最新压裂技术现状及发展趋势资料
国内外水力压裂技术现状及发展趋势

国内外水力压裂技术现状及发展趋势国内外水力压裂技术现状及发展趋势1. 水力压裂技术的概述水力压裂技术是一种用于释放和采集地下岩石中储存的天然气或石油的方法。
该技术通过高压水将岩石破碎,使储层中的油气能够流动到井口并采集出来。
水力压裂技术的应用范围广泛,已经成为当今油气勘探和生产领域不可或缺的重要工艺。
2. 国内水力压裂技术的发展2.1 技术进展近年来,中国在水力压裂技术领域取得了长足的进展。
国内开展了一系列水力压裂试验和生产实践,并不断优化了水力压裂液的配方和压裂参数,提高了技术效果。
目前,国内已经具备了一定的水力压裂能力,大规模商业化的水力压裂项目也在逐渐增加。
2.2 技术挑战然而,国内水力压裂技术仍面临一些挑战。
由于我国地质条件复杂多样,水力压裂参数的优化和设计仍需进一步完善。
水力压裂过程中对水和化学药剂的需求量较大,对水资源的消耗和环境影响也需要引起重视。
国内水力压裂技术在环保、安全等方面的标准和规范也亟待完善。
3. 国外水力压裂技术的现状3.1 技术领先相比之下,国外水力压裂技术相对更为成熟和领先。
美国作为全球水力压裂技术的发源地和领导者,已经积累了丰富的经验和技术。
加拿大、澳大利亚、阿根廷等国家也在水力压裂技术领域取得了显著进展。
3.2 发展趋势在国外,水力压裂技术正朝着更高效、可持续的方向发展。
技术创新持续推动着水力压裂技术的进步,如改良水力压裂液配方、增加试验参数、提高水力压裂设备效率等。
另注重环境保护和社会责任意识也推动了水力压裂的可持续发展,包括减少用水量、降低化学品使用、加强废水处理等。
4. 对水力压裂技术的观点和理解4.1 技术应用前景广阔水力压裂技术作为一种有效的油气勘探和生产工艺,具备广阔的应用前景。
随着全球能源需求的增长和传统资源的逐渐减少,水力压裂技术有望成为我国能源领域的重要支撑。
4.2 重视技术创新和可持续发展为了更好地推动水力压裂技术在国内的应用,我们应加大技术创新力度,不断优化水力压裂方案,提高资源利用效率,并探索更环保、可持续的水力压裂技术路径。
水平井压裂工艺技术现状及展望

水平井压裂工艺技术现状及展望水平井压裂技术是一种用于增加地下油气储层产能的有效工艺,已经被广泛应用于油气勘探与开采领域。
本文将对水平井压裂工艺技术的现状进行综述,并展望其未来发展趋势。
1. 技术原理:水平井压裂技术是通过在油气储层中钻探一根水平井管,然后通过高压液体将压裂剂注入井孔中,从而形成裂缝网络,增加储层的渗透率,促进油气的流动。
2. 应用领域:水平井压裂技术主要应用于非常规油气储层的开发,如页岩气、页岩油和煤层气等。
水平井压裂技术也被应用于传统油气田的增产。
3. 技术难点:水平井压裂技术面临的主要难题包括压裂剂的选择、裂缝网络的设计和优化、裂缝扩展和稳定性等。
目前,针对这些问题已经有了一些解决方案,但仍需进一步研究改进。
4. 技术发展:水平井压裂技术自20世纪80年代开始应用于油气勘探与开采,经过几十年的发展,已经取得了显著的成果。
特别是在美国,在页岩气开发中取得了巨大的成功,成为美国能源革命的关键技术之一。
1. 提高效率:目前,水平井压裂技术在工艺效率上仍有提升空间。
未来,可以通过改进压裂剂的性能,优化裂缝网络设计和优化压裂参数等措施,提高压裂效果,提高产能和采收率。
2. 精细化设计:由于地下油气储层的复杂性,水平井压裂技术还面临着很多挑战。
未来,可以通过引入计算模拟、导向钻井等先进技术,精细化设计水平井和压裂工艺,提高压裂效果和经济效益。
3. 环境友好化:在水平井压裂过程中,压裂液中的化学物质可能对地下环境造成一定的影响。
