信号光纤传输技术实验.

合集下载

光纤传输_实验报告

光纤传输_实验报告

一、实验目的1. 了解光纤传输的基本原理和结构。

2. 掌握光纤传输系统的基本组成和功能。

3. 学习光纤传输的实验方法和测试技术。

4. 熟悉光纤传输中常见问题的解决方法。

二、实验原理光纤传输是一种利用光导纤维传输光信号的技术。

光导纤维由纤芯、包层和涂覆层组成,纤芯具有较高的折射率,包层折射率较低,通过全内反射原理实现光信号的传输。

光纤传输具有以下特点:1. 传输速率高:光纤传输速率可达数十吉比特/秒。

2. 传输距离远:光纤传输距离可达数公里至数十公里。

3. 抗干扰性强:光纤传输不受电磁干扰。

4. 保密性好:光纤传输不易被窃听。

三、实验仪器与设备1. 光纤传输实验装置2. 光源3. 光纤连接器4. 光功率计5. 光频谱分析仪6. 光时域反射计(OTDR)四、实验内容1. 光纤连接器测试2. 光纤传输系统测试3. 光功率测试4. 光频谱分析5. OTDR测试五、实验步骤1. 光纤连接器测试(1)将光纤连接器插入光源,调整光源输出功率。

(2)将光纤连接器插入光功率计,测量输出功率。

(3)比较实际输出功率与理论输出功率,分析误差原因。

2. 光纤传输系统测试(1)搭建光纤传输系统,包括光源、光纤、光功率计等。

(2)测量系统传输速率,记录测试数据。

(3)分析测试数据,评估系统性能。

3. 光功率测试(1)将光功率计插入光纤传输系统,测量系统输出功率。

(2)记录实际输出功率与理论输出功率,分析误差原因。

4. 光频谱分析(1)将光频谱分析仪连接到光纤传输系统。

(2)测量系统输出信号的频谱,记录测试数据。

(3)分析测试数据,了解系统频谱特性。

5. OTDR测试(1)将OTDR连接到光纤传输系统。

(2)测量系统传输损耗,记录测试数据。

(3)分析测试数据,评估系统传输损耗。

六、实验结果与分析1. 光纤连接器测试结果显示,实际输出功率与理论输出功率基本一致,误差在允许范围内。

2. 光纤传输系统测试结果显示,系统传输速率达到预期目标,系统性能良好。

光纤特性及传输试验

光纤特性及传输试验

光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进 行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后 的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹 的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率 资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通 信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波 和亚毫米波时遇到了困难。

光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信 无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。

与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷 设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信 息社会。

实验目的1 . 了解光纤通信的原理及基本特性。

2 .测量半导体激光器的伏安特性,电光转换特性。

3 .测量光电二极管的伏安特性。

4 .基带(幅度)调制传输实验。

5 .频率调制传输实验。

6 .音频信号传输实验。

7 .数字信号传输实验。

实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横 截面如图1所示。

纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。

若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤:若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。

