神经干细胞研究进展

合集下载

神经干细胞的研究进展

神经干细胞的研究进展

神经干细胞的研究进展摘要:本文主要论述神经干细胞的两个应用方面,诱导神经干细胞分化与神经再生。

诱导神经干细胞的分化有两种办法,分别为直接诱导法和间接诱导法。

与iPSCs 相比较,iNSCs拥有更大的优势。

神经再生主要从细胞微环境方面论述,包括周围细胞,细胞因子,细胞外基质及微血管因素。

关键词:神经干细胞;诱导分化;细胞再生;微环境1•引言神经干细胞(neural stem cell)是指存在于神经系统中,能够分化形成多种脑细胞,并能够自动更新,提供大脑组织细胞的细胞群⑴。

其具体能分化为神经神经元、星形胶质细胞和少突胶质细胞。

大量研究表明,许多疾病如帕金森病,亨廷顿舞蹈症,脊髓损伤及认知功能⑵等均与神经干细胞相关,能被其治愈或者是由于神经元病变所引起的。

2006年Yamanaka利用小鼠成纤维细胞成功获得iPSCs?],这一研究使干细胞的研究发展进入了全新的局面,随之而来的多项研究成功建立了利用iPSCs治疗相关疾病的细胞模型及动物模型,但仍存在一定的问题需要解决。

治疗这些疾病利用了神经再生,这在成年哺乳动物的两个脑区终生存在,分别是海马齿状回的颗粒细胞层(subgra nu lar zon e,SGZ)和侧脑室的视管膜下区(subve ntricular zon e,SVZ)主要包括神经干细胞的增殖、迁移、分化及新生神经元整合至神经环路四个阶段。

这阐明影响神经干细胞增殖分化的因素对于深入认识神经再生的相关机制至关重要。

神经干细胞的增殖分化等行为高度依赖于其生长环境,即神经干细胞微环境(niche)。

神经干细胞niche的组成在两个神经再生的脑区有一些差异,SVZ区niche的细胞主要包括室管膜细胞、星形胶质细胞、短暂增殖细胞和神经母细胞。

SGZ区niche细胞主要包括星形胶质细胞、增殖细胞和神经元。

神经干细胞niche 对神经干细胞增殖分化的调控主要包括:与神经干细胞相邻的周围细胞的调控、细胞因子调控、细胞外基质调控及微血管调控。

神经干细胞的调控机制和治疗应用研究

神经干细胞的调控机制和治疗应用研究

神经干细胞的调控机制和治疗应用研究神经干细胞(neural stem cells,NSCs)是一类具有自我更新和多向分化能力的细胞,在神经系统发育和修复中起到重要作用。