未来,可以通过研究和应用环境友好的压裂剂,减少对环境的影响,并开展相关环境保护技术的研究。
4. 多学科融合:水平井压裂技术是一个涉及地质学、工程学、化学等多学科的综合技术。
未来,需要进一步加强不同学科之间的交流与合作,共同推动水平井压裂技术的发展。
水平井压裂技术是一项广泛应用于油气勘探与开采领域的有效工艺。
虽然在技术原理和应用领域上已经有了明确的进展,但仍面临一些技术难点。
水平井压裂工艺技术现状及展望

水平井压裂工艺技术现状及展望
水平井压裂工艺技术是一种常用于增加油气井产能的工艺,它通过在水平井段注入高压液体,破裂储层,扩大储层渗透性,从而提高油气井的产能。
水平井压裂工艺技术在近几十年中取得了显著的发展,但仍然存在一些挑战和改进的空间。
1. 压裂液体的研究:压裂液体是水平井压裂中的关键因素,目前常用的压裂液体包括水基、油基和液体类等,它们各有优缺点。
未来的发展方向是研发出更环保、高效的压裂液体,减少对环境的污染,并提高施工效率。
2. 压裂剂的研究:压裂剂是压裂液中能够产生并维持破裂缝的固体颗粒。
目前常用的压裂剂有石英砂、陶瓷颗粒等,但它们存在流动性差、易堵塞缝道等问题。
未来的发展方向是研发出具有良好流动性和高强度的压裂剂,以提高压裂缝的持续性。
3. 压裂设计的优化:水平井压裂设计是决定压裂效果的关键因素之一。
目前常用的优化方法有试井资料分析、数值模拟等,但这些方法在实际应用中存在一定的局限性。
未来的发展方向是进一步完善水平井压裂设计方法,提高压裂效果和经济效益。
4. 压裂监测技术的发展:压裂监测技术是评估水平井压裂效果和优化压裂设计的重要手段。
目前常用的监测方法有地震勘探、压力监测等,但这些方法存在成本高、实时性差等问题。
未来的发展方向是研发出成本低、实时性强的压裂监测技术,以便更好地评估和优化水平井压裂效果。
水平井压裂工艺技术在油气井增产领域具有广阔的应用前景。
未来的发展方向是通过优化压裂液体、压裂剂和施工设计等,提高水平井压裂效果,降低成本,减少环境污染,并通过先进的监测技术实时评估和优化压裂效果,以达到更高的油气井产能和经济效益。
2024年压裂设备市场规模分析

2024年压裂设备市场规模分析概述压裂设备是在油气勘探和生产过程中使用的一种关键设备,用于将高压注入液体或气体压入岩石层,以扩展裂缝并提高油气产量。
压裂技术在页岩气和致密油等非常规能源开发中得到广泛应用,因此压裂设备市场也随之迅速增长。
市场规模分析根据市场研究数据,压裂设备市场在过去几年中保持着稳定的增长趋势。
预计在未来几年内,该市场将继续保持增长并达到更大规模。
区域市场分析按照地理区域划分,压裂设备市场可以分为北美、欧洲、亚洲太平洋、拉丁美洲和中东非洲等几个主要市场。
目前,北美地区是全球最大的压裂设备市场,拥有最多的非常规能源开发项目。
欧洲和亚洲太平洋地区也在不断提高对压裂设备的需求。
拉丁美洲和中东非洲地区在近年来开始积极探索和开发非常规能源资源,因此对压裂设备的需求也在逐渐增加。
市场驱动因素分析压裂设备市场的增长可归因于以下几个主要因素:1.不断增长的能源需求:全球能源需求不断增长,非常规能源资源的开发和生产成为满足需求的重要途径。
压裂技术的应用使得从页岩气和致密油等资源中提取能源更为高效。
2.技术创新和改进:压裂设备制造商持续进行技术创新和改进,以提高设备的效能和安全性。
新一代的压裂设备具有更高的处理能力和更低的能源消耗,能够满足不断增长的市场需求。
3.政策支持和投资:许多国家在非常规能源开发方面提供政策支持和资金投资。
这些政策和资金的推动促使压裂设备市场得到更快的发展。
市场前景与机遇压裂设备市场前景广阔,有以下几个主要机遇:1.新兴市场潜力:许多新兴市场,如中国、印度、巴西等,正迅速发展他们的非常规能源产业。