若纤芯直径小于 1011m ,只有一种模式的光波能在光纤中传播,称为单模光纤。

若纤芯直径5011m 左右,有多个模式的光波能在光纤中传播,称为多模光纤。

防护层由缓冲涂层、加强材料涂覆层及套塑层组成。

光纤传输系统实验报告

光纤传输系统实验报告

光纤传输系统实验报告光纤传输系统实验报告引言:光纤传输系统是一种利用光信号传输信息的高速通信技术,被广泛应用于现代通信领域。

本实验旨在通过搭建光纤传输系统,探究其传输性能及优势,并对其在实际应用中的潜力进行评估。

一、实验目的本实验的主要目的是通过搭建光纤传输系统,测量其传输性能,并对比传统的电信号传输系统,评估光纤传输系统的优势。

二、实验原理光纤传输系统是利用光信号在光纤中传输信息的技术。

其基本原理是通过将电信号转换为光信号,并利用光纤的高速传输特性,将信号从发送端传输到接收端。

光纤传输系统主要由光源、调制器、光纤、接收器和解调器等组成。

三、实验步骤1. 搭建光纤传输系统:将光源、调制器、光纤、接收器和解调器依次连接起来,确保连接稳定可靠。

2. 测试传输性能:通过发送端发送一系列测试信号,利用接收端接收并解调信号,测量信号的传输速率、传输距离和误码率等指标。

3. 对比实验:同时进行一组传统电信号传输系统的测试,比较两者的传输性能差异。

四、实验结果与分析通过测试,我们得到了光纤传输系统的传输性能数据。

与传统电信号传输系统相比,光纤传输系统具有以下优势:1. 高速传输:光纤传输系统的传输速率远高于传统电信号传输系统,可以满足大容量数据传输的需求。

2. 长距离传输:光纤传输系统的传输距离较长,信号衰减较小,适用于远距离通信。

3. 低误码率:光纤传输系统的传输信号稳定可靠,误码率较低,适用于高质量通信。

4. 抗干扰能力强:光纤传输系统对电磁干扰和噪声的抗干扰能力较强,传输信号的稳定性更高。

五、实验结论通过本次实验,我们验证了光纤传输系统在传输性能方面的优势。

光纤传输系统具有高速传输、长距离传输、低误码率和抗干扰能力强等特点,适用于各种通信领域。

在未来的通信发展中,光纤传输系统将发挥更加重要的作用。

六、实验总结本次实验通过搭建光纤传输系统,深入了解了其原理和传输性能。

光纤传输系统作为一种高速、稳定的通信技术,为现代通信领域的发展提供了强大的支持。

音频信号光纤传输技术实验报告

音频信号光纤传输技术实验报告
在光纤端面上,当光线入射角小于一定值?a时,折射光线在纤芯和包层界面上的入射角Ф才会大于临界角Фm,光线才能在光纤内多次全反射而传递到另一端。在光纤端面上,入射角θ′>θa的那些光线,折射后在界面上的入射角小于临界角Фm,光线将射出界面,如图40-2中光线2。这个入射角θa称为光学纤维的孔径角,它的数值由光学纤维的数值孔径决定。光纤的数值孔径N定义为
(4)光纤的几何参数:根据国际电报电话咨询委员会(CCITT)建议,光纤几何参数包括以下内容:芯径、包层表面直径、芯径不圆度、包层表面不圆度、包层表面相对于纤芯中心的不同心度。它们分别由下面公式来定义:
纤芯不圆度=2(dmax-dmin)/(dmax+dmin)(3)包层表面不圆度=2(Dmax-Dmin)/(Dmax+Dmin)(4)式中dmax、dmin是芯径最大值和最小值,Dmax、Dmin是包层表面直径的最大值和最小值。包层表面相对纤芯中心的不同心度=y/d(5)式中y是纤芯中心和包层表面中心的距离,d是芯径。-4成正比,它随着光波长的增加而急剧减小。在小于1μm的波长范围内,瑞利散射是光纤中主要的损耗因素。
石英光纤在近红外波段μm、μm、μm有较好透过率。因此传输系统光源的发射光波长必须与其吻合,目前长距离光通讯系统多采用μm或μm单模光纤。(目前,单模光纤传输损耗在μm和μm分别为/km和/km)。
(3)光纤的色散直接影响可传输信号的带宽,色散主要由三部分组成:折射率色散;模色散;结构色散。折射率色散是由于光纤材料的折射率随不同光波长变化而引起,采用单波长、窄谱线的半导体激光器可以使折射率色散减至最小。采用单模光纤可以使模色散减至最小。结构色散由光纤材料的传播常数及光频产生非线性关系所造成。目前单模光纤的传输带宽可达数GHz。

