河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
2018-2019学年上学期高二数学12月月考试题含解析(371)

永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.42.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=14.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A .8B .9C .10D .128.已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A .B .C .D .9.若直线l :y =ax ﹣1与抛物线C :y 2=(a ﹣1)x 恰好有一个公共点,则实数a 的值构成的集合为( )A .{﹣1,0}B .{﹣1, }C .{0, }D .{1,,0}10.直线kx ﹣y ﹣2k +2=0恒过定点A ,若点A 是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A .x +4y ﹣10=0B .2x ﹣y ﹣2=0C .4x +y ﹣10=0D .4x ﹣y ﹣6=011.如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .12.已知椭圆C 1:+=1(a >b >0)与双曲线C 2:﹣=1(m >0,n >0)有共同的焦点F 1,F 2,且在第一象限的交点为P ,满足2•=2(其中O 为原点)设C 1,C 2的离心率分别为e 1,e 2当3e 1+e 2取得最小值时,e 1的值为( )A .B .C .D .二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 .14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 .16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 .三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.4【分析】根据题意,将双曲线的方程变形可得标准方程,分析可得其a的值,由双曲线实轴的定义计算可得答案.【解答】解:根据题意,双曲线方程为:2x2﹣y2=8,则其标准方程为:﹣=1,其中a==2,则其实轴长2a=4;故选:C.【点评】本题考查双曲线的几何性质,注意要现将其方程变形为标准方程.2.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定【分析】先计算向量与向量的数量积,根据数量积为0得到两向量垂直,从而判断出两平面的位置关系.【解答】解: =﹣2+8﹣6=0∴⊥∴平面α与平面β垂直故选:B.【点评】本题主要考查了向量数量积以及向量垂直的充要条件,同时考查了两平面的位置关系,属于基础题.3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=1【分析】由条件根据椭圆的标准方程和简单性质可得a2﹣b2=9,0+=1,求得a2和b2的值,可得椭圆的方程.【解答】解:由题意可得a2﹣b2=9,0+=1,∴a2=18,b2=9,故椭圆的方程为+=1,故选:D.【点评】本题主要考查椭圆的标准方程和简单性质,属于基础题.4.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.【分析】求出双曲线的渐近线方程,顶点坐标,利用点到直线的距离求解即可.【解答】解:双曲线﹣y2=1的顶点坐标(,0),其渐近线方程为x±y=0,所以所求的距离为=.故选:C.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.【分析】求出,点A到平面α的距离:d=,由此能求出结果.【解答】解:∵平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,∴=(1,1,﹣2),点A到平面α的距离:d===.故选:C.【点评】本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.【分析】如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.【解答】解:如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.|FQ|==.故选:A.【点评】本题考查了抛物线的标准方程及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A.8B.9C.10D.12【分析】先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.【解答】解:设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a,∴m2+n2+2nm=4a2,∴m2+n2=4a2﹣2nm由勾股定理可知m2+n2=4c2,求得mn=18,则△F1PF2的面积为9.故选:B.【点评】本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.8.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.B.C.D.【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.9.若直线l:y=ax﹣1与抛物线C:y2=(a﹣1)x恰好有一个公共点,则实数a的值构成的集合为( )A.{﹣1,0}B.{﹣1, }C.{0, }D.{1,,0}【分析】讨论若a=1,当a=﹣1时,将直线方程代入曲线方程,运用判别式为0,解方程即可得到所求值.【解答】解:若a=1,则曲线C为y=0,直线l:y=x﹣1,即有直线与曲线的交点为(1,0),满足题意;若a=0,则曲线C为y2=﹣x,直线l:y=﹣1,即有直线与曲线的交点为(﹣1,﹣1),满足题意;若a≠1,a≠0时,则抛物线y2=(a﹣1)x的对称轴为x轴,由y=ax﹣1与抛物线y2=(a﹣1)x相切,可得:a2x2﹣(3a﹣1)x+1=0,由判别式为0,可得(3a﹣1)2﹣4a2=0,解得a=(a=1舍去),综上可得,a=0,1或.故选:D.【点评】本题考查直线与曲线的交点的个数问题,注意讨论直线与曲线相切或与对称轴平行,考查运算能力,属于中档题和易错题.10.直线kx﹣y﹣2k+2=0恒过定点A,若点A是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A.x+4y﹣10=0B.2x﹣y﹣2=0C.4x+y﹣10=0D.4x﹣y﹣6=0【分析】求出定点A(2,2),设A是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),利用点差法能求出以A(2,2)为中点的双曲线的弦所在的直线方程.【解答】解:直线kx﹣y﹣2k+2=0恒过定点A(2,2),双曲线﹣=1方程可化为:4x2﹣y2=8,设A(2,2)是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=4.∵P1,P2在双曲线上,∴,∴4(x1+x2)(x1﹣x2)﹣(y1﹣y2)(y1+y2)=0,∴4×4(x1﹣x2)=4(y1﹣y2),∴k==4,∴以A(2,2)为中点的双曲线的弦所在的直线方程为:y﹣2=4(x﹣2),整理得4x﹣y﹣6=0.故选:D.【点评】本题考查直线方程的求法,是中档题,解题时要认真审题,注意点差法和根的判别式的合理运用.11.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1: +y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.12.已知椭圆C1:+=1(a>b>0)与双曲线C2:﹣=1(m>0,n>0)有共同的焦点F1,F2,且在第一象限的交点为P,满足2•=2(其中O为原点)设C1,C2的离心率分别为e1,e2当3e1+e2取得最小值时,e1的值为( )A.B.C.D.【分析】由2•=2,故||=2||cos∠POF2,即x P=,由焦半径公式可得:PF1=a+=x P+m⇒e1e2=2,3e1+e2取,当且仅当3e1=e2时取等号,即.【解答】解:∵2•=2,故||=2||cos∠POF2,即x P=由焦半径公式可得:PF1=a+=x P+m⇒2c2=am⇒e1e2=23e1+e2取,当且仅当3e1=e2时取等号,即故选:A.【点评】本题考查了双曲线离心率,属于中档题.二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 ﹣=1 .【分析】在椭圆C1中,由题设条件能够得到a,b,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为4的双曲线,由此可求出曲线C2的标准方程.【解答】解:在椭圆C1中,椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,a=13,c=5,b=12,椭圆C1的焦点为F1(﹣5,0),F2(5,0),椭圆方程为:.曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,a=2,则c=5,则b=.故C2的标准方程为:,故答案为:.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质.14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .【分析】设正方体ABCD﹣A1B1C1D1中棱长为2,建立空间直角坐标系,利用向量法能求出直线D1B与平面MBC所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,如图建立空间直角坐标系,则D1(0,0,2),B(2,2,0),M(2,0,1),C(0,2,0),=(﹣2,﹣2,2),=(0,﹣2,1),=(﹣2,0,0),设平面MBC的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线D1B与平面MBC所成角为θ,则sinθ===.故直线D1B与平面MBC所成角的正弦值为.故答案为:.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 +1 .【分析】由题意画出图形,利用椭圆定义可得|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理求得a,则答案可求.【解答】解:如图,由题意可知,|MF2|=c=1,则|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理可得(2a﹣1)2+12=4,解得:a=.