神经干细胞的调控机制和治疗应用是当前神经生物学领域的热点研究方向。

本文将探讨神经干细胞的调控机制和治疗应用的最新研究进展。

神经干细胞的调控机制主要包括内源性和外源性因素的调控。

内源性因素指的是神经干细胞自身的调控机制,包括遗传和表观遗传调控。

研究发现,一些关键的转录因子在神经干细胞的自我更新和分化中起到关键作用,如Sox2、Nestin和Bmi1等。

此外,表观遗传调控也对神经干细胞的命运决定起至关重要的作用,包括DNA甲基化和组蛋白修饰等。

外源性因素主要包括细胞外基质、细胞因子和神经环境等。

细胞外基质可以提供细胞黏附和定位的支持,影响神经干细胞的命运决定。

细胞因子,如FGF、EGF和Wnt等,可以促进神经干细胞的自我更新和增殖。

神经环境在神经干细胞的分化和连接中起到至关重要的作用,包括电信号、分子信号和细胞间相互作用等。

神经干细胞的治疗应用主要包括神经系统发育缺陷、神经退行性疾病和神经系统损伤的修复。

大量研究表明,神经干细胞具有广泛的临床应用前景。

例如,神经干细胞可以用来治疗帕金森病、阿尔茨海默病和脊髓损伤等神经退行性疾病。

此外,神经干细胞还可以用于神经系统发育缺陷的修复,如脑积水和脑脊髓畸形等。

在神经损伤的修复方面,神经干细胞可以促进受损组织的再生和重建,提高患者的神经功能恢复。

然而,目前神经干细胞治疗还面临许多挑战和难题。

首先,如何保证神经干细胞的安全性和有效性仍然是一个关键问题。

患者的免疫系统对移植的神经干细胞可能产生排异反应。

其次,神经干细胞在移植后可能会出现异常增殖和分化的风险,导致肿瘤的形成。

此外,如何有效地引导神经干细胞分化成特定的神经类型也是一个难题。

最后,神经干细胞的临床应用仍然需要更多的临床试验和研究来证明其疗效和安全性。

干细胞技术的研究热点领域与最新进展

干细胞技术的研究热点领域与最新进展

干细胞技术的研究热点领域与最新进展1.神经退行性疾病治疗:神经退行性疾病如帕金森病、阿尔茨海默病和脊髓损伤等一直是医学界的难题。

然而,干细胞技术为这些疾病的治疗提供了新的思路。

最新研究表明,通过将干细胞转化为特定的神经细胞类型,可以在动物模型中实现神经退行性疾病的修复,并且在临床试验中也取得了一些进展。

2.心脏病治疗:心脏病是目前全球范围内的主要死因之一、传统的治疗方法,如药物和手术治疗,只能缓解症状,而不能修复心脏的受损部分。

然而,近年来的研究表明,通过将干细胞注入患者的心脏组织中,可以促进心肌细胞的再生和修复,从而提高患者的心脏功能。

3.癌症治疗:干细胞技术在癌症治疗方面也有着重要的应用。

研究人员发现,癌症干细胞是肿瘤生长和转移的关键因素。

因此,通过干细胞的研究,可以理解肿瘤的发生机制,并发展新的靶向治疗方法。

最新的研究进展包括使用干细胞修复癌症治疗中引起的组织损伤,以及利用干细胞进行肿瘤的药物筛选。

4.组织工程:干细胞技术在组织工程领域也有巨大的应用前景。

研究人员开发出了一种新的方法,利用干细胞来生产各种组织和器官,如皮肤、肌肉和器官血管等。

这种方法不仅可以为整形外科和器官移植提供新的选择,还可以用于替代受损组织的修复和再生。

5.基因治疗:基因治疗是一种利用基因工程技术来修复或代替异常基因的治疗方法。

干细胞技术可以用来生产大量的健康细胞,并用于基因治疗中。

最新的研究进展包括使用干细胞来修复遗传性疾病,如囊性纤维化和血友病等。

总结起来,干细胞技术在神经退行性疾病治疗、心脏病治疗、癌症治疗、组织工程和基因治疗等领域都有着重要的应用。

随着研究的不断深入,我们相信干细胞技术将会为人类的健康和医学领域带来更多的突破和进展。

Hedgehog信号通路与神经干细胞的研究进展

Hedgehog信号通路与神经干细胞的研究进展
室 下 区神 经 前 体 细 胞 , 明显 改善 大 鼠行 为 能 力 , 说明 S h h在 保 护神经功能 , 促 进 NS C s 增 殖 方 面 发 挥 着 重 要 作 用 。S h h在 脊 髓 损 伤 后 内源 性 NS C s 的再 生 过程 中也 发 挥 重 要 的 作 用 。 S h h
神 经 系 统 损 伤 是 临 床 常 见 的严 重致 残性 疾 病 , 特 别 是 中 枢
神经的损伤 , 致 残率 高 、 恢复 困难 、 疗 效差 , 至 今 困扰 医学 界。
作用。
2 He d g e h o g信 号通 路 与 NS Cs
目前 的 治 疗 方 式 有 很 多 , 但是 效果 一直令 人不 满意 。1 9 9 2年
3 82 4
重 庆 医学 2 O l 3年 1 1月 第 4 2 卷第3 1期


述 ・
He d g e h o g信 号通 路 与神 经 干细 胞 的研 究进 展
祁 文 , 夏 天 , 王 志威 综述, 姚 共 和 审 校
( 1 . 广 西 中 医药 大学研 究生 学院 , 南宁 5 3 0 0 0 1 ; 2 . 湖 南 中医药大 学第一 附属 医院骨科 , 长沙 4 1 0 0 0 7)
长 因子 一 8 ( f i b r o b l a s t g r o w t h f a c t o r 一 8 , F GF - 8 ) 有 协 同 作 用 。
He d g e h o g基 因 于 1 9 8 0年 首先 在 果 蝇 中被 发 现 。 He d g e —
B a mb a k i d i s 等 采 用 室 管 内缝 合 中脑 动 脉 方 法 造 成 脊 髓 缺 血 性损伤 , 通过鞘内注射 S h h蛋 白 , 能 够 显 著 增 加 成 年 大 鼠 侧 脑