光纤信号传输实验报告

光纤信号传输实验报告

光纤信号传输实验报告光纤信号传输实验报告引言:随着科技的不断进步,光纤通信作为一种高速、大容量、低损耗的传输方式,已经成为现代通信领域的重要组成部分。

本实验旨在通过搭建光纤传输系统,探究光纤信号传输的原理和性能。

一、实验目的本实验的主要目的有三点:1.了解光纤传输的基本原理和结构;2.掌握光纤传输系统的搭建和调试方法;3.研究光纤传输的性能指标,如传输距离、带宽等。

二、实验器材和原理1.实验器材:本实验所需的器材包括:光纤、光纤收发器、光源、光功率计、信号发生器等。

2.实验原理:光纤传输是利用光的全内反射原理,将信息通过光的折射和反射在光纤中传输的技术。

光纤由芯和包层组成,芯是光信号传输的主要通道,包层则用于保护和引导光信号。

光纤传输的基本原理是利用光的全内反射现象,当光线从光纤的一端入射时,当入射角小于临界角时,光线会发生全内反射,从而沿着光纤传输。

光纤传输的距离和传输质量受到多种因素的影响,如光纤的损耗、色散、衰减等。

三、实验步骤1.搭建光纤传输系统:首先,将光纤收发器分别连接到光源和光功率计上,然后将光纤的一端连接到光纤收发器的发射端,另一端连接到接收端。

接下来,将信号发生器连接到光源上,通过调节信号发生器的频率和幅度,产生不同的信号。

2.调试光纤传输系统:通过调节光源和光功率计之间的距离,观察光功率计的读数变化,确定最佳传输距离。

同时,通过调节信号发生器的参数,观察信号的传输质量,如是否出现失真、噪声等现象。

3.测量光纤传输性能:利用光功率计测量光纤传输系统的光功率损耗,通过改变传输距离和光纤的类型,比较不同条件下的光功率损耗情况。

此外,还可以利用频谱分析仪测量光纤传输的带宽,了解光纤传输系统的传输能力。

四、实验结果与分析通过实验,我们得到了以下结果:1.在调试光纤传输系统时,我们发现光功率计的读数随着光源和光功率计之间的距离增加而减小,当距离过远时,光功率计无法读取到信号,说明光纤传输存在传输距离限制。

光纤传输实验报告(共8篇)

光纤传输实验报告(共8篇)

光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。

2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。

主要材料有:测试记录表格、实验手册等。

3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。

光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。

在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。

4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。

(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。

(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。

(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。

5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。

(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。

(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。

(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。

实验四-模拟信号光纤传输系统实验

实验四模拟信号光纤传输系统实验一、实验目的1、了解发送光端机的发光管特性;2、掌握如何在光纤信道中高性能传输模拟信号;3、掌握发送光端机中传输模拟信号驱动电路的设计;4、了解光检测器的原理;5、光接收机的组成;二、预备知识1、光端机发光管特性;2、信道的非线性;3、光电转换特性;4、弱信号检测;三、实验仪器1、Z H5002(II)型“光纤发送模块”、“光纤接收模块”一套;2、20MHz示波器一台;3、低频信号源一台;4、光功率计一台;四、实验原理1、模拟光纤传输系统的主要技术指标:模拟光纤传输系统有两个关键性的质量指标:(1)信噪比S/N(2)信道线性度(非线性失真度)信噪比S/N与信道线性度分别表达噪声大小和线性好坏,这两个指标的数值依据传输的实际用途而定。

一般地说高质量的电视传输(例如演播室图象传输)要求信噪比S/N达到56dB,差分增益ΔG=0.3dB(差分增益是用于表示在不同输入信号电平上所引起增益的差值,即通道的线性度)。