∴椭圆的长轴长为.故答案为:.【点评】本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 2 .【分析】设内切圆的圆心为I,由直线AF2和直线BF2垂直,运用内角平分线定可得ABF2为等腰直角三角形,运用勾股定理和三角形的等积法,可得半径r,即可得到所求距离.【解答】解:设内切圆的圆心为I,由直线AF2和直线BF2垂直,可得I在x轴上, ====1,可得三角形ABF2为等腰直角三角形,设|AF2|=m,则设|BF2|=m,|AB|=m,即有内切圆的半径r满足r•(4m﹣4)=m2,又m=2m﹣4,解得r=2,m=4+2,即有|IF2|=r=2,故答案为:2.【点评】本题考查双曲线的定义、方程和性质,注意定义法和内角平分线定理的运用,考查三角形的等积法和勾股定理的应用,考查运算能力,属于中档题.三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.【分析】(Ⅰ)由已知, =,2b=4,由此能求出椭圆的标准方程.(Ⅱ)椭圆的右焦点为(1,0),直线AB方程为:y=2(x﹣1),由,得3x2﹣5x=0,由此能求出A(0,﹣2),B(),进而能求出|AB|.【解答】解:(Ⅰ)由已知, =,2b=4,∴b=2∵b2=a2﹣c2=5c2﹣c2=4c2=4,∴c2=1,a2=5,∴椭圆的标准方程为: +=1.……………………(4分)(Ⅱ)椭圆的右焦点为(1,0),∴直线AB方程为:y=2(x﹣1)…………………………设A(x1,y1),B(x2,y2),由,得3x2﹣5x=0,解得x1=0,x2=,…………………………(7分)设AB中点坐标为(x0,y0),则=,,所以AB的中点为(),…………………………(9分)∵A(0,﹣2),B(),∴|AB|==.…………………………(10分)【点评】本题考查椭圆方程的求法,考查弦长的求法,考查椭圆、直线方程、中点坐标公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.【分析】(1)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(2)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角CEMN的余弦值,进一步求得正弦值.【解答】(1)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(2)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则=(1,2,﹣1),=(0,2,1),设平面MEN的一个法向量为=(x,y,z),由,得,取z=2,得=(4,﹣1,2).由图可得平面CME的一个法向量为=(1,0,0).∴cos<,>==.∴二面角CEMN的余弦值为,则正弦值为.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.【分析】(1)联立直线与抛物线方程,化为关于y的一元二次方程,由根与系数关系求出A,B两点的横纵坐标的和与积,直接运用数量积的坐标运算求解;(2)直接代入三角形面积公式求解即可【解答】解:(1)设,由题意可知:k≠0,∴,联立y2=﹣x得:ky2+y﹣k=0显然:△>0,∴,∴=(﹣y12)(﹣y22)+y1y2=(﹣1)2+1=0,(2)∵S△OAB=×1×|y1﹣y2|===,解得:k=±,∴直线l的方程为:2x+3y+2=0或2x﹣3y+2=0.【点评】本题考查了直线和圆锥曲线的关系,考查了平面向量数量积的坐标运算,训练了三角形面积的求法,是中档题.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.【分析】(Ⅰ)由题意通过离心率推出c2=3a2,得到,然后求解双曲线的渐近线方程.(Ⅱ)当a=1时,双曲线C的方程为x2﹣.设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),联立直线与双曲线方程,利用韦达定理,结合已知条件求解m即可.【解答】(本小题满分12分)解:(Ⅰ)由题意,得,∴c2=3a2∴b2=c2﹣a2=2a2,即∴所求双曲线C的渐进线方程………………(Ⅱ)由(1)得当a=1时,双曲线C的方程为x2﹣.……6分设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,得x2﹣2mx﹣m2﹣2=0(判别式△>0),∴x0==m,y0=x0+m=2m,…………(10分)∵点M(x0,y0),在圆x2+y2=5上,∴m2+4m2=5,∴m=±1.……(12分)(本题学生用“点差法”也给分)【点评】本题考查圆锥曲线的综合应用,直线与双曲线的位置关系的应用,考查转化思想以及计算能力.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.【分析】(Ⅰ)依题意F(1,0),设直线AB方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2﹣4my﹣4=0.由此能够求出直线AB的斜率.(Ⅱ)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由此能求出四边形OACB的面积最小值.【解答】(本小题满分13分)(Ⅰ)解:依题意F(1,0),设直线AB方程为x=my+1.…(1分)将直线AB的方程与抛物线的方程联立,消去x得y2﹣4my﹣4=0.…(3分)设A(x1,y1),B(x2,y2),所以y1+y2=4m,y1y2=﹣4.①…(4分)因为,所以y1=﹣2y2.②…联立①和②,消去y1,y2,得.…(6分)所以直线AB的斜率是.…(7分)(Ⅱ)解:由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.…(9分)因为…(10分)=,…(12分)所以m=0时,四边形OACB的面积最小,最小值是4.…(13分)【点评】本题考查直线斜率的求法,考查四边形面积的最小值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,由此能求出动点M的轨迹方程.(Ⅱ)设直线l的方程为y=k(x﹣2)+1,由,得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,利用根的判别式、韦达定理、向量的数量积,结合已知条件能求出存在直线l满足条件,其方程为x﹣2y=0.【解答】解:(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,…………………………(2分)整理得动点M的轨迹方程为: =1.…………………………(4分)(Ⅱ)假设存在符合题意的直线l,由题意知直线斜率存在,设直线l的方程为y=k(x﹣2)+1,由,消去y得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,由△=64(2k2﹣k)k2﹣32(4k2+3)(2k2﹣2k﹣1)>0,得6k+3>0,解得k>﹣,设A(x1,y1),B(x2,y2),则,x1x2=,…………………………(8分)由,得(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=,则(x1﹣2)(x2﹣2)(k2+1)=,即[x1x2﹣2(x1+x2)+4](k2+1)=,所以[﹣+4](k2+1)=,整理得=,解得k=,…………………………(10分)又k>﹣,所以k=,故存在直线l满足条件,其方程为y=,即x﹣2y=0.…………………………(12分)【点评】本题考查动点的轨迹方程的求法,考查满足条件的直线方程是否存在的判断与求法,考查根的判别式、韦达定理、向量的数量积等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.。
2019-2020学年河北省石家庄市高二上学期期末数学试题及答案

2019-2020学年河北省石家庄市高二上学期期末数学试题及答案一、单选题1.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔k为()A.40 B.30 C.20 D.12【答案】B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:120030k==40故选:B【点睛】本题考查系统抽样的概念,属基础题.2.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,則x y+的值为()A .7B .10C .9D .8【答案】D【解析】甲班众数为85,故5x =,乙班中位数为83,故3y =,所以8x y +=.3.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12C .2D .4【答案】A【解析】【详解】试题分析:将其方程变为标准方程为2211y x m+=,根据题意可得,11m >,且14m =,解得14m =,故A正确.【考点】椭圆的方程及基本性质4.若x ,y 满足0{10x y x y x -≤+≤≥,,,则2z x y =+的最大值为()A .0B .1C .32D .2【答案】D【解析】如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2,故选D.【考点】本题考点为线性规划的基本方法5.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A.116B.18C.38D.316【答案】B【解析】设阴影部分正方形的边长为a,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为22a,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题. 6.已知曲线1y x x =+上一点52,2A ⎛⎫⎪⎝⎭,则点A 处的线方程为( ) A .4340x y -+= B .3440x y ++= C .3440x y -+= D .4330x y ++=【答案】C【解析】根据曲线在某点处的导数的几何意义,可得切线的斜率,然后根据点斜式,可得结果. 【详解】由曲线1y x x =+,则21'1y x =- 所以2213'124x y ==-=所以切线方程为:()53224y x -=-即:3440x y -+= 故选:C 【点睛】本题主要考查曲线在某点处切线方程的求法,属基础题. 7.设命题p :函数1()2x f x -=在R 上为单调递增函数;命题q :函数()cos 2f x x =为奇函数,则下列命题中真命题是( ) A .p q ∧ B .()p q ⌝∨ C .()()p q ⌝∧⌝ D .()p q ∧⌝【答案】D【解析】根据指数型函数以及余弦型函数的性质,可得命题p 、命题q 真假,然后根据真值表,可得结果. 