这些市场对压裂设备的需求将保持高速增长。
2.技术升级和替代需求:随着技术的不断进步,压裂设备的升级需求也将不断出现。
旧设备的替代需求将为市场带来新的增长动力。
3.环保压力的增加:随着环境保护意识的增强,对于低碳能源的需求也在增加。
压裂技术作为一种可持续和高效的能源开发方法,将会获得更多关注和需求。
2024年石油压裂支撑剂市场发展现状

2024年石油压裂支撑剂市场发展现状简介石油压裂支撑剂是一种广泛应用于石油开采过程中的材料,用于增加裂缝的稳定性和延长石油产能。
在过去几十年中,石油压裂支撑剂市场一直保持着稳定的增长,随着技术的不断进步和需求的增加,这个市场前景依然十分广阔。
市场规模目前,全球石油压裂支撑剂市场规模已经达到数十亿美元。
美国是最大的石油压裂支撑剂市场,占据了全球市场份额的40%以上。
而亚太地区的需求也在不断增长,预计未来几年内将成为石油压裂支撑剂市场的主要驱动力之一。
市场趋势环保意识的增强近年来,全球环保意识的增强使得对石油压裂支撑剂的要求越来越高。
传统的石油压裂支撑剂大多采用化学合成物质,对环境造成了一定的负面影响。
因此,研发和应用环境友好型的石油压裂支撑剂已经成为市场的一大趋势。
技术创新的推动随着石油行业技术的不断革新,也推动了石油压裂支撑剂市场的发展。
新型的石油压裂支撑剂有更高的压裂效果,能够提高石油开采的效率和产量。
同时,一些新技术的应用,如纳米材料和智能支撑剂等,也为石油压裂支撑剂的市场带来了新的机遇。
国际贸易的增加随着全球石油需求的不断增长,石油压裂支撑剂的国际贸易也在不断增加。
一些石油压裂支撑剂生产企业通过跨国合作和贸易,进一步扩大了市场份额。
同时,一些资源优势国家如美国和加拿大,也通过增加出口量来获得更大的市场份额。
主要厂商全球石油压裂支撑剂市场竞争激烈,主要厂商包括Halliburton、Baker Hughes、Schlumberger、Unimin Corporation等。
这些公司通过技术创新和市场扩张来维持其竞争力。
随着市场的不断发展,新的厂商也在不断涌现,为市场带来更多的竞争。
市场前景预计未来几年,全球石油压裂支撑剂市场将继续保持稳定增长。
新技术的应用和环保意识的增强将推动市场进一步发展。
同时,新兴市场如亚太地区的需求也将不断增长,为石油压裂支撑剂市场带来更多的机遇和潜力。
以上是对2024年石油压裂支撑剂市场发展现状的简要介绍,市场规模庞大且具有广阔的前景。
水平井压裂工艺技术现状及展望

水平井压裂工艺技术现状及展望水平井压裂工艺技术是一种在油气开采过程中常用的增产技术。
随着油气资源的日益枯竭和能源需求的不断增加,水平井压裂技术得到了广泛的应用和发展。
本文将对水平井压裂工艺技术的现状及展望作一详细的介绍。
1. 水平井压裂技术的起源水平井压裂技术起源于美国,上世纪90年代在美国的油气田开采中开始得到广泛应用。
通过对水平井进行定向钻井和高压液体介质的注入,从而将岩层进行压裂,增加了裂缝的面积和导流能力,提高了油气的产量。
2. 水平井压裂技术的应用水平井压裂技术在油田和气田的开发中得到了广泛的应用。
通过这一技术,能够有效地开采低渗透储层、致密砂岩和页岩气等非常规油气资源,提高了油气田的开采效率和产量。
3. 水平井压裂技术的发展随着油气资源的日益枯竭和能源需求的不断增加,水平井压裂技术的研究和发展也日益受到重视。
在技术方面,水平井的水平段长度和井眼直径越来越大,压裂技术也更加精细化和智能化;在装备方面,钻井设备和压裂设备也在不断更新和完善,提高了作业的效率和安全性。
4. 水平井压裂技术的问题水平井压裂技术在应用过程中也存在一些问题。
压裂液回收、裂缝控制、产能持续性等问题,需要在技术上不断攻关和改进。