对于数字载波传输系统(模拟信号传输),所需信噪比S/N和通道线性度一般比这要求低,可根据实际系统指标的分配决定。

2、模拟光纤传输系统的噪声来源噪声问题是模拟光纤系统最重要的问题之一,系统的任何组成部分包括有源部件和无源部件都可产生噪声,并叠加在传输信号之上。

在模拟传输系统中,主要由光发射机、传输光纤、光接收机和各类连接器所组成。

在光接收机中光检测器又由光检二极管和前置放大器组成。

模拟光纤传输链路中的噪声主要来源于以下几个方面:(1)光发射机中激光器光强的涨落,即相对强度噪声。

在模拟光纤系统中,激光器的直流偏置点是置于线性范围的中间,即在高于激光器阀值电流I th的某一电流I处。

相对强度噪声随着激光器的偏置不同而变化,在阀值附近,其达到最大,随着偏置增加,•即激光器输出功率增加,其会下降。

相对强度噪声和激光器的工作频率亦有关系,一般在低频时较小,而在高频时相对强度噪声则明显增加。

大学光纤传输实验报告

一、实验目的1. 了解光纤传输系统的基本结构和各部件的选配原则。

2. 熟悉光纤传输系统中电光/光电转换器件的基本性能。

3. 训练如何在光纤传输系统中获得较好的信号传输质量。

二、实验原理光纤传输技术是一种利用光导纤维传输信号的通信技术。

光纤具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰等优点,已成为现代通信的主要传输手段。

光纤传输系统主要由以下几部分组成:1. 光源:将电信号转换为光信号,常用的光源有LED、激光二极管等。

2. 光纤:传输光信号的介质,分为单模光纤和多模光纤。

3. 光发射机:将电信号转换为光信号,并驱动光源。

4. 光接收机:将光信号转换为电信号,并进行放大处理。

5. 传输介质:连接光发射机和光接收机的介质,如光缆等。

实验中,我们主要研究LED-传输光纤组件的电光特性,并验证硅光电二极管可以将传输的光信号转换为电信号。

三、实验仪器1. TKGT-1型音频信号光纤传输实验仪2. 信号发生器3. 双踪示波器四、实验步骤1. 连接实验仪器,包括光源、光纤、光发射机、光接收机和传输介质。