【详解】由函数()2xf x =在R 上为单调递增函数所以函数1()2x f x -=在R 上为单调递增函数 故命题p 为真命题, 由()cos 2f x x =的定义域为R 且()()()cos 2cos2f x x x f x -=-== 故可知函数()cos 2f x x =为偶函数 所以命题q 为假命题. 所以()p q ∧⌝为真命题. 故选:D 【点睛】本题考查函数的单调性,奇偶性的判断以及真值表的应用,属基础题.8.正四棱锥P ABCD -底面ABCD 边长为2,E为AD 的中点,则BD 与PE 所成角的余弦值为( )AB .13C D .4【答案】D【解析】取AB 中点为F ,连接EF ,得到 BD 与PE 所成角为PEF ∠,在PEF ∆中,利用余弦定理得到答案. 【详解】如图所示:取AB 中点为F ,连接EF ,易知EF BD ‖ 故BD 与PE 所成角为PEF ∠ 在PEF ∆中,12,22PE PF EF BD ====利用余弦定理得到:2222cos PF PE EF PE EF PEF =+-⋅∠ 解得2cos 4PEF ∠= 故选D【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.9.设x ∈R ,“命题1:2p x >”是“命题:(12)(1)0q x x -+<”的( )A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】根据充分、必要条件的概念理解,可得结果. 【详解】由(12)(1)0x x -+<,则1x <-或12x >所以“12x >”可推出“1x <-或12x >” 但“1x <-或12x >”不能推出“12x >”故命题p 是命题q 充分且不必要条件 故选:A 【点睛】本题主要考查充分、必要条件的概念理解,属基础题. 10.某几何体的三视图如图所示,则该几何体的体积为( )A .1312π+B .134π+C .14π+D .112π+【答案】D【解析】根据已知可得该几何体是一个四分之一圆锥,与三棱柱的组合体,分别求出它们的体积,相加可得答案. 【详解】根据已知可得该几何体是一个四分之一圆锥,与三棱柱的组合体,四分之一圆锥的底面半径为1,高为1,故体积为:1113412ππ⨯⨯=, 三棱柱的底面是两直角边分别为1和2的直角三角形,高为1,故体积为:1 12112⨯⨯⨯=,故组合体的体积112V π=+,故选D .【点睛】本题考查的知识点是由三视图求体积和表面积,根据三视图判断出几何体的形状是解答的关键,属于中档题. 11.设P是椭圆221259x y +=上一点,M ,N分别是两圆(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为 ( ) A .9,12 B .8,11 C .10,12 D .8,12【答案】D【解析】椭圆的焦点恰好是两圆的圆心,利用椭圆的定义先求出点P 到两焦点的距离|PF 1|+|PF 2|,然后|PM|+|PN|的最小值、最大值转化成|PF 1|+|PF 2|减去两个半径和加上两个半径. 【详解】 ∵两圆圆心F 1(﹣4,0),F 2(4,0)恰好是椭圆221259x y +=的焦点,∴|PF 1|+|PF 2|=10,两圆的半径r =1,∴(|PM |+|PN |)min =|PF 1|+|PF 2|﹣2r =10﹣2=8. (|PM |+|PN |)max =|PF 1|+|PF 2|+2r =10+2=12. 故选:D . 【点睛】本题主要考查椭圆的定义,解决本题的关键是把|PM|+|PN|的最小值、最大值转化成与两圆的半径差与和问题.12.已知()f x 为定义在R 上的可导函数,()f x '为其导函数,且(('))f x f x <恒成立,其中e 是自然对数的底,则( ) A .(2019) (2020)f e f < B .(2019)(2020)ef f < C .(2019)(2020)ef f = D . (2019)(2020)e f f >【答案】B【解析】构造新函数()()xx f F x e =,通过导数研究该函数的单调性,利用单调性比较大小,可得结果. 【详解】 令()()x x f F x e =,则()()('')xf x F x e f x =- 由(('))f x f x <,所以()'0F x >故函数()F x 为R 上的单调递增,所以()()20202019F F > 故20202019(2020)(2019)f e f e > 即(2019)(2020)ef f <故选:B 【点睛】本题主要考查利用函数单调性比较式子大小,难点在于构造函数()()xx f F x e =,属中档题.二、填空题13.函数()33f x x x =-的极小值为_______. 【答案】2-.【解析】试题分析:()233f x x='-,令()0f x '=得1x =±,当1x <-或1x >时,()0f x '>,当11x -<<时,()0f x '<,所以当1x =时,函数()f x 有极小值,且极小值是()311312f =-⨯=-.【考点】导数研究函数的极值.14.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P(m ,n),则点P 在圆x 2+y 2=9内部的概率为________.【答案】13【解析】由题意得点P(m,n)有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9内部的点有(2,1),(2,2),即所求概率为=.15.已知椭圆2221(0)3x y a a +=>的一个焦点为(1,0)F -,经过点F且斜率为1的直线l 与该椭圆交于C ,D 两点,则线段CD 的长为__________.【答案】247【解析】根据椭圆焦点可得a ,然后联立直线与椭圆方程,利用弦长公式,可得结果. 【详解】 设()()1122,,,C x y D x y由椭圆的一个焦点为(1,0)F -, 所以222314a b c =+=+=,则可知椭圆方程为22143x y +=,又直线l 的方程为:1y x =+22217880431x y x x y x ⎧+=⎪⇒+-=⎨⎪=+⎩121288,77x x x x =-+=-由247CD ==故答案为:247【点睛】本题主要考查椭圆中弦长公式的应用,属基础题. 16.已知点A 是抛物线214y x =的对称轴与其准线的交点,点F 为该抛物线的焦点,点P 在抛物线上且满足||||PF m PA =,当m 取最小值时,点P 恰好在以A ,F 为焦点的双曲线上,则该双曲线的离心率为__________. 1【解析】采用数形结合,找到当m 取最小值时,得到直线PA 与抛物线相切,进一步可得点P 坐标,然后根据双曲线的定义,可得结果. 【详解】如图所示:作PB 垂直准线交于点B ,则PF PB =所以||||==sin ||||PF PB m PAB PA PA =∠ 故当直线PA 与抛物线相切时,m 最小. 设直线PA 方程为:1y kx =-则2214404y kx x kx x y =-⎧⇒-+=⎨=⎩所以0∆=,即1k =±,不妨令1k = 则可得()2,1P ,所以22,2PA PF则221a PA PF a所以21c ea21【点睛】本题主要考查抛物线与双曲线的几何性质,难点在于得到直线PA 与抛物线相切,属难题.三、解答题17.为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(计算结果保留小数点后面3位)(Ⅰ)求这些学生跳绳个数的数值落在区间[75,85]内的频率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间[45,65)内的概率..【答案】(Ⅰ)0.05;(Ⅱ)23【解析】(Ⅰ)根据频率之比,可假设数值落在区间[55,65),[65,75),[75,85]的频率,然后利用所有频率之和为1,可得结果.(Ⅱ)根据区间[45,55),[55,65),[65,75)内的频率之比为:3:2:1,按分层抽样的方法将这三个区间的所抽取的人数分别进行标号,采用列举法,然后利用古典概型,可得结果. 【详解】(Ⅰ)设区间[75,85]内的频率为x ,则区间[55,65),[65,75)内的频率分别为4x 和2x ,依题意得:(0.0040.0120.0190.030)10421x x x +++⨯+++=.解得0.05x =.所以区间[75,85]内的频率为0.05.(Ⅱ)由(Ⅰ)得:区间[45,55),[55,65),[65,75)内的频率依次为0.3,0.2,0.1.用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本.则在区间[45,55)内应抽取0.3630.30.20.1⨯=++人,记为1A ,2A ,3A 在区间[55,65)内应抽取0.2620.30.20.1⨯=++人,记为1B ,2B ,在区间[65,75)内应抽取0.16110.30.20.1⨯=++人,记为C . 设“从中任意选取2个孩子,这2个孩子跳绳数值都在区间[45,65)内”为事件M , 则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B , {}1,A C ,{}23,A A ,{}21,A B ,{}22,A B , {}2,A C ,{}31,A B ,{}32,A B ,{}3,A C , {}1,B C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种.事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B , {}32,A B ,{}12,B B ,共10种.所以这2个孩子跳绳数值都在区间[45,65)内的概率为102153=.本题主要考查频率分布直方图的应用,属基础题. 18.已知圆C过三点(2,4),直线:20l ax y a ++=.(Ⅰ)求圆C 的方程(Ⅱ)当直线l 与圆C 相交于A ,B两点,且||AB =时,求直线l 的方程.【答案】(Ⅰ)228120x y y +-+=;(Ⅱ)7140x y =+=或20x y =+=. 【解析】(Ⅰ)根据圆的一般方程,解方程组,可得结果. (Ⅱ)利用圆的弦长公式.【详解】(Ⅰ)设圆的方程为:220xy Dx Ey F ++++=所以393041624032550E F D E F E F ⎧+++=⎪++++=⎨⎪+++=⎩故0812D E F =⎧⎪=-⎨⎪=⎩圆C 的方程228120x y y +-+=. (Ⅱ)过圆心C 作CD AB ⊥,则可得2222||||2,12CD CD DA AC DA AB ⎧=⎪⎪⎪+==⎨⎪⎪==⎪⎩解得7a =-或1a =-. 故所求直线方程为7140x y =+=或20x y =+=.本题考查圆的方程以及弦长公式,属基础题.19.现有一环保型企业,为了节约成本拟进行生产改造,现将某种产品产量x 与单位成本y 统计数据如下:(Ⅰ)试确定回归方程y bx a =+;(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?(Ⅲ)假定单位成本为70元/件时,产量应为多少件?