋白等。
研究表明, ECM 可影响细胞分化、增殖、黏附、形态发生和表型表达等生物学过程。
NSC 具有位置特异性的分化潜能,其增殖、分化和迁移与 ECM 有非常密切的关系。
B- 链蛋白:新近资料表明, NSC 与 ECM 的黏附功能可以调节细胞的生长和增殖。
NSC 中的 B- 链蛋白和 Tcy/Lef 转录因子家族参与了细胞的成活、增殖和分化。
Chenn 等发现,在 NSC 中稳定表达 B- 链蛋白的转基因小鼠,其发育的大脑皮质表面积增大,沟回变深而宽,类似高级哺乳动物的皮质;侧脑室腔变大,与之相邻的脑室壁有大量增生的细胞;并且其大部分 NSC 在有丝分裂后可重新进入细胞周期,说明过度表达 B- 链蛋白并不破坏神经细胞正常发育分化,皮质的扩大是由于 NSC 增殖所致,提示 B- 链蛋白与 NSC 增殖有关。
Ree1in : Ree1in 是 ECM 中分子质量为400 × 10 3 的蛋白质,与神经细胞表面的整合素受体α 3 亚基、极低密度脂蛋白和载脂蛋白 E 相结合,触发 Dab-1 胞液蛋白的衔接功能。
在皮质发育过程中的神经元以及脊髓节前神经元迁移中起重要作用。
细胞黏附因子:细胞黏附因子是一种影响干细胞行为的重要信号蛋白,包括整合素和黏合素等。
研究表明, ECM 中的整合素在调控 NSC 增殖、分化和迁移方面有重要的作用。
脑内整合素与配体的相互作用促进了神经细胞的迁移,神经突起过度生长和少突胶质细胞髓磷脂膜的形成,在可塑性过程的成体突触结构形成中也起重要作用。
黏合素家族中的TN-C 在早期发育的中枢神经系统中广泛表达,但在分化过程表达下降;成脑受伤后, TN-C 表达上调,提示 TN-C 在提高中枢神经系统功能和可塑性方面有重要作用。
Garcion 等用基因敲除 TN-C 的方法,发现小鼠少突胶质前体细胞向视神经方向迁移增加,但在各脑区的增殖率下降。
细胞生长因子: NSC 的增殖和分化还受多种细胞生长因子的调控,如成纤维的细胞生长因子( FGF )和表皮生长因子( EGF )等。
FGF 有三种受体, FGFR1 、 FGFR2 和 FGFR3 ,发育早期 FGF 在胎脑内进行增殖或神经发生的区域内表达,成年脑内在相应的神经发生区内也有 FGF 的持续表达,提示 FGF 在调节 NSC 增殖中发挥重要作用, EGF 在发育脑和成年脑内均有表达,神经元和星形胶质细胞均可表达 EGF 。
糖蛋白:糖蛋白家族包括层黏蛋白( LM ),纤维连接蛋白( FN )和腱蛋白( TN ),LM 为基底膜的构成成分,可促进细胞黏附,调节细胞形态、分化及细胞迁移等;FN 具有形成 ECM ,促进细胞黏附、伸展、迁移、吞噬及血液凝固等多种生物学作用; TN 有促进细胞黏附,促进或抑制细胞增殖和迁移等多种作用,并有拮抗FN 的细胞黏附作用。
Takano 等新近发现, FN 对小鼠神经脊细胞中黑色素细胞的增殖、分化和迁移有重要作用。
而 Chipperfield 等则发现, ECM 中硫酸乙酰肝素葡糖胺聚糖( HS )可促进 FGF-1 对成体 NSC 的有丝分裂作用。
基因调控 Notch 基因: Notch 信号通路对于决定胚胎发生、造血和 NSC 分化起着至关重要的作用,当 Notch 被激活,干细胞进行增殖,当 Notch 活性被抑制,干细胞进入分化程序,发育为功能细胞。