2. 将信号发生器输出的电信号输入光发射机,驱动光源发光。

3. 通过光纤将光信号传输到光接收机。

4. 在光接收机输出端连接示波器,观察接收到的电信号波形。

5. 调整光源的偏置电流和调制信号的幅度,观察信号传输质量的变化。

五、实验结果与分析1. 在合适的偏置电流下,LED-传输光纤组件具有线性电光特性,信号传输质量较好。

2. 随着偏置电流的增加,LED-传输光纤组件的光输出功率增加,信号传输质量提高。

3. 调整调制信号的幅度,可以改变信号传输质量。

当调制信号幅度过大时,会产生谐波失真,信号传输质量下降。

六、实验结论1. 光纤传输技术具有损耗低、频带宽、抗干扰能力强等优点,是现代通信的主要传输手段。

2. 通过调整光源的偏置电流和调制信号的幅度,可以优化信号传输质量。

3. 本实验验证了LED-传输光纤组件的电光特性,为实际应用提供了理论依据。

光纤传输实验报告

光纤传输实验报告光纤传输实验报告引言在现代科技的快速发展中,光纤传输技术成为了信息传输领域的重要组成部分。

光纤传输具有高速、大容量、低损耗等优势,被广泛应用于通信、数据传输、医疗设备等领域。

本实验旨在通过实际操作,验证光纤传输的原理和性能,并了解其在实际应用中的局限性。

实验一:光纤传输原理验证实验目的:验证光纤传输的原理,了解光纤的基本结构和工作原理。

实验步骤:1. 准备一根光纤,将其两端分别连接到光源和接收器。

2. 打开光源,观察接收器是否能够接收到光信号。

3. 通过改变光源的强度和频率,观察接收器对光信号的响应情况。

实验结果与分析:在实验中,我们观察到当光源工作时,接收器能够接收到光信号,并且随着光源强度和频率的变化,接收器对光信号的响应也相应变化。

这说明光纤传输是通过光信号的传输来实现的。

光信号在光纤中以全内反射的方式传播,通过光纤的折射和反射,实现信号的传输。

实验二:光纤传输性能测试实验目的:测试光纤传输的带宽、传输距离和传输速率。

实验步骤:1. 准备一根长度为100米的光纤,将其两端分别连接到光源和接收器。

2. 设置测试仪器,记录光纤传输的带宽、传输距离和传输速率。

3. 通过改变光源的强度和频率,观察带宽、传输距离和传输速率的变化情况。

实验结果与分析:在实验中,我们测试了光纤传输的带宽、传输距离和传输速率。

结果显示,光纤传输具有较大的带宽,能够支持高速数据传输。

传输距离方面,光纤传输的损耗较小,可以支持较长的传输距离。

传输速率方面,光纤传输速率高,能够满足大容量数据传输的需求。

实验三:光纤传输的局限性实验目的:了解光纤传输在实际应用中的局限性。

实验步骤:1. 将光纤连接到一个强光源和一个接收器。

2. 改变光纤的弯曲程度,观察光信号的传输情况。

3. 改变光纤连接的角度,观察光信号的传输情况。

实验结果与分析:在实验中,我们观察到当光纤被弯曲或连接角度改变时,光信号的传输会受到影响。

光纤传输需要保持较小的弯曲半径和恰当的连接角度,以确保光信号的传输质量。

光纤传输技术实验实验报告

光纤传输技术实验实验报告实验目的:本实验旨在使学生了解光纤传输技术的原理,掌握光纤通信的基本操作和测试方法,并通过实验加深对光纤传输特性的理解。

实验原理:光纤传输技术是利用光波在光纤中传输信息的一种通信方式。

光纤由纤芯和包层组成,光波在纤芯中以全反射的方式传播,从而实现长距离、高带宽的信息传输。

实验设备:1. 光纤传输实验平台2. 光源(激光器)3. 光纤连接器4. 光纤衰减器5. 光功率计6. 光时域反射仪(OTDR)7. 光纤熔接机(可选)实验步骤:1. 连接光纤传输实验平台,确保所有设备连接正确。

2. 打开光源,调节至合适的输出功率。

3. 将光源与光纤连接器连接,确保连接牢固。

4. 通过光纤传输实验平台传输光信号,观察光信号的传输情况。

5. 使用光功率计测量输入端和输出端的光功率,记录数据。

6. 如有必要,使用光纤衰减器调整光信号的强度。

7. 使用OTDR测试光纤的损耗和长度。

8. 根据实验要求,进行光纤熔接实验(可选)。

实验结果:1. 光功率计测量结果显示,输入端和输出端的光功率分别为X dBm和Y dBm。

2. OTDR测试结果显示,光纤的损耗为Z dB/km,长度为A km。

3. 若进行了光纤熔接实验,熔接点的损耗为B dB。

实验分析:通过实验数据,可以分析光纤传输的损耗特性和传输效率。

输入端和输出端的光功率差值反映了光纤的衰减情况。

OTDR测试结果可以进一步验证光纤的损耗和长度,为光纤传输系统的设计与优化提供参考。

实验结论:本次实验成功地展示了光纤传输技术的基本操作和测试方法。

通过实验,我们了解到光纤传输具有低损耗、高带宽等优点,是现代通信系统中不可或缺的技术之一。

实验中测量的数据和分析结果为光纤传输系统的设计和优化提供了重要的参考。

实验心得:通过本次实验,我对光纤传输技术有了更深入的了解。

实验过程中,我学会了如何操作光纤传输实验平台,如何使用光功率计和OTDR等测试工具。

此外,通过实际操作,我更加明白了光纤传输技术在现代通信领域的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

音频信号光纤传输技术实验预习要求通过预习应理解以下几个问题:1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理;2.LED 调制、驱动电路工作原理3.LED 偏置电流和调制信号的幅度应如何选择、;4.测量SPD 光电流的I-V 变换电路的工作原理。

实验目的1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法;2.了解音频信号光纤传输系统的结构及各主要部件的选配原则;3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术;4.学习音频信号光纤传输系统的调试技术。

实验原理一.系统的组成音频信号光纤传输系统的原理图如图8-1-1所示。

它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。

光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。

本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。

为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围。

对于音频信号,其频谱在20Hz ~20KHz 的范围内。

光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。

二、光纤的结构及传光原理衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。

前者决定于光纤的损耗特性,后者决定于光纤的频率特性。

目前光纤的损耗容易做到每公里零点几dB 水平。

光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。

光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。

光纤的频率特性主要决定于光纤的模式性质。

光纤按其模式性质通常可以分成单模光纤和多模光纤。

无论单模或多模光纤,其结构均由纤芯和包层两部分组成。

纤芯的折射率较包层折射率大。

对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。

多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。

以上两种光纤的包层直径均为125μm。

按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图数,但纤芯折射率n 1略大于包层折射率n 2。

所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。

在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层的范围内折射率保持这一值不变,根据光射线在非均匀介质中的传播理论[1]可知:经光源耦合到渐变型光纤中的某些光射线,在纤芯内是沿周期性地弯向光纤轴线的曲线传播。