二、水平井压裂工艺技术展望1. 技术的智能化和精细化未来,水平井压裂技术将朝着智能化和精细化的方向发展。
通过引入先进的传感技术和互联网技术,实现作业过程的实时监测和智能控制,提高作业的精准度和安全性。
2. 环保技术的研发和应用水平井压裂过程中产生的废水和废液对环境造成了一定的影响,未来需要加大对环保技术的研发和应用力度,实现压裂液的高效回收和再利用,降低对环境的影响。
3. 产能持续性技术的研究和应用水平井压裂工艺技术在增加了产能的也存在一定程度上的产能持续性问题。
未来需要加大对产能持续性技术的研究和应用,延长油气田的有效生产期,降低油气田的衰竭速度。
4. 新材料和新技术的推广应用水平井压裂工艺技术的发展也离不开新材料和新技术的推广应用。
压裂液技术现状与发展趋势

压裂液技术现状与发展趋势压裂液技术,即水力压裂技术,是一种应用于页岩气、煤层气等非常规气源开采中的关键技术。
它通过将大量高压水泵送至深部岩石中,产生强大的压力,使岩石发生裂缝,从而提高气体流通性,促进气体的释放与采集。
本文将从技术现状与发展趋势两个方面对压裂液技术进行探讨。
一、技术现状1.压裂液配方:目前,常用的压裂液配方主要包括水、粘土矿物、添加剂和控制剂等。
水是压裂液的主体,占总体积的70%以上,常用的水源是地表水和淡水。
粘土矿物主要用于维持压裂液的黏度和稳定性。
添加剂如增稠剂、降解剂等用于改善液体流动性能,控制剂则主要用于调节压裂液的性能与效果。
2.压裂液泵送技术:压裂液泵送技术是实现压裂液高效输送的关键。
目前常用的泵送技术包括高压泵、齿轮泵、隔膜泵和柱塞泵等。
高压泵是最常用的泵送设备,其具有泵送流量大、压力高、结构简单等优点,但能耗较大。
隔膜泵则是一种节能型泵送设备,其通过隔膜的周期性振动,实现压裂液的泵送。
3.施工技术与工具:压裂液的施工技术包括固井施工、射孔施工、水力压裂施工等。
常用的施工工具包括固井管、射孔弹、水力压裂装置等。
施工工具的研发与改良对提高压裂液的施工效果和采气效率具有重要意义。
二、发展趋势1.绿色环保化:近年来,压裂液技术在环保方面存在一些问题,如废水排放、地下水污染等。
未来的发展趋势将更加关注绿色环保,研发低污染、高效、可回收利用的压裂液技术。
2.高效低耗能:随着油气资源的逐渐枯竭,对压裂液技术的要求也越来越高。
未来的发展趋势将注重提高压裂液技术的效率和降低能源消耗,通过改进泵送技术、配方优化等手段实现高效低耗能。
3.智能化与自动化:随着科技的不断发展,压裂液技术也将朝着智能化、自动化方向发展。
智能化技术可以实现对压裂液的自动控制和监测,提高施工效率和精确度。
4.全球化合作:压裂液技术在世界范围内得到广泛应用,特别是美国页岩气革命的推动下,国际合作和经验交流日益重要。
2023年压裂设备行业市场前景分析

2023年压裂设备行业市场前景分析压裂设备,也叫液压压裂设备,是在石油和天然气勘探和开采过程中广泛使用的一种技术和设备。
目前,压裂设备行业市场前景非常广阔,未来几年内仍将保持较快的增长。
1. 国内压裂设备市场现状据统计,我国目前压裂设备市场份额约占全球50%左右,且国内市场需求继续保持较快增长。
随着国家能源政策转型,石油和天然气的供需形势发生变化,新能源产业也越来越成为国家重要的经济支柱,从而带动了压裂设备的市场需求。
2. 压裂设备行业市场前景随着我国能源需求的增长和能源政策的制定,压裂设备市场前景非常广阔。
同时,新的能源热点如页岩气、煤层气、油砂等的开发也对压裂设备市场带来了契机。
特别是在页岩气和煤层气的开发领域,压裂设备市场至少有5倍以上的增长空间。
另外,我国在经济结构重心转移和高技术产业发展的背景下,压裂设备行业也亟需转变发展方向,实现产业升级。
随着智能化技术的逐渐应用,未来的压裂设备将会趋向智能化和高效化。