Tanigaki 等发现, Notch 在成体 NSC 发育为胶质细胞中起着重要作用,表达 Notch IC 明显增加星形细胞分化,减少神经元和少突胶质细胞的产生。
bHLH 基因: bHLH 基因具有高度同源性,是发育过程中转录络的重要组成部分,广泛参与神经和肌肉、细胞增殖分化、细胞谱系决定和性别决定等生理过程。
bHLH 基因在神经上皮细胞发育为神经元中起关键并激活下游作用,可促进细胞脱离细胞周期,使细胞游离出皮质,并激活下游特定神经元分化的遗传基因表达。
同源盒基因:同源合基因在生物进化中有高度保守性,对下游靶细胞具有调节作用。
同源盒基因目前有 Hox 、 Pax 和 Lim 等几大类;目前认为, Hox 的表达与中枢神经在发育中的分区有关,为不同神经元的发育提供位置特征; Pax 的早期表达与神经发育过程中空间和时间的局限性有密切关系; Lim 绝大多数在特定的神经元亚群中表达,参与特定神经元的发育。
Galli 等 [11] 发现,成体哺乳动物室周区的NSC 表达同源盒基因 Emx2 分化成神经元和胶质细胞时 Emx2 基因表达明显下调;然而, Emx2 表达停止后, NSC 对称分化为两个干细胞的频率增加,随着Emx2 表达的增加,这种对称分化能力逐渐降低。
Nestin 基因: Nestin 属于中间丝蛋白家族,存在于分裂的 NSC 中,成熟神经元和胶质细胞不表达,被选作 NSC 的识别物,通过检测 Nestin 的表达即可确定多潜能干细胞的存在。
3. NSC 的应用研究进展随着对 NSC 了解的不断深入,国内外科学家积极开展对 NSC 的临床应用研究。
表现如下:细胞移植试验研究表明, NSC 可用于损伤的神经细胞替代;如脑缺血的细胞移植治疗以成为目前脑移植的新热点。
多项研究证实,移植胚胎脑组织是修复脑损害,重建神经功能的有效治疗途径。
目前有自体移植和异体移植两种途径,由于胎脑来源有限,并受到孕龄选择、活力保持、异体排斥反应及伦理道德等因素制约,使异体移植受到很大限制。
于是自体移植的体外分离培养受到诸多科学家的深入研究并取得成功。
刘辉等 [12] 将人类胎儿海马 NSC 移植入大鼠颅脑损伤模型,一周后发现 NSC 移植治疗组与未治疗损伤组相比,呈明显运动功能改善, NSC 分裂增殖为神经元或胶质细胞,并向受损脑组织迁移,所以, NSC 是细胞移植治疗颅脑损伤的一种良好来源。
基因载体治疗一些大分子物质如神经生长因子( NGF )、脑源性生长因子,尽管有治疗作用,却不能通过血脑屏障,其治疗作用受到限制;然而,用 NSC 作载体,将编码特定神经递质或蛋白质因子的基因转导入 NSC 载体,以治疗 CNS 疾病,取得可喜进展,在脑肿瘤基因治疗更为突出。
Benedetti 等 [13] 将表达白介素 -4 的基因转导到 C57BL6J 小鼠原代神经组织细胞,然后将这些细胞注入已建立的胶质母细胞瘤模型中,结果导致大多数带瘤小鼠的存活,磁共振证实了大肿瘤渐进性缩小、消失。
神经损伤的再生大量的试验研究表明,脑缺血可以出现发生区内源性 NSC 激活,以达到神经再生。
Iwai 等 [14] 认为,脑缺血后的神经再生可分为增殖、迁移、分化三个阶段;他们通过沙土鼠海马齿状回缺血再灌注损伤试验模型发现,沙土鼠脑缺血后第 10 天 NSC 增殖达高峰;缺血后 20 天,开始增殖的细胞表达神经黏附分子,并从颗粒层下区迁移至颗粒层;在到缺血后 60 天,这些迁移的细胞才分化为成熟细胞。