(参考公式:()()()1122211ˆˆˆ,()nii iii i nni ii i xx y y x ynxyba y bx x x xn x ====---===---∑∑∑∑.)(参考数据11481nij i x ==∑ 2179ni i x ==∑)【答案】(Ⅰ) 1.81877.363y x =-+;(Ⅱ)1.818元;(Ⅲ)4050件.【解析】(Ⅰ)根据回归系数公式,可得结果. (Ⅱ)根据回归系数b 的几何意义,可得结果. (Ⅲ)根据回归方程,代值计算,可得结果.(Ⅰ)设x 表示每月产量(单位:千件),y 表示单位成本(单位:元/件),作散点图.由图知y 与x 间呈线性相关关系,(不画图不扣分)设线性回归方程为y bx a =+,其中 3.5x =,71y = 由公式可求得 1.818b ≈-,77.363a ≈,∴回归方程为 1.81877.363y x =-+.(Ⅱ)由回归方程知,每增加1000件产量,单位成本下降1.818元.(Ⅲ)当70y =时,70 1.81877.363x =-+,得 4.050x ≈千件. ∴单位成本是70元/件时,产量约为4050件. 【点睛】本题主要考查线性回归直线方程及其应用,属基础题. 20.四棱锥P ABCD -中,底面ABCD 为矩形,22,AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(1)证明:PC BD ⊥;(2)设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值.【答案】(1)见解析(2)【解析】【详解】 略21.过抛物线2:2(0)C y p x p =⋅>的焦点F 且斜率为1的直线交抛物线C 于M ,N 两点,且||2MN =. (Ⅰ)求抛物线C 的方程;(Ⅱ)抛物线C 上一点()0,1Q x ,直线:l y kx m =+(其中0k ≠)与抛物线C 交于A ,B 两个不同的点(A ,B 均不与点Q 重合).设直线QA ,QB 的斜率分别为1k ,2k ,1212k k =-.直线l 是否过定点?如果是,请求出所有定点;如果不是,请说明理由.【答案】(Ⅰ)2yx =;(Ⅱ)直线l 恒过定点,定点为(3,1)-.【解析】(Ⅰ)假设直线方程,联立直线方程与抛物线方程,根据韦达定理以及抛物线的焦点弦性质,可得结果. (Ⅱ)根据(Ⅰ)的结论可得Q ,然后联立直线l 与抛物线的方程,结合韦达定理,利用1212k k =-,可得,k m 之间的关系,最后根据直线方程特点,可得结果. 【详解】(Ⅰ)由题意得:,02p F ⎛⎫⎪⎝⎭设直线MN 方程为:2p y x =-代入抛物线方程得:22304p x px -+=设(),M M M x y ,(),N N N x y ∴3M Nx x p +=∴||42M N MN x x p p =++==, 解得:12p =∴抛物线方程为:2y x =(Ⅱ)由(1)知:抛物线2:C y x = ∴()1,1Q ,设()11,A x y ,()22,B x y由2y kx my x =+⎧⎨=⎩得:20ky y m -+=, 则140km ∆=-> ∵0k ≠ ∴121y y k+=,12my y k = ∴12121222121211111111y y y y k k x x y y ----=⋅=⋅---- 12k k ()()1211112y y ==-++即:()121230y y y y +++= ∴130m kk++=,解得31m k =-- 当31m k =--时,21414(31)12410km k k k k -=++=++>∴31(3)1y kx k k x =--=--, 恒过定点(3,1)- ∴直线l 恒过定点(3,1)- 【点睛】本题主要考查直线与抛物线的几何应用,第二问中,难点在于找到,k m 之间的关系,重点在于韦达定理的应用以及计算,属中档题.22.已知函数()()22x f x e sinx ax a e =-+-,其中2.71828...a R e ∈=,为自然对数的底数.(1)当0a =时,讨论函数()f x 的单调性;(2)当112a ≤≤时,求证:对任意的[)()0,,0x f x ∈+∞<.【答案】(1)()f x 在(),-∞+∞上单调递减. (2)证明见及解析. 【解析】【详解】分析:(1)将0a =代入()f x ,对函数求导即可判定函数的单调性.(2)将不等式转化为关于a 的一次函数,讨论在112a ≤≤时一次函数对任意的[)0,x ∈+∞两个端点都小于0,即可证明(),0f x <.详解: (1)()()0,x a f x e sinx e ==-()()'04x x f x e sinx cosx e e x e π⎤⎛⎫=+-=+-< ⎪⎥⎝⎭⎦;∴()f x 在(),-∞+∞上单调递减(2)要证()220x e sinx ax a e -+-<对[)0,x ∈+∞恒成立 即证;220sinx ax a e -+-<对[)0,x ∈+∞恒成立令()()22g a x a sinx e =-+-,即证当1,12a ⎡⎤∈⎢⎥⎣⎦时,()()220g a x a sinx e =-+-<恒成立第 21 页 共 21 页 即证;()()()2211101221202g sinx x e g sinx x e ⎧⎛⎫=-+-<⎪ ⎪⎝⎭⎨⎪=-+-<⎩成立 ∵sin 1x e +<∴①式成立现证明②式成立:令()()22,'2h x sinx x e h x cosx x =-+-=-设在[)00,x ∃+∞,使得()00'2,0h x cosx x --=,则006x π<<()h x 在()00,x 単调递增, 在[)0,x +∞単调递減∴()()2200000cos 2sin 24x h x max h x sinx x e x e ==-+-=-+-, =200sin 7sin 44x x x e ++- ∵006x π<<,∴01sin 0,2x ⎛⎫∈ ⎪⎝⎭ ∴200sin 737sin 04416x x x e e ++-<-< 综上所述.在[)0,x ∈+∞, ()0f x <恒成立.点睛:函数与导数的综合应用,是高考的热点和难点,充分理解导数与单调性、极值、最值的关系,证明在一定条件下不等式成立,解不等式或求参数的取值情况,属于难题.。
河北省石家庄市2017-2018学年高二下学期期末考试数学(文)试题(Word版)

⎩ ⎩ 0+1 10 ⎩⎨一、选择题2017~2018 学年度第二学期期末考试试卷高二数学(文科答案)1-5 DCAAA 6-10DBBCA 11-12 DC二、填空题13、-514、6 15、123 16、 三解答题 ⎧⎪m (m -1) = 017.解:(1)∵ z 是零,∴ ⎨⎪m 2 + 2m - 3 = 0............................... 3 分 解得m = 1…………6 分⎧⎪m (m -1) = 0(2)∵ z 是纯虚数,∴ ⎨⎪m 2 + 2m - 3 ≠ 0 ...........................9 分 (3)解得m = 0 .综上,当m = 1时, z 是零;当m = 0 时, z 是纯虚数. (12)分 18.证明:假设 x 0 是 f (x )=0 的负数根,x x 0-2 则 x 0<0 且 x 0≠-1 且a 0 =- ,…………3 分x 0+1x x 0-2由 0< a 0 <1⇒0<-x <1, (6)分1 解得 <x 0<2,这与 x 0<0 矛盾,…………10 分2所以假设不成立,故方程 f (x )=0 没有负数根.……12 分19.解(1)因为 z = 1-i ,所以 w = (1- i )(1+ i ) -1- 3i . = 1- 3i ……4 分∴| w |= …… 6 分(2)由题意得:........................2 分 z 2 + az + b = (1- i )2 + a (1- i ) + b = a + b - (2 + a )i ;(1+ i )i = -1+ i .................... 8 分⎧a + b = -1 所以⎨-(a + 2) = 1, ............................................. 10 分 ⎧a = -3 解得 ⎩b = 2 . ……12 分7 20、(1)由题知,40 人中该日走路步数超过 5000 步的有 35 人,频率为 8 ,所以估计他的所有微信好友中326 40 24 8 2 7 每日走路步数超过 5000 步的概率为 7; ................ 5 分 8(2) (8)分40 ⨯14 ⨯12 - 6 ⨯840 K 2 == < 3.841 22 ⨯18⨯ 20 ⨯ 20 11 所以没有 95%以上的把握认为二者有关. ……12 分21、解:(1)依题意,驾驶员无酒状态下停车距离的平均数为 15⨯ + 25⨯ + 35⨯ + 45⨯ + 55⨯ 2 分 100 100 100 100 100= 27 ……4 分- - (2)依题意,可知 x = 50, y = 60, (6)分 ∧∧ b = , a = 25, 10 ∧所以回归直线方程为 y = 0.7x + 25 .……8 分(3)由(1)知当 y > 81时认定驾驶员是“醉驾”.∧ 令 y > 81,得0.7x + 25 > 81,....... 10 分 解得 x > 80 ,当每毫升血液酒精含量大于 80 毫克时认定为“醉驾”.……12 分22、解:(1)由 ρ=5,可知 ρ2=25,得 x 2+y 2=25,即曲线 C 的直角坐标方程为 x 2+y 2=25 .............. 4 分= -3 + cos , (2)设直线 l 的参数方程为 = - 2①+ s i n (t 为参数), 将参数方程①代入圆的方程 x 2+y 2=25,得 4t 2-12(2cos α+sin α)t-55=0,………6 分∴Δ=16[9(2cos α+sin α)2+55]>0,上述方程有两个相异的实数根,设为 t 1,t 2, ∴|AB|=|t 1-t 2|= 9(2cos + sin )2 + 55=8,………….8 分化简有 3cos 2α+4sin αcos α=0,3解得 cos α=0 或 tan α=-3, 4 从而可得直线 l 的直角坐标方程为 x+3=0 或 3x+4y+15=0 ................ 10 分(1)解:f(0)=f (1),即-a=a+1-a ,则 a=-1,……..1 分∴f (x )=-x 2+x+1,∴不等式化为|-x 2+x|<-x+3,4 ① 当-1≤x<0 时,不等式化为 x 2-x<-x+3,4∴- 3<x<0;……….2②当 0≤x ≤1 时,不等式化为-x 2+x<-x+3,4∴0≤x<12综上,原不等式的解集为 - 3 < 1 ............................... 6 分2 (2)证明:由已知 x ∈[-1,1],∴|x|≤1. 又|a|≤1,则|f (x )|=|a (x 2-1)+x|≤|a (x 2-1)|+|x|≤|x 2-1|+|x|=1-|x|2+|x|=- | |- 12 5 5 + ≤ ….10 分2 . 4 4。
河北省石家庄市2019届高三数学模拟考试试题(二)文(含解析)