神经再生的研究进展

神经再生的研究进展

神经再生的研究进展神经再生是指当神经系统受到损伤或疾病威胁时,神经细胞和神经系统组织的修复和重新生长过程。

人们对于神经再生的研究已经历经数十年,虽然仍然面临许多挑战,但研究成果让我们对未来的发展充满期待。

1. 神经干细胞神经干细胞是指能够自我更新并发育成神经系统中各种类型的细胞的细胞。

研究发现,这些神经干细胞可以分化为多种类型细胞,如神经元、星形胶质细胞和寡突胶质细胞等等。

科学家对于神经干细胞的研究带来了巨大的期望,因为它们被认为是未来医学治疗神经系统疾病的基础。

2. 光学神经调控技术光学神经调控技术可以基于光敏色素的产生和光信号的转导来实现神经元的精确激活或抑制。

这项技术是通过光学和遗传学手段结合起来,从而实现对神经元的控制和修复。

同时,该技术的又一项应用是通过光刺激方式,加速神经内聚性的增强和调控系数,从而实现神经系统治疗和调节。

3. 藏青素治疗神经伤害藏青素是一种有机化合物,其抗氧化性能非常出色,可以用于治疗神经伤害。

研究表明,藏青素能保护神经细胞的生长和塑形,并促进受损神经的再生。

此外,藏青素还可以在神经系统中抵消有毒物质、减少有毒物质的代谢率,并且抑制细胞凋亡。

4. 神经再生疗法神经再生疗法是通过培养和植入人工神经干细胞进行神经再生。

在这项疗法中,神经干细胞被培养和植入到受损的神经系统中,到达患者的脑、脊髓或周围神经系统中。

科学家们相信,这些植入神经干细胞能够增强神经系统中的再生和修复能力,从而减轻或治愈神经系统疾病。

总的来说,神经再生的研究虽然有了重大进展,但仍然需要更多的研究,以便实用化应用。

我们希望未来的研究可以取得更多的进展和成果。

神经干细胞研究进展

神经干细胞研究进展

神经干细胞研究进展【摘要】神经干细胞(neural stem cells,NSCs)是一类存在于中枢神经系统中且能够保持长期自我更新、复制的能力,并能够向多方向进行分化的原始细胞。

近年来神经干细胞已成为科学研究的热点问题。

目前NSCs已经广泛地应用于中枢神经系统退行性疾病、肿瘤以及缺血损伤等疾病的治疗。

本文对近年国内外学者在神经干细胞上的研究进行列举分析与总结,并对未来神经干细胞的发展前景提出展望。

【关键词】神经干细胞;分化;基因治疗;细胞替代治疗Advances on Neural Stem CellsLIN He-yu(Dalian Ocean University,Dalian Liaoning 116023,China)【Abstract】Neural stem cells (NSCs)exist in central nervous system,which is a kind of archaeocyte that have ability to self-update,proliferate,and have a potential of multi-direction differentiation. In recent years,neural stem cells have been become a hot spot in scientific research. Neural stem cells are able to replace and repair nervous system by differentiation,which is widely used in the treatment of degenerative disease of the central nervous system,ischemic injury and tumor. On the base of the analysis of the correlative research,this paper tries to make a summary of the recent research on neural stem cells,and make the forecast to the development of NSCs in the future.【Key words】Neural stem cell;Differentiation;Gene therapy;Cell replacement therapy1992年,Reynolds等[1]从成年小鼠纹状体和海马体中分离到了能在体外不断分裂增殖,具有多种分化潜能的细胞群,打破了以往人们对神经细胞不能再生的观念,也由此引发了始于上世纪90年代,直至今天都是研究热点的神经干细胞(NSCs)方面的探究。

干细胞的研究进展及应用前景

干细胞的研究进展及应用前景

医药·保健干细胞的研究进展及应用前景王晓瑞1李薇1顾恩妍2张慧1胡桂1(1、昆明医科大学海源学院,云南昆明6501062、北京吉源干细胞医学研究院,北京101318)现今,干细胞的研究越来越被重视,干细胞技术发展迅速,已从基础医学研究扩展到了临床应用研究,在生殖系统疾病、神经系统疾病、组织损伤性疾病等的治疗方面已取得了显著的进展[1]。