本实验采用阶跃型多模光纤作为信道,以下应用几何光学理论进一步说明阶跃型多模光纤的传光原理。

当一光束投射到光纤端面时,其入射面包含光纤轴线的光线称为子午射线,这类射线在光纤内部的行径是一条与光纤轴线相交、呈“Z”字型前进的平面折线。

若耦合到光纤内部的光射线在光纤入射端的入射面不包含光纤轴线,称为偏射线。

偏射线在光纤内部不与光纤轴线相交;其行径是一条空间折线。

以下我们只对子午射线的传播特性进行分析。

参看图8-1-2,假设光纤端面与其轴线垂直。

对于子午光射线,根据smell 定律及图8-1-2所示的几何关系有:z i sin n sin n θθ10= (8-1-1)其中απθ-=2z ,所以有αθcos n sin n i 10= (8-1-2)其中0n 在空气介质中,故n 0 =1。

由(8-1-2)式可知:如果光线在光纤端面处的入射角i θ较小, 则它进入光纤内部后投射到纤芯-包层界面处的入射角α 就会大于按下式决定的临界角c α:(12n n a r c s i n c =α (8-1-3)在此情形下光射线在纤芯-包层界面处发生全内反射。

该射线所携带的光功率就被局限在纤芯内部而不外溢。

满足这一条件的射线称为传导射线。

随着图8-1-2中入射角i θ的增加,α角就会逐渐减小,直到c αα=时,子午射线携带的光功率均可被局限在纤芯内。

在此之后,若继续增加i θ,则α角就会变得小于c α,这时子午射线在纤芯-包层界面处的全反射条件受到破坏,致使光射线在纤芯-包层界面处的每次反射均有部分光功率溢出纤芯外,光导纤维再也不能把光功率有效地约束在纤芯内部。

这类射线称为漏射线。

n 1 n 2 n 0 αi θz θ 121 12 2 222子午传导射线漏射线 1 图8-1-2 子午传导射线与漏射线半导体发光二极管的正向伏安特性如图8-1-4示,与普通的二极管相比,正向电压大于1V 以后才开始导通。

在正常使用情况下,正向压降为1.5V 左右。

半导体发光二极管LED 的电-光特性如图8-1-5所示。

为了使传输系统的发送端能够产生一个无非线性失真、而峰—峰值又最大的光信号,使用LED 时应先给它一个适当的偏置电流,其值等于电-光特性线性部分中点对应的电流值,而调制电流的峰—峰值应尽可能大地处于电-光特性的这一线性范围内。

发送端LED 的驱动和调制电路如图8-1-6所示,以BG1为主构成的电路是LED 的驱动电路,调节这一电路中的W2可使LED 的偏置电流在0—50mA 的范围内变化。

音频信号由IC1构成的音频放大电路放大后, 经电容器C4耦合到BG1基极对LED 的工作电流进行调制,从而使LED 发送出光强随音频信号变化的光信号,并经光导纤维把这一信号传送到接收端。

根据理想运放电路开环电压增益大、同相和反相输入端输入阻抗高和虚地等三个基本性质,可以推导出图8-1-6所示音频放大电路的闭环增益为:G (jω)= V 0 / V i = 1+ Z 2 / Z 1 ( 8-1-5)其中Z 2、Z 1分别为放大器反馈阻抗和反相输入端的接地阻抗。