石家庄市2019届高中毕业班模拟考试(二)文科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,复数1ii+=( ) A. 1i -+ B. -1i -C. 1i +D. 1i -【答案】D 【解析】 【分析】利用复数的除法运算,化简复数1i1i i+=-,即可求解,得到答案. 【详解】由题意,复数()1i (i)1i 1i i i (i)+⋅-+==-⨯-,故选D . 【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.2.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()U C A B ⋂=( ) A. {}|12x x <≤ B. {}12x x #C. {}11x x -≤< D. {}|1x x ≥-【答案】B 【解析】 【分析】由补集的运算求得{}1U C A x x =≥,再根据集合的并集运算,即可求解,得到答案. 【详解】由题意,集合{}{}1,12A x x B x x =<=-≤≤,则{}1U C A x x =≥, 根据集合的并集运算,可得()U C A B ⋂={}12x x ≤≤,故选B .【点睛】本题主要考查了集合混合运算,其中解答中熟记集合的并集和补集的概念及运算是解答的关键,着重考查了运算与求解能力,属于基础题.3.如图是一个算法流程图,则输出的结果是( )A. 3B. 4C. 5D. 6【答案】A 【解析】 【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【详解】由题意,执行上述的程序框图: 第1次循环:满足判断条件,2,1x y ==; 第2次循环:满足判断条件,4,2x y ==; 第3次循环:满足判断条件,8,3x y ==; 不满足判断条件,输出计算结果3y =, 故选A .【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.4.某班全体学生测试成绩的频率分布直方图如图,数据的分组依次为:[)20,40,[)40,60,[)60,80,[]80,100.若高于80分的人数是15,则该班的学生人数是()A. 40B. 45C. 50D. 60【答案】C 【解析】 【分析】根据给定的频率分布直方图,可得在[]80,100之间的频率为0.3,再根据高于80分的人数是15,即可求解学生的人数,得到答案. 【详解】由题意,根据给定的频率分布直方图,可得在[]80,100之间的频率为200.00150.3⨯=,又由高于80分的人数是15,则该班的学生人数是15500.3=人,故选C . 【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了运算与求解能力,属于基础题.5.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A. 3B. 2C. 32-D. 2-【答案】A 【解析】 【分析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化直线3y x z =+,当直线3y x z =+过点A 时,此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -,所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.已知抛物线24y x =,过焦点F 的直线与此抛物线交于A ,B 两点,点A 在第一象限,过点A 作抛物线准线的垂线,垂足为A ',直线A F '的斜率为,则AA F '的面积为( )A. B. C.【答案】A 【解析】 【分析】根据抛物线的几何性质,求出点A 的坐标,得到||4AA '=,利用三角形的面积公式,即可求解,得到答案.【详解】由题意,抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 设(1,2),(0)A a a '->,则2(,2)A a a ,因为直线A F '的斜率为,所以211a=--,所以a = 所以2||14AA a '=+=,所以AA F '∆的面积为142S =⨯⨯=A . 【点睛】本题主要考查了抛物线的性质的应用,以及三角形面积的计算,其中解答中熟练应用抛物线的几何性质,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A.12πB.6π C.3π D.4π 【答案】D 【解析】 【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案. 【详解】将将函数()sin 2f x x =的图象向左平移ϕ个单位长度, 可得函数()sin[2()]sin(22)g x x x ϕϕ=+=+ 又由函数()g x 为偶函数,所以2,2k k Z πϕπ=+∈,解得,42k k Z ππϕ=+∈, 因为02πϕ≤≤,当0k =时,4πϕ=,故选D .【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.8.设l 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是( ) A. 若//l α且αβ⊥,则l β⊥B. 若//γα且//γβ,则//αβC. 若//l α且//l β,则//αβD. 若γα⊥且γβ⊥,则//αβ【答案】B 【解析】 【分析】A 中,l 与β可能相交、平行或l β⊂;B 中,由面面平行的性质可得//αβ;C 中,α与β相交或平行;D 中,α与β相交或平行,即可求解. 【详解】由l 表示直线,α,β,γ表示不同的平面,在A 中,若//l α且αβ⊥,则l β⊥,则l 与β可能相交、平行或l β⊂; 在B 中,若//γα且//γβ,则//αβ,由面面平行的性质可得//αβ; 在C 中,若//l α且//l β,则//αβ,则α与β相交或平行; 在D 中,若γα⊥且γβ⊥,则//αβ,则α与β相交或平行, 故选B .【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记线面位置关系的判定定理与性质定理是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A.54B. 5 【答案】C 【解析】 【分析】由双曲线1C 与双曲线2C 有相同的渐近线,列出方程求出m 的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,2=,解得2m =,此时双曲线221:128x y C -=,则曲线1C 的离心率为c e a ===,故选C . 【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.10.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A. B.C. D.【答案】B 【解析】 【分析】由题设条件知:0x <时,()0y xf x '=->,01x <<时,()0y xf x '=-<,0x =或1x = 时,()0y xf x '=-=,1x >时,()0y xf x '=->,由此即可求解.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>;所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意,故选B .【点睛】本题主要考查了利用导数研究函数的极值的应用,其中解答中认真审题,主要导数的性质和函数的极值之间的关系合理运用是解答的关键,着重考查了推理与运算能力,属于基础题.11.已知当m ,[]1,1n ∈-时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A. m n >B. m n <C. m n <D. m 与n 的大小关系不确定【答案】C 【解析】 【分析】 设()3sin2xf x x π=+,利用导数求得函数()f x 在[1,1]-单调递增,再根据()()f m f n <,即可求解,得到答案.【详解】由题意,设()3sin2xf x x π=+,则()23cos22xf x x ππ'=+,当[1,1]x ∈-时,()0f x '>,()f x 单调递增, 又由33sinsin22mnm n ππ<++,所以()()f m f n <,即m n <,故选C .【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中设出新函数,利用导数求得函数的单调性是解答的关键,着重考查了推理与运算能力,属于中档试题.12.在ABC △中,角A ,B ,C 的对边长分别为a ,b ,c ,满足()22sin 40a a B B -++=,b =的面积为( )B.D. 【答案】D 【解析】【分析】化简得2444sin()3a B a a aπ++==+,又由44a a +≥=,得到sin()13B π+=,解得6B π=,由余弦定理c =,利用面积公式,即可求解.【详解】由题意知()22sin 40a a B B -++=,可得24sin()403a a B π-++=,即24sin()43a B a π+=+,即2444sin()3a B a a aπ++==+,又由44a a +≥=,当且仅当4a a =,即2a =时等号成立,所以sin()13B π+=,所以32B ππ+=,解得6B π=,在ABC ∆中,由余弦定理可得2222cos b a c ac B =+-,即222222cos 6c c π=+-⨯,整理得2240c --=,解得c =,所以三角形的面积11sin 2226S ac B π==⨯⨯=, 故选D .【点睛】本题主要考查了三角函数恒等变换公式,以及余弦定理的应用,其中解答中熟练应用三角恒等变换的公式,化简求得6B π=,再根据余弦定理求得c =是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题. 13.已知1sin 3α=,,22ππα⎛⎫∈- ⎪⎝⎭,则tan α=__________.【解析】 【分析】根据三角函数的基本关系式求得cos 3α=,进而求得tan α,即可求解,得到答案.【详解】根据三角函数的基本关系式可得22218cos 1sin 1()39αα=-=-=,又因为,22ππα⎛⎫∈-⎪⎝⎭,所以cos 3α=,所以sin tan cos 4ααα==. 【点睛】本题主要考查了三角函数的基本关系式的化简、求值,其中解答中合理应用三角函数的基本关系式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.【答案】1- 【解析】 【分析】由1x >时,得到函数()f x 是周期为1的函数,可得201911()(1009)()222f f f =+=,即可求解.【详解】由函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,可得当1x >时,满足()(1)f x f x =-,所以函数()f x 是周期为1的函数,所以122201911()(1009)()log 1222f f f =+===-.