干细胞是一种特殊细胞,它具有自我更新能力、多向分化能力、可植入能力及组织重建能力等特征,它既可以通过细胞分裂维持自身群体的稳定,又可以分化成为不同类型细胞,进而构成机体各种复杂的组织器官[2]。

干细胞的研究不仅为生物学和基础医学提供了更深入的视角,而且为临床上对于很多疾病的治疗提供了新的思路,带来了新的希望。

1干细胞的定义及特点目前,根据干细胞的来源可将干细胞分为胚胎干细胞和成体干细胞两大类。

胚胎干细胞,被誉为全能性干细胞,理论上讲,无论在体内还是体外环境都可以诱导分化为机体中的所有细胞类型,在适当的条件下它们甚至可以发育为一个有机体。

成体干细胞,是存在于发育成熟个体内已分化组织中的未分化细胞,它具有自我更新能力并能分化为其所在组织起源的所有细胞类型。

而诱导性多能干细胞(iPS 细胞)是源于成熟体细胞诱导演变成具有胚胎干细胞的全能分化潜能细胞,归在哪一类尚存争议。

1.1胚胎干细胞(embryonic stem cell ,ESCs ,简称ES 或EK 细胞),是由胚胎内细胞团或原始生殖细胞经体外抑制培养而筛选出的细胞,它具有体外培养无限增殖、自我更新和多向分化的特性,此外,胚胎干细胞保持着高的端粒酶活性和正常细胞信号传导途径,可以快速增殖。

1.2成体干细胞,是存在于发育成熟个体内已分化组织中的未分化细胞,它具有自我更新能力并能分化为其所在组织起源的所有细胞类型。

有造血干细胞、神经干细胞、间充质干细胞等多种类型。

最新的研究表明成体干细胞不仅能分化为特定谱系细胞,还能分化成为在发育上无关的其他谱系细胞,这提示成体干细胞具有较大的分化潜能,可在组织修复等多种疾病的治疗中发挥重要的作用[3]。

内源性神经干细胞激活 增殖的研究进展

内源性神经干细胞激活 增殖的研究进展

内源性神经干细胞激活增殖的研究进展脑血管疾病已经成为人类致死、致残最主要的原因之一,其发病率有逐年上升的趋势,且其发病呈现年轻化的趋势。

近年来大量研究证实内源性神经干细胞(NSCs)在治疗中枢神经系统疾病方面有其独特的优势,本文针对能够刺激NSCs激活的各类文献进行了综述,分析了这一领域目前存在的问题,并就今后发展进行了积极的思考。

标签:NSCs激活综述1 NSCs的激活、增殖正常机体内的神经干细胞存在于特定的位置,处于静息状态,在中枢神经系统受到损伤的情况下,如脑缺血,可以受到刺激而被激活,并迁移到受损的区域发生增殖、分化,但是激活、增殖NSCs的数量有限,分化受到很大的限制,且分化后的神经组织通常会大量的凋亡,限制了修复受损组织的能力。

许多化学、物理等的因素能够促进NSCs的激活。

1.1 细胞因子神经营养因子具有增加神经出芽、突触发生、神经递质传递和促进神经递质释放的作用。

研究表明,在脑缺血坏死后,会有大量的吞噬细胞浸润在梗死及梗死周边区,并分泌细胞因子和趋化因子,这些因子可使脑内多个部位的神经干细胞激活,促使其向损伤区迁移,并在多种因子、基因调控等的调节下在良好适合的微环境中发生增殖、迁移和分化等连续的变化,使受损神经组织得到不同程度的修复。

脑源性神经营养因子((BDNF)主要分布于海马和皮质,在中枢神经系统发育过程中对神经元的生存、分化、生长和维持神经元的正常的生理功能中起关键性的作用,近来研究证实其还有抗伤害性刺激,促使神经损伤后的再生等作用[1]。

白血病抑制因子[2]是一种能提升NSCs的激活、调控其朝向神经元及少突胶质细胞分化的神经营养因子,其不但促进NSCs的增殖,而且能够显著降低多巴胺能神经元的凋亡,从而使发生分化的神经元继续存活。