3. 压裂设备行业市场竞争格局从市场竞争格局来看,压裂设备行业市场较为集中,多数企业已经形成了一定的市场规模。
其中国内外知名企业,如美国哈里伯顿公司、挪威约斯托股份公司、德国BHGE公司、中国石化等均拥有一定的市场份额。
随着科技的发展,压裂设备行业的技术创新及产品优势将成为企业竞争的核心。
在技术创新和产品升级方面,一些中小企业将有机会获得市场的发展机遇。
4. 压裂设备行业市场发展趋势从压裂设备的应用领域来看,未来的发展趋势将主要体现在以下几个方面:(1)推广新的技术和设备,提高压裂效率;(2)不断深入开发页岩气、煤层气等新型能源;(3)与智能化技术相结合,实现压裂设备的智能化和高效化;(4)注重节能环保,开发国内的绿色能源产品;(5)加强国际合作,拓展海外市场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压裂技术现状及发展趋势(长城钻探工程技术公司)在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。
低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。
1、压裂技术发展历程自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。
压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。
压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。
(2)1970年-1990年:中型压裂。
通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。
(3)1990年-1999年:整体压裂。
压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。
(4)1999年-2005年:开发压裂。
考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。
(5)2005年-今:广义的体积压裂。
从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。
2、压裂技术发展现状经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。
2.1 压裂工艺和技术2.1.1 区块开发压裂技术区块开发压裂技术把低渗透油气藏整体区块作为一个研究对象,根据油气藏地质特征建立区块地质模型和裂缝模型,研究区块注采井网条件下压裂方案的可行性,预测区块油气井产量、采油速度和采出程度,形成一套集成油藏工程和压裂技术的区块开发方式,为低渗透油气藏高效开发提供新的技术手段。
低渗低压油藏宝14区块[2]采用电阻率层析成像和微地震的方法检测裂缝方位及长度,在此基础上调整注采方式。
根据裂缝参数优化结果,在一些高水淹地区采用水平周期注水、间歇注水,大大提高了区块注水驱油的效率。
2.1.2 重复压裂技术重复压裂技术是指油气井第一次压裂裂缝失去作用后,对该井同一层位进行第二次或更多次压裂施工,恢复油气井产能。
图1 重复压裂技术原理示意图美国巴肯油田是典型的低渗低孔油田[3],2004年部署水平井初次压裂后水平段中有相当多的产层未有支撑剂铺置, 导致压后产量不高且稳产时间短,为此开展了16口水平井重复压裂试验,现场施工成功率达93.7%,重复压裂的平均施工压力明显降低,重已为该区增加650t的可采储量,增产效果明显。