【点睛】本题主要考查了分段函数的求值问题,以及函数的周期性的应用,其中解答中得到函数的周期性,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在平行四边形ABCD 中,已知1AB =,2AD =,60BAD ∠=︒,若CE ED =,2DF FB =,则AE AF ⋅=____________.【答案】52【解析】 【分析】设,AB a AD b ==,则1,2a b ==,得到12AE b a =+,2133AF a b =+,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,AB a AD b ==,则1,2a b ==, 又由CE ED =,2DF FB =,所以E 为CD 的中点,F 为BD 的三等分点,则12AE b a =+,221()333AF b a b a b =+-=+, 所以22121151()()233363AE AF a b a b a a b b ⋅=+⋅+=+⋅+2021515112cos6023632=⨯+⨯⨯+⨯=.【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.16.在三棱椎P ABC -中,底面ABC 是等边三角形,侧面PAB 是直角三角形,且2PA PB ==,PA BC ⊥,则该三棱椎外接球的表面积为__________.【答案】12π 【解析】由于PA =PB ,CA =CB ,PA⊥AC,则PB⊥CB,因此取PC 中点O ,则有OP =OC =OA =OB ,即O为三棱锥P -ABC 外接球球心,又由PA =PB =2,得AC =AB =,所以PC ==2412S ππ=⨯=.点睛:多面体外接球,关键是确定球心位置,通常借助外接的性质—球心到各顶点的距离等于球的半径,寻求球心到底面中心的距离、半径、顶点到底面中心的距离构成直角三角形,利用勾股定理求出半径,如果图形中有直角三角形,则学借助于直角三角形的外心是斜边的中点来确定球心.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤. 17.已知数列{}n a 是等差数列,前n 项和为n S ,且533S a =,468a a +=.(1)求n a .(2)设2nn n b a =⋅,求数列{}n b 的前n 项和n T .【答案】(1) ()23n a n =- (2) 2(4)216n n T n +=-⋅+【解析】 【分析】(1)由数列{}n a 是等差数列,所以535S a =,解得30a =,又由46582a a a +==,解得2d =, 即可求得数列的通项公式;(2)由(1)得()1232nn n n b a n +=⋅=-⋅,利用乘公比错位相减,即可求解数列的前n 项和.【详解】(1)由题意,数列{}n a 是等差数列,所以535S a =,又533S a =,30a ∴=, 由46582a a a +==,得54a =,所以5324a a d -==,解得2d =, 所以数列的通项公式为()()3323n a a n d n =+-=-. (2)由(1)得()1232nn n n b a n +=⋅=-⋅,()()()234122120232n n T n +=-⋅+-⋅+⋅++-⋅,()()()()3412221242322n n n T n n ++=-⋅+-⋅++-⋅+-⋅,两式相减得()()2341222222232n n n n T T n ++-=⋅-++++-⋅,()1228128(3)2(4)21612n n n n n -++--+-⋅=-⋅+=-,即2(4)216n n T n +=-⋅+.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18.已知三棱锥P ABC -中,ABC △为等腰直角三角形,1AB AC ==,PB PC ==设点E 为PA 中点,点D 为AC 中点,点F 为PB 上一点,且2PF FB =.(1)证明://BD 平面CEF ;(2)若PA AC ⊥,求三棱锥P ABC -的表面积. 【答案】(1)见证明;(2)4 【解析】 【分析】(1)连接PD 交CE 于G 点,连接FG ,由三角形的性质证得//FG BD ,再由线面平行的判定定理,即可作出证明. (2)由P A A C ⊥,求得2PA =,得到,ABCPACSS,利用2ABCPACPBCS SSS=++表面积,即可求解.【详解】(1)连接PD 交CE 于G 点,连接FG , 点E 为PA 中点,点D 为AC 中点,∴点G 为PAC的重心,2PG GD ∴=,2PF FB =,//FG BD ∴,又FG ⊂平面CEF ,BD ⊄平面CEF ,//BD ∴平面CEF .(2)因为AB AC =,PB PC =,PA PA =, 所以PAB △全等于PAC ,PA AC ⊥,PA AB ∴⊥,PA 2∴=,所以12ABCS=,1PACS =在PBC 中,BC =PB PC ==BC 2=,所以13222PBCS==, 1322=422ABC PAC PBCS SSS=++=++表面积.【点睛】本题主要考查了直线与平面平行的判定,以及几何体的表面积的计算,其中解答中熟记线面平行的判定定理和三角形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19.在平面直角坐标系中,()2,0A -,()2,0B ,设直线AC 、BC 的斜率分别为1k 、2k 且1212k k ⋅=- ,(1)求点C 的轨迹E 的方程;(2)过()F 作直线MN 交轨迹E 于M 、N 两点,若MAB △的面积是NAB △面积的2倍,求直线MN 的方程.【答案】(1) 22142x y +=(0y ≠)(2) 07x y -=或07x y ++=【解析】 【分析】(1)由题意,设(),C x y ,得到12y k x =+,22y k x =-,根据1212k k =-,即可求解椭圆的标准方程;(2)设直线:MN x my =-1212,y y y y +,再由2MABNABSS=,得到122y y =-,列出关于m 的方程,即可求解.【详解】(1)由题意,设(),C x y ,则12y k x =+,22yk x =-,又由2122142y k k x ==--,整理得22142x y +=,由点,,A B C 不共线,所以0y ≠,所以点C 的轨迹方程为221(0)42x y y +=≠.(2)设()11,M x y ,()22,N x y ,易知直线MN 不与x轴重合,设直线:MN x my =联立方程组22142x my x y ⎧=-⎪⎨+=⎪⎩,整理得得()22220m y +--=,易知>0∆,且12y y +=,122202y y m -=<+ 由2MABNABSS=,故122y y =,即122y y =-,从而()2212122122141222y y y y m y y m y y +-==++=-+, 解得227m =,即7m =,所以直线MN的方程为0x y +=或0x y ++=. 【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元新个税政策的税率表部分内容如下:(1)现有李某月收入19600元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?(2)现收集了某城市50名年龄在40岁到50岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有40人,没有孩子的有10人,有一个孩子的人中有30人需要赡养老人,没有孩子的人中有5人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的50人中,任何两人均不在一个家庭).若他们的月收入均为20000元,试求在新个税政策下这50名公司白领的月平均缴纳个税金额为多少?【答案】(1)950元(2) 1150元【解析】【分析】(1)由李某月应纳税所得额(含税)为11600元,根据税率的计算方法,即可求解.(2)根据题意,根据税率的计算方法,即可求解在新个税政策下这50名公司白领月平均缴纳个税金额,得到答案.---=元,【详解】(1)李某月应纳税所得额(含税)为:1960050001000200011600⨯=元,不超过3000的部分税额为30003%90⨯=元,超过3000元至12000元部分税额为860010%860+=元.所以李某月应缴纳的个税金额为90860950(2)有一个孩子需要赡养老人应纳税所得额(含税)为:---=元,2000050001000200012000月应缴纳的个税金额为:90900990+=元;有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000--=元, 月应缴纳的个税金额为:909004001390++=元;没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000--=元, 月应缴纳的个税金额为:909002001190++=元;没有孩子不需要赡养老人应纳税所得额(含税)为:20000500015000-=元, 月应缴纳的个税金额为:909006001590++=元;因为()990301390101190515905501150⨯+⨯+⨯+⨯÷=元, 所以在新个税政策下这50名公司白领月平均缴纳个税金额为1150元.【点睛】本题主要考查了函数实际应用问题,其中解答中认真审题,合理利用税率的计算方法,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.21.已知函数()1ln xf x x+=, (1)已知e 为自然对数的底数,求函数()f x 在21e x =处的切线方程; (2)当1x >时,方程()()()110f x a x a x=-+>有唯一实数根,求a 的取值范围. 【答案】(1) 422e 3e y x =- (2) 01a << 【解析】 【分析】(1)求得函数的导数()2ln x f x x -'=,得到4212e f e ⎛⎫'= ⎪⎝⎭,221e e f ⎛⎫=- ⎪⎝⎭,利用直线的点斜式方程,即可求解切线的方程; (2)当时,方程()()11f x a x x=-+,即()2ln 0x a x x --=,令()()2ln h x x a x x =--,求得()221ax ax h x x-++'=,令()221r x ax ax =-++,分类讨论利用导数求得函数的单调性与最值,即可求解. 