许多其它的细胞因子,如粒细胞集落刺激因子,促红细胞生成素等在中枢神经系统疾病的治疗过程中能明显促进大鼠缺血周围脑组织神经细胞的增殖,及向神经元和神经胶质细胞发生分化;显著减少引起的神经细胞凋亡,增加缺血周围脑组织Bcl-2的表达、抑制Bax、Caspase-3的表达,促进神经细胞再生;明显改善大鼠的神经功能症状、减轻脑组织病理改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经干细胞研究进展一、引言神经干细胞(neural stem cell,NSC)是指存在于神经系统中,具有分化为神经神经元、星形胶质细胞和少突胶质细胞的潜能,从而能够产生大量脑细胞组织,并能进行自我更新,并足以提供大量脑组织细胞的细胞群[1]。

狭义的神经干细胞是指成体神经干细胞,指的是分布于胚胎及成人中枢及周围神经系统的干细胞。

简单的说,就是在成年哺乳动物的大脑中分离出来的具有分化潜能和自我更新能力的母细胞,它可以分化各类神经细胞,包括神经元、星形胶质细胞和少突胶质细胞。

我们所讲的神经干细胞指的就是成体中存在于脑中的中枢神经干细胞,其实在外周也有一些“神经干细胞”称为“神经嵴干细胞”,可以分化成外周神经细胞、神经内分泌细胞和施旺细胞,还可横向分化成色素细胞和平滑肌细胞[2]。

神经干细胞具有以下特征:(1)有增殖能力;(2)由于自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个自细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可以分化为多种神经细胞;(3)具有多向分化潜能,在不同因子下,可以分化为不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化,自我更新能力和多向分化潜能是神经干细胞的两个基本特征[3]。

需要注意的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。

神经干细胞的治疗机理是:(1)患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。

由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位;(2)神经干细胞可以分泌多种神经营养因子,促进损伤细胞的修复;(3)神经干细胞可以增强神经突触之间的联系,建立新的神经环路[4]。

二、研究现状1.新研究阐明大脑干细胞的身份[5]人神经系统具有复杂的结构,它将来自大脑的电信号发送到身体的其他部位,使我们能够移动和思考。

不幸的是,当脑细胞因创伤或疾病遭受损伤时,它们不会自动地再生。

这能够导致永久性残疾。

但是在大脑内有少量干细胞持续存在到成年期,这就为修复受损的大脑提供了一种可能的新细胞来源。

在一项新的研究中,来自加拿大卡尔加里大学的研究人员阐明了表现出神经干细胞功能的脑细胞的身份。

一类被称作星形胶质细胞神经干细胞(astrocyte neural stem cell)的脑细胞能够自我更新和再生新的神经元,特别是在遭受大脑损伤后。

另一类被称作室管膜细胞(ependymal cell)的脑细胞在大脑和脑脊液之间提供支持性衬里。

在这项研究中,这些研究人员开发出一种新方法,它允许他们特异性地对成年大脑内的室管膜细胞进行标记,但不会对星形胶质细胞神经干细胞进行标记。

这项研究不仅阐明了成体神经干细胞的身份,还为研究室管膜细胞的功能和它们在维持正常大脑功能中的作用提供了一种新的模型。

2.激活溶酶体可让衰老的神经干细胞恢复青春[6]来自美国斯坦福大学医学院的研究人员发现在小鼠大脑中,年轻的静止性神经干细胞(resting neural stem cell)在它们的溶酶体(细胞中的一种特定的细胞器,用于处理细胞垃圾)中储存着大量的蛋白聚集物。

这些研究人员先是观察静止性神经干细胞的基因表达谱与那些对触发新的神经元产生的外部信号作出反应的活化神经干细胞(activated neural stem cell)的基因表达谱之间可能存在的差异。

他们比较了当它们衰老时,它们如何作出改变。

当Leeman利用一种结合到蛋白聚集物上的染料对年轻的静止性神经干细胞和活化神经干细胞进行染色时,她吃惊地发现静止性神经干细胞经染色后变得更加明亮,不过它们具有较低的蛋白产生率。