国内截止到2006年7月,重复压裂工艺技术在安塞油田、陇东油田延长储层以及新疆乌尔禾储层应用237口井,增产效果显著。
2.1.3 煤层气压裂技术煤层具有杨氏模量低、泊松比高、天然割理发育等特点,国外煤层气压裂技术从90年代大排量、低砂比压裂开始探索,发展到现在中排量、较高砂比、连续油管分层压裂,压后产量是常规压裂产量的1.5倍。
在美国宾夕法尼亚州mount pleasant煤层气中共有33口井,通过使用LGB交联压裂液,压裂后区块产量增加到2831万方/月,单井产量得到较大提高。
国内中石油煤层气公司通过煤层岩性分析,形成了大排量、低伤害的煤层气压裂技术,2009年至2010年7月在韩城、三交、大宁-吉县区块共进行了220口井,463层的压裂施工,单井产量达2000-8000方/天,取得了明显的效果。
2.1.4 页岩气压裂技术页岩气储层低渗、低孔,即是烃源岩,又是储层和盖层,大部分都需要压裂改造才能生产。
美国页岩气发展历程如表1。
表1 美国页岩气发展历程国内在四川盆地中南部威远-长宁-昭通等地区开展页岩气开发先导性试验[4],目前成功完成了威201、宁201、昭104井、宁203井四口探井的页岩气储层直井压裂改造和威201-H1井水平井压裂改造,测试产量在0.72-1.86万方/天,显示该区块页岩气可采潜力巨大,为以后页岩气开发奠定了基础。
2.1.5 复杂储层压裂技术表2 复杂储层压裂技术(1)致密砂岩油气藏压裂技术致密砂岩油气藏具有低压、低渗、低产、低丰度等特点,储层压力系数低,压裂液进入地层已引起水锁损坏,影响压裂效果和返排效果。
目前,在苏里格气田采用整体优化压裂技术,确定了最佳裂缝长度和井网部署方式,形成了一套直井不动管柱封隔器分层压裂技术+裸眼完井水平井分段压裂技术,提高直井/水平井单井产量至2/10万方/天,取得了较好的经济开发效果。
(2)火成岩油气藏压裂技术火山岩油气藏具有埋藏深、温度高、天然微裂缝发育、储层非均质性严重、储层敏感性强等特点,造成压裂施工难度大、压裂液滤失严重,影响了火山岩油藏的开发。
大庆油田徐深气田为埋藏深、物性差的火山岩气藏,通过建立火山岩裂缝破裂和延伸数学模型,预测压裂施工风险,研制出170℃高温压裂液体系和深井压裂工具,完成了人工裂缝控制和火山岩压裂施工规范的制定,该技术共实施火山岩直井压裂147口227层,最大单井无阻流量达100万方/天,实现了火山岩油气藏增产效果的跨越式突破。
(3)深层稠油压裂技术深层稠油埋藏深,地层温度高,常规压裂面临增产效果不明显、有效期短、出砂问题,难以满足稠油油藏生产的需求。
吐哈油田鲁克沁深层稠油油藏[5]针对原油粘度高、地层岩性疏松、无有效封隔等特点,开展了前期稠油压裂效果分析,形成了大孔径电缆射孔、压前解堵剂预处理、层内多段、多层体积压裂、水基降粘压裂液等配套技术,在现场试验3井次,施工成功率100%,平均单井日增油6.3t,取得了较好的压裂效果。
(4)潜山高凝油压裂技术潜山储层主要孔隙类型为构造裂缝,油品性质为高凝油,具有含蜡量高、凝固点高、析蜡点高和蜡熔点高等特点,原油在地层中流动性差,开采难度大。
辽河油田曹台古潜山油藏为高凝油油藏,随着注水开发,高渗透砂岩进入高含水期,低渗透砂岩注水效果差,为此,2004年攻克潜山大型压裂难题,采用降滤失工艺和高温压裂液,提高了施工成功率。
研发了热压裂液技术[6],压裂液入井后温度达60℃,降低了高凝油粘度,近年来实施3口井,单井最大加砂量达80m3,累计增油2431t,取得了较好的增产效果。
(5)碳酸盐岩油气藏酸化压裂技术碳酸盐岩油气藏储集空间复杂,既有裂缝溶蚀孔洞型、孔隙型,也有复合型。
碳酸盐岩大部分储层非均质性强,裂缝发育,压裂液滤失严重,造成碳酸盐岩储层压裂是世界性难题。