【详解】(1)由题意,函数()1ln xf x x+=,定义域()0,∞+,则()2ln x f x x -'=,所以4212e f e ⎛⎫'= ⎪⎝⎭,221e e f ⎛⎫=- ⎪⎝⎭函数()f x 在21e x =处的切线方程为2421e 2e e y x ⎛⎫+=- ⎪⎝⎭,整理得422e 3e y x =-, 即函数()f x 在21ex =处的切线方程422e 3e y x =-. (2)当时,方程()()11f x a x x=-+,即()2ln 0x a x x --=,令()()2ln h x x a x x =--,有()10h =,()221ax ax h x x-++'=,令()221r x ax ax =-++,()1,x ∈+∞因为0a >,所以()r x 在()1,+∞单调递减,①当()110r a =-≤即1a ≥时, ()0r x <,即()h x 在()1,+∞单调递减,所以()()10h x h <=,方程()()11f x a x x=-+无实根. ②当()10r >时,即 0<<1a 时,存在()01,x ∈+∞,使得()01,x x ∈时,()0r x >,即()h x 单调递增; ()0,x x ∈+∞时,()0r x <,即()h x 单调递减; 因此()()0max 00h x h >=,取11x a =+,则21111111ln 111ln 11h a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+-+++=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令11t a=+,()1t >, 由()ln h t t t =-,则()11h t t'=-,1t >,所以()0h t '<,即()h t 在1t >时单调递减, 所以()()10h t h <=.故存在101,1x x a ⎛⎫∈+ ⎪⎝⎭,()10h x =.综上,a 的取值范围为0<<1a .【点睛】本题主要考查导数在函数中的综合应用,以及方程的有解问题,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.在极坐标系中,曲线C 的方程为()2cossin 0a a ρθθ=>,以极点为原点,极轴所在直线为x 轴建立直角坐标,直线l的参数方程为2212x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与C 交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设点()2,1P -;若PM 、MN 、PN 成等比数列,求a 的值【答案】(1) 曲线C 的直角坐标方程为()20x ay a =>,直线l 的普通方程为10x y +-= ; (2) 1a =【解析】 【分析】(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把l 的参数方程代入抛物线方程中,利用韦达定理得12t t +=,1282t t a =+,可得到2211,,PM N MN t t t t P ===-,根据因为PM ,MN ,PN 成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线C 的极坐标方程可化为()22cossin ,0a a ρθρθ=>,又由cos sin x y ρθρθ=⎧⎨=⎩,可得曲线C 的直角坐标方程为()20x ay a =>,由直线l的参数方程为21x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数t ,得10x y +-=,即直线l 的普通方程为10x y +-=;(2)把l的参数方程2212xy⎧=-⎪⎪⎨⎪=-+⎪⎩代入抛物线方程中,得()()2820t t a-++=,由2280a a∆=+>,设方程的两根分别为1t,2t,则12t t+=>,12820t t a=+>,可得10,t>,2t>.所以12MN t t=-,1PM t=,2PN t=.因为PM,MN,PN成等比数列,所以()21212t t t t-=,即()212125t t t t+=,则()()2582a=+,解得解得1a=或4a=-(舍),所以实数1a=.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.23.设函数()22f x x x a=-+-.(1)当1a=时,求不等式()3f x≥的解集;(2)当()2f x x a=-+时,求实数x的取值范围.【答案】(1) (][),02,-∞⋃+∞ (2) 当4a≤时,x的取值范围为22ax≤≤;当4a>时,x的取值范围为22ax≤≤.【解析】【分析】(1)当1a=时,分类讨论把不等式()3f x≥化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得()()222f x x a x x a≥---=-+,当且仅当()()220x a x--≤时,取“=”,分类讨论,即可求解.【详解】(1)当1a =时,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩, 不等式()3f x ≥可化为33312x x -+≥⎧⎪⎨≤⎪⎩或13122x x +≥⎧⎪⎨<<⎪⎩或3332x x -≥⎧⎨≥⎩ , 解得不等式的解集为(][),02,-∞⋃+∞.(2)由绝对值的三角不等式,可得()()22222f x x x a x a x x a =-+-≥---=-+, 当且仅当()()220x a x --≤时,取“=”,所以当4a ≤时,x 的取值范围为22a x ≤≤;当4a >时,x 的取值范围为22a x ≤≤. 【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.。
河北省石家庄市2019_2020学年高二英语上学期期末考试试题含解析

A. The natural abilities he was born with。
B。 The training he received at university。
C。 The photographs that are shown on the stage.
A。 Visit another city. B. Take a boat trip。 C. Go on a walk tour。
听第8段材料,回答第10至12题。
10。 What is the relationship between the speakers?
A。 Pen friends. B. Brother and sister。 C. Classmates.
第一部分听力(共两节,满分30分)
第一节(共5小题;每小题1.5分,满分7。5分)
听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。每段对话仅读一遍.
例:How much is the shirt?
A。 £19.15. B。 £9.15。 C. £9.18。
第二节(共15小题;每小题1。5分,满分22。5分)
听下面5段对话或独白。每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6。 Why does the man make the call?
2019届河北省石家庄市高三毕业班教学质量检测数学(文)试卷-扫描版

石家庄市2018-2019学年高中毕业班质量检测试题文科数学答案一、选择题1-5 ADDBC 6-10 CAACC 11-12 DB 二、填空题13.2(0,),2x x x ∀∈+∞>+ 14.26 15.43316. π三、解答题17解:(1)设{}n a 的公比为q ,由2312a a +=得 212q q +=, …………1分解得3q =,或4q =-, …………3分因{}n a 各项都为正数,所以0q >,所以3q =,所以13n n a -=, …………5分(2)n b =3111(2)log (2)n n a n n +=++…………6分111()22n n =-+…………8分 11111111(1+)2324112n S n n n n ∴=-+-+-+--++……………10分323=42(1)(2)n n n +-++ …………12分18. 解:(Ⅰ)6x =,8.3y =,7348.6x y =,7172217359.6348.611ˆ 1.57125973677i ii ii x y xybxx ==--====≈-⨯-∑∑…………2分8.3-1.5716-1.126-1.13a y bx =-=⨯=≈那么回归直线方程为:ˆ 1.57 1.13y x =- …………4分将8x =代入方程得ˆ 1.578 1.1311.43y=⨯-= 即该公司在该年的年利润增长大约为11.43万元. …………6分…………分设2012年--2018年这7年分别定为1,2,3,4,5,6,7;则总基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共有21种结果, …………9分 选取的两年都是2>λ万元的情况为:(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共6种, …………11分所以选取的两年都是2>λ万元的概率62217P ==.------------------------------------------------------------------12分19解:(1)因为侧面11ABB A ⊥侧面11ACC A ,侧面11ACC A 为正方形,所以AC ⊥平面11ABB A ,1A B AC⊥,------------------------------2分又侧面11ABB A 为菱形,所以11A B AB ⊥,所以1A B ⊥平面1AB C -----------------------------------------------------4分 (2)因为11//A C AC,所以,11//A C 平面1AB C,所以,三棱锥11C COB -的体积等于三棱锥11A COB -的体积,----------------------------------------------6分1A B ⊥平面1AB C,所以1A O为三棱锥11A COB -的高,---------------------------------------------8分因为12,60AB ABB =∠=︒,111112122COB S OB CA ∆=⨯⨯=⨯⨯=,---------------------------------------10分所以111111133C COB COB V AO S -∆=⨯⨯==分20. 解:(1)2ca ,221314ab ,又222a bc ,---------------------------------------------2分 解得24a ,21b .所以,椭圆C 的方程为2214x y . -------------------------------------- 4分(2)存在定点43,03Q,满足直线QA 与直线QB 恰关于x 轴对称.设直线l 的方程为30x my ,与椭圆C 联立,整理得,2242310m y my .设11,A x y ,22,B x y ,定点,0Q t .(依题意12,)tx t x则由韦达定理可得,122234m y y m,12214y y m. ----------------------------------------------------------- 6分直线QA 与直线QB 恰关于x 轴对称,等价于,AQ BQ 的斜率互为相反数. 