Leeman还发现,相比于活化神经干细胞,年轻的静止性神经干细胞在它们的溶酶体中相对较慢地堆积这些蛋白聚集物。

3.干细胞疗法或有望治疗脊髓损伤的患者[7]来自加利福尼亚大学的科学家们通过研究报道了首个人类I期临床试验结果,即对四个受试者进行研究,将神经干细胞移植入慢性脊髓损伤的患者中,其中三名受试者的疾病症状都得到了显著的改善,而且并没有出现严重的副作用。

文章中,研究人员利用来自马里兰州Neuralstem公司生产的人类脊髓衍生的神经干细胞系进行研究,对T2-T12胸椎骨发生永久性损伤(已经发生1年和2年)的四名临床受试者进行6次神经干细胞的注射,每次注射都包含120万个神经干细胞单位。

2013年发表的一项研究报告中,研究人员表示,将神经干细胞移植到脊髓损伤的大鼠体内后,能够改善大鼠机体的神经再生,并且改善大鼠机体的相关功能和运动性。

在这项最新的临床试验中,研究人员对接受神经干细胞进行治疗的患者进行18-27个月的分析测量,结果虽然并不显著,但却令人鼓舞;当研究者对受试者的运动、感觉功能以及电生理学分析后,发现这四名受试者的这些功能均得到了明显改善。

4.腿部锻炼对大脑和神经系统健康至关重要[8]一项开创性的研究表明,神经系统的健康除了取决于大脑发送至肌肉的指令,还同样取决于从腿部肌肉发送至大脑的信号。

这项研究从根本上颠覆了大脑与神经系统医学--为医生们提供了关于为什么当患有运动神经元病、多发性硬化、脊肌萎缩症和其它神经系统疾病的患者运动受限时会迅速衰弱的新线索。

该研究表明,对腿部的使用,尤其是在负重锻炼中的使用,会发送信号到大脑,这些信号对产生健康神经细胞、对大脑和神经系统健康至关重要。

减少锻炼会使身机体难以产生新的神经细胞--这是一些能使我们面对压力和适应生活中的挑战的非常重要的部分。

研究人员通过分析单个细胞获得了更多新发现。

他们发现,限制运动降低了机体的含氧量,这造成了一种缺氧环境并改变新陈代谢。

减少运动似乎还影响到了两个基因,其中一个是CDK5Rap1,这是对线粒体健康非常重要的基因。

线粒体是细胞中的"发电所",它能释放能量供机体使用。

这代表了另一个反馈循环。

这些结果进一步帮助我们理解了很多重要的健康问题,从静态(久坐)生活方式对心血管健康的影响到一些重大疾病,比如脊肌萎缩症、多发性硬化和运动神经元病等。

5.首次证实人神经干细胞移植可改善脊髓损伤猴子的抓力[9]在一项研究中,研究人员报道移植到猴子受损脊髓中的人神经干细胞成熟为神经元,触发神经连接形成,从而让这些猴子抓住橙子的能力得到改善。

在这项研究中,Tuszynski和他的同事们切掉猕猴的一段脊髓,然后在两周后将人神经祖细胞(neural progenitor cell)移植到这种脊髓损伤部位。

在首批4只猴子中,这些细胞移植物没有保持在原位,这一发现迫使这些研究人员将更多的纤维蛋白原-凝血酶(fibrinogen–thrombin)添加到这些细胞移植物中。

纤维蛋白原-凝血酶是一种蛋白-酶混合物,可让这些移植物更快地附着到损伤位点上。

Tuszynski团队还不得不让手术台倾斜以便排出脑脊液,这是因为脑脊液会将这些移植物冲走。

经过这些调整后,在剩余的5只猴子中,这些移植的神经干细胞保留在原位,而且这些研究人员观察到这些移植的干细胞发育成神经元和神经胶质细胞。

在损伤部位中,这些人神经元产生高达15万个线状轴突,这些轴突从移植位点处向外延伸高达50毫米,并且早在这些新产生的神经细胞就位两个月后,这些研究人员就能够观察到它们与猴子本身的神经细胞建立神经连接。

在大多数情况下,细胞移植物附着在脊髓损伤部位的猴子能够更好地操纵它们的手指,使它们的手指绕着橙子弯曲,而细胞移植物未附着的猴子并不能握住橙子,它们的手指保持折叠,因此橙子停留在它们的指关节上。