酸压技术从常规稠化酸、缓速酸发展到目高效酸+多级注入酸压技术+闭合裂缝酸化技术,在低渗碳酸盐岩中取得较好的效果,近年来,国内外碳酸盐岩酸压技术发展迅速,转向酸压、水平井水力喷射酸压、裸眼封隔器分段酸压技术开始成为主流技术。
斯伦贝谢纤维转向酸压技术开始应用于碳酸盐岩储层改造,在壳牌卡达尔海上油田应用16口井,转向效果明显。
2.2 压裂液技术压裂液起传递压力、形成地层裂缝、携带支撑剂进入裂缝等作用,其性能对压裂施工由重要的影响,目前压裂液向低伤害、环保、高性能的方向发展,形成的压裂液体系主要有以下几类:2.2.1 清洁压裂液清洁压裂液采用粘弹性表面活性剂(VES)作“稠化剂”在盐水中配制完成,不需要交联剂、破胶剂等化学添加剂。
1997年斯伦贝谢公司成功将VES应用于压裂液中,研制出ClearFrac压裂液[7],目前在美国、加拿大、墨西哥湾等地区广泛使用VES压力液,现场配制简单,摩阻低,携砂性能好,取得了较好的应用效果。
国内在大庆、长庆、克拉玛依等油田先后引进ClearFrac压裂液技术,试验几十口井,增产效果明显。
图2 清洁压裂液和常规压裂液对比图2.2.2 低浓度压裂液BJ公司研发了VISTAR型低浓度胍胶压裂液,胍胶用量减少了30-50%。
哈里伯顿公司研发的Delta Frac压裂液体系,该体系聚合物加量比常规体系低30%,大大降低了压裂液的残渣伤害。
国内长城钻探昆山公司研制的羧甲基羟丙基压裂液,在保持瓜尔胶的优点基础上,其使用浓度降低一半,残渣只有瓜尔胶及其羟丙基的五分之一到十分之一,对油气层的伤害可以大幅度的降低。
2.2.3 低分子胍胶压裂液哈里伯顿公司研制出了HPM压裂液,该压裂液采用低分子量胍胶(分子量是常规胍胶分子量的1/20-1/30),易形成较好的交联流体,使用温度达127℃。
由于该体系受pH值控制,所以可以实时监测压裂液体系性能并做出调整。
国内长庆油田油气工艺技术研究院研发了CJ2-3型低分子压裂液,采用的稠化剂分子量仅为常规胍胶的1/5,在长庆油田试验3口井,成功率100%。
2.2.4 清水压裂液国外从上世纪70年代开始开展清水压裂的研究和试验,从原始的清水不加支撑剂压裂发展到目前的清水前置液+交联携砂液混合清水压裂,在低渗砂岩致密气藏中取得了较好的应用效果。
国内目前在页岩气、煤层气中开始应用清水压裂施工,降低了施工成本,为非常规油气藏开发提供了新的技术手段。
2.2.5 LPG压裂液在New Btunswick McCully气田成功应用了一种基于液化石油气(LPG)的压裂液体系[8],由于LPG与储存配伍性好,多层段压裂作业时不需要返排,且LPG可以和储层中的天然气混合,也可以溶解于原油,降低原油粘度。
通过使用LPG压裂液,McCully气田不仅缩减了返排、水处理的费用,而且与水基压裂液相比,得到了更长的裂缝半长和更高的产量。
2.3 支撑剂技术发展现状支撑剂起支撑裂缝的作用,其质量决定了压裂效果的成败。
从1950年代压裂使用天然石英砂开始,支撑剂得到了快速的发展。
60年代尝试使用塑料珠、胡桃壳尝试单层加砂,由于沉降、应力集中而失败;70年代发展了树脂包裹石英砂和陶粒,开始广泛地应用于各类复杂环境。
目前,支撑剂向高强度、低密度、多元作用的方向发展。
2.3.1树脂包裹石英砂针对石英砂抗压能力差、导流能力低的特点,研制了树脂包裹石英砂。
树脂包裹石英砂分为预固化和可固化两种,预固化包裹石英砂可以使应力分布更加均匀,可以降低在不同的闭合应力下破碎率,提高裂缝导流能力。
可固化包裹石英砂主要用来填砂和防止支撑剂回流。
大港油田研制了一种多涂层预包防砂支撑剂[9],该支撑剂能够满足低温、4-6h快速固化、强度高等特点,在大港油田应用4口井,防砂成功率100%,成功解决了注水井、采油井及侧钻井出砂的难题。