只要C 3选得足够小,C 2选得足够大,则在要求带宽的中频范围内,C 3的阻抗很大,它所在支路可视为开路,而C 2的阻抗很小,它可视为短路。

在此情况下,放大电路的闭环增益 G (jω)=1+R3/R1 。

C 3的大小决定了高频端的截止频率f 2,而C 2的值决定着低频端的截止频率f 1。

故该电路中的R 1、R 2、R 3和C 2、C 3是决定音频放大电路增益和带宽的几个重要参数。

四.半导体光电二极管的结构、工作原理及特性半导体光电二极管与普通的半导体二极管一样,都具体一个p-n 结, 光电二极管在外形结构方面有它自身的特点,这主要表现在光电二极管的管壳上有一个能让光射入其光敏区的窗口. 此外,与普通二极管不同,它经常工作在反向偏置电压状态(如图8-1-7a 所示)或无偏压状态(如图8-1-7b 所示)(注:光电二极管的偏置电压是指无光照时二极管两端所承受0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 5101520253020 10 0 I(mA P(μW I(mAV(v图8-1-4 LED的正向伏安特性图8-1-5 LED的电光特性图8-1-6 LED 的驱动和调制电路的电压). 在反压工作状态下p-n 结的空间电荷区的势垒增高、宽度加大、结电阻增加、结电容减小,所有这些均有利于提高光电二极管的高频响应性能。

无光照时,反向偏置的p-n 结只有很小的反向漏电流,称为暗电流。

当有光子能量大于p-n 结半导体材料的带隙宽度E g 的光波照射到光电二极管的光敏区时,p-n 结各区域中的价电子吸收光子能量后, 将挣脱价键的束缚而成为自由电子,与此同时也产生一个自由空穴。

这些由光照产生的自由电子-空穴对,统称为光生载流子。

在远离空间电荷区(亦称耗尽区)的p 区和N 区内,电场强度很弱,光生载流子只有扩散运动,它们在扩散的途中因复合而被消失掉,故不能形成光电流。

形成光电流的主要靠空间电荷区的光生载流子,因为在空间电荷区内电场很强,在此强电场作用下,光生自由电子-空穴对将以很高的速度分别向N 区和P 区运动,并很快越过这些区域到达电极,沿外电路闭合形成光电流。

光电流的方向是从二极管的负极流向它的正极, 并且在无偏压的情况下与入射的光功率成正比。

在光电二极管的p-n 结中,增加空间电荷区的宽度对提高光电转换效率有着密切关系。

为此目的,若在p-n 结的p 区和n 区之间再加一层杂质浓度很低以致可近似为本征半导体(用i 表示)的i 层,就形成了具有p-i-n 三层结构的半导体光电二极管,简称PIN 光电二极管, PIN 光电二极管的p-n 结除具有较宽空间电荷区外,还具有很大的结电阻和很小的结电容,这些特点使PIN 管在光电转换效率和高频响应特性方面与普通光电二极管相比均得到了很大改善。

根据文献[2],光电二极管的伏—安特性可用下式表示:([]L I kT /qV exp I I +-=10 (8-1-6)其中I 0是无光照的反向饱和电流,V 是二极管的端电压,q 为电子电荷,k 为波耳兹曼常数, T 是结温,单位为K ,I L 是无偏压状态下光照时的短路电流,它与光照时的光功率成正比。

(8-1-6)式中的I o 和I L 均是反向电流,即从光电二极管负极流向正极的电流。

根据(8-1-6)式,光电二极管的伏—安特性曲线如图8-1-8所示,对应图8-1-7a 所示的反压工作状态,光电二极管的工作点由负载线与第三象限的伏-安特性曲线交点确定。

由图8-1-8可看出:P 区 N 区P N E P NR L R L空间(a )反向偏置电压状态(b )无偏置电压状态图8-1-7 光电二极管的结构及工作方式R L 小负载线 R L 大负载线μA 50 100 150 200 250 (mV )图8-1-8 光电二极管的伏-安特性曲线及工作点的确定1. 光电二极管既使在无偏压的工作状态下,也有反向电流流过,这与普通二极管只具有单向导电性相比有着本质的差别;2. 反压工作状态下,在外加电压V 和负载电阻R L 的很大变化范围内,光电流与入照光功率均具有较好的线性关系;无偏压负载工作状态下,只有R L 较小时光电流才与入照光功率成正比,R L 增大时,光电流与光功率呈非线性关系;无偏压短路状态下,短路电流与入照光功率具有很好的线性关系, 这一关系称为光电二极管的光—电特性,光—电特性在I -P 坐标系中的斜率:P /I R ∆∆≡(μA/μW)(8-1-7)定义为光电二极管的响应度,它是表征光电二极管光电转换效率的重要参数。

相关文档
最新文档