6.神经干细胞再生的机制[10]在正常情况下,大部分放射状胶质细胞(RG)都处于静息状态,既不会增殖也不会分化。

然而,当研究者们给斑马鱼的大脑进行针刺时,免疫荧光检测结果则表明RG发生分化现象,而且在第三天达到了高峰。

到第七天时,受损的斑马鱼大脑与健康斑马鱼大脑之间不再存在明显差异。

进一步的免疫组化实验结果表明RG能够分化产生新生神经元,修复大脑视顶盖的损伤。

“通过分子机制方面的研究,我们发现Wnt信号对于调节RG的分化与新生神经元的再生十分关键”。

三、神经干细胞应用中存在的问题建立的神经干细胞系绝大多数来源于鼠,而鼠与人之间存在着明显的种属差异;神经干细胞的来源不足;部分移植的神经干细胞发展成脑瘤;神经干细胞转染范围的非选择性表达及转染基因表达的原位调节等等。

四、总结近年来,神经干细胞在神经系统疾病治疗等方面的研究越来越深入,揭示了其在神经系统生长发育、维持稳态、损伤修复中的作用和机制,为神经系统受损、神经退行性病变的治疗提供了理论的机制,但是神经干细胞在神经系统中的增殖分化机制仍旧不明确,另外以人为研究对象受到伦理和法律的束缚、特别是在雅韭细胞移植治疗帕金森病时发现,1在体外实验中没有必须的因素干预下,NSC自然分化为多巴胺能神经元的比例只占细胞综述的0.5-5%。

所以有道NSC向修复所需的的神经功能细胞分化逐渐成为研究的核心问题。

参考文献[1]周舒,陈武龙,徐君铭,王淑芬.内源性神经干细胞治疗多发性硬化的研究进展[J].昆明医科大学学报,2020,41(03):1-9.[2]赵范范,章丽娜,商迎辉,劳凤学.神经干细胞的三维培养及其在神经疾病中应用的研究进展[J].中国生物制品学杂志,2020,33(02):227-231.[3]陈佳树,宋灏哲,陈天,谢川平,赵格晶娃,李力卓.神经干细胞修复创伤性脑损伤及其影响因素的研究进展[J].创伤外科杂志,2020,22(01):73-75+81.[4]杨玉琴.果蝇神经干细胞研究进展[J].生命科学研究,2019,23(06):479-486.[5]Adami Raffaella,Pagano Jessica,Colombo Michela,Platonova Natalia,Recchia Deborah,Chiaramonte Raffaella,Bottinelli Roberto,Canepari Monica,Bottai Daniele. Reduction of Movement in Neurological Diseases: Effects on Neural Stem Cells Characteristics.[J]. Frontiers in neuroscience,2018,12.[6]Shimizu Yuki,Ueda Y uto,Ohshima Toshio. Wnt signaling regulates proliferation and differentiation of radial glia in regenerative processes after stab injury in the optic tectum of adult zebrafish.[J]. Glia,2018,66(7).[7]Curtis Erik,Martin Joel R,Gabel Brandon,Sidhu Nikki,Rzesiewicz Teresa K,Mandeville Ross,V an Gorp Sebastiaan,Leerink Marjolein,Tadokoro Takahiro,Marsala Silvia,Jamieson Catriona,Marsala Martin,Ciacci Joseph D. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.[J]. Cell stem cell,2018,22(6).[8]Rosenzweig Ephron S,Brock John H,Lu Paul,Kumamaru Hiromi,Salegio Ernesto A,Kadoya Ken,Weber Janet L,Liang Justine J,Moseanko Rod,Hawbecker Stephanie,Huie J Russell,Havton Leif A,Nout-Lomas Yvette S,Ferguson Adam R,Beattie Michael S,Bresnahan Jacqueline C,Tuszynski Mark H. Restorative effects of human neural stem cell grafts on the primate spinal cord.[J]. Nature medicine,2018,24(4).[9]Shah Prajay T,Stratton Jo A,Stykel Morgan Gail,Abbasi Sepideh,Sharma Sandeep,Mayr Kyle A,Koblinger Kathrin,Whelan Patrick J,Biernaskie Jeff. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function.[J]. Cell,2018,173(4).[10]. Cytoplasmic Vesicles - Lysosomes; Studies from Stanford University Update Current Data on Lysosomes (Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging)[J]. Science Letter,2018.。

相关文档
最新文档