所以,12120y y x tx t,即得12210y x ty x t . ------------------------------------------------------8分又1130x my ,2230x my ,所以,122130y my ty my t ,整理得,121220ty y my y .从而可得,222312044m tmm m ,-----------------------------10分可得2430m t,所以,当433t,即43,03Q 时,直线QA 与直线QB 恰关于x 轴对称也成立.特别地,当直线l 为x 轴时,43,03Q也符合题意. 综上所述,存在x 轴上的定点43,03Q ,满足直线QA 与直线QB 恰关于x 轴对称.-----------------------------12分 21.解(1)当1a 时,e sin xf xx ,于是,e cos xf xx . --------------------------------------------- 1分又因为,当0,x 时,e 1x且cos 1x .故当0,x时,e cos 0xx,即0fx. --------------------------------------------------------------------3分所以,函数e sin x f x x 为0,上的增函数,于是,01f xf .因此,对0,x,1f x ;------------------------------------------------------------------------------------------- 5分(2) 方法一:由题意()f x 在0,2π⎛⎫⎪⎝⎭上存在极值,则()cos xf x ae x '=-在0,2π⎛⎫⎪⎝⎭上存在零点,---------------------------6分①当0,1a时,e cos xfxa x 为0,2上的增函数,注意到010f a ,2e 02fa ,所以,存在唯一实数00,2x ,使得00fx 成立.于是,当00,xx 时,0fx,f x 为00,x 上的减函数;当0,2xx 时,0f x,f x 为0,2x 上的增函数;所以00,2x 为函数f x 的极小值点;-----------------------------------------------------------------------------------8分②当1a ≥时,()cos cos 0xxf x ae x e x '=-≥->在0,2x 上成立,所以()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()f x 在0,2π⎛⎫⎪⎝⎭上没有极值; ----------------------------10分 ③当0a ≤时,()cos 0xf x ae x '=-<在0,2x上成立,所以()f x 在0,2π⎛⎫⎪⎝⎭上单调递减,所以()f x 在0,2π⎛⎫⎪⎝⎭上没有极值, 综上所述,使()f x 在0,2π⎛⎫⎪⎝⎭上存在极值的a 的取值范围是0,1.------------------------------------------------- 12分 方法二:由题意,函数f x 在0,2上存在极值,则e cos xfxa x 在0,2上存在零点.------------------------------------------------------------------------------------------------6分 即cos e xx a在0,2上存在零点.设cos exx g x,0,2x ,则由单调性的性质可得g x 为0,2上的减函数.即g x 的值域为0,1,所以,当实数0,1a 时,e cos xf xa x 在0,2上存在零点. ------------ 8分下面证明,当0,1a时,函数f x 在0,2上存在极值.事实上,当0,1a 时,e cos xf xa x 为0,2上的增函数,注意到010f a ,2e 02fa ,所以,存在唯一实数00,2x ,使得00fx 成立. ----------------------------------------------------------------------------------------------------------------10分 于是,当00,xx 时,0fx,f x 为00,x 上的减函数;当0,2xx 时,0f x,f x 为0,2x 上的增函数;即00,2x 为函数f x 的极小值点.综上所述,当0,1a 时,函数f x 在0,2上存在极值. ------------------------------------------------------------12分22. 解:(1)由得24cos ρρθ=,所以曲线的方程为()2224x y -+=, …………………………………2分 设曲线上任意一点(),x y ,变换后对应的点为(),x y '',则()12,2,x x y y ⎧'=-⎪⎨⎪'=⎩ 即22,,x x y y '=+⎧⎨'=⎩ …………………………4分 代入曲线的方程()2224x y -+=中,整理得2214y x ''+=, 所以曲线2C 的直角坐标方程为2214y x +=; …………………………5分 (2)设()cos ,2sin Q θθ,则Q 到直线l :3280x y --=的距离 为3cos 4sin 813d θθ--=,………………………7分()5cos 813θα+-=其中α为锐角,且4tan 3α=,………………………9分当()cos 1θα+=-时,d 13所以点Q 到直线l 13 …………………………10分23.解:(1)不等式()()53f x f x ≤--,即125x x ++-≤………………………1分等价于1,125,x x x <-⎧⎨---+≤⎩ 或12,125,x x x -≤≤⎧⎨+-+≤⎩或2,125,x x x >⎧⎨++-≤⎩ …………………3分解得 23x -≤≤,所以原不等式的解集为{}23x x -≤≤; …………………………5分 (2)当[]1,1x ∈-时,不等式()24f x x a x ++≤+,即2x a x +≤-,所以2x a x +≤-在[]1,1-上有解, …………………………7分 即222a x -≤≤-在[]1,1-上有解, …………………………9分所以,24a -≤≤. …………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ)若函数 在
上单调递增,求 的取值范围.
两个校区附近的
监测点统计的数据(单位:毫克/立方米)列出的茎叶图,东、西两个校区浓度的方差较小的是
A.东校区
B.西校区
C.东、西两个校区相等
D.无法确定
7. 已知双曲线 A.5
的一条渐近线平行于直线 B.5或
,则该双曲线的离心率为
C.
D. 或
8. 圆 A.相切
与直线
B.相离
的位置关系
C.相交
D.不能确定
价格
1.4
1.6
1.8
2
2.2
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
需求量
12
10
7
5
3
(Ⅰ)根据上表数据,求出回归直线方程
;
(Ⅱ)试根据(Ⅰ)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?
(参考公式:
,
)
20. 如图,四边形
是正方形,
平面
B.7,12,17
C.6,13,17
D.6,12,18
3. 已知命题 :
,
A. 是假命题
C.
是真命题
;命题 :
,
,则下列说法中正确的是
B.
是真命题
D.
是假命题
4. 下列说法中正确的是
A.一个命题的否命题为真,则它的逆命题一定为真.
B.“
”是“
”的充分ቤተ መጻሕፍቲ ባይዱ必要条件.
C.“若
,则 , 全为0.”的逆否命题是“若 , 全不为0,则
,
,
, , , 分别为 , , 的中点.
(1)求证: (2)求平面
平面 与平面
; 所成锐二面角的大小.
21. 已知圆
,直线
.动圆 与圆 相外切,且与直线 相切.设动圆圆心 的轨迹为 .
(Ⅰ)求曲线 的方程; (Ⅱ)若点 , 是 上的两个动点, 为坐标原点,且
,求证:直线 恒过定点.
22. 已知椭圆
的离心率为 ,且抛物线
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
一、单选题
1. 抛物线
的准线方程为
A.
B.
C.
D.
2. 某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中取一个容量为36的样本,则老年人、中
年人、青年人依次抽取的人数是
A.7,11,19
三、解答题
17. 某校100名高二学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
.
(Ⅰ)求图中 的值; (Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分.
18. 已知圆 过点
和
,且圆心在直线
上.
(Ⅰ)求圆 的标准方程;
(Ⅱ)求直线 :
被圆 截得的弦长.
19. 在一段时间内,分5次测得某种商品的价格 (万元)和需求量 (吨)之间的一组数据为:
的中点,则
的值为( ) D.
12. 已知离心率 为 的双曲线
、 两点.若 A.2
的面积为2,则实数 的值为 B.
的右焦点为 , 为坐标原点,以 为直径的圆与双曲线 的一条渐近线相交于
C.4
D.8
二、填空题
13. 命题“
,
”的否定是__________.
14. 在区间 内随机地取出两个数,则两数之和小于 的概率是__________.
15. 如图, 值为
是直三棱柱,
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
,点 、 分别是 , 的中点,若
,则 与 所成角的余弦
16. 设 , 分别是椭圆 的取值范围是__________.
的左、右焦点,若在直线
上存在点 ,使线段 的中垂线过点 ,则椭圆的离心率
.”
D.一个命题的逆命题为真,则它的逆否命题一定为真.
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
5. 阅读下边的程序框图,运行相应的程序,则输出 的值为
A.-1
B.0
C.3
D.4
6.
是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某中学学生社团某日早6点至晚9点在某中学东、西
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
9. 将一枚骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是
A.
B.
C.
D.
10. 已知点
,
,则 , 两点的距离的最小值为
A.
B.
C.
D.
11. 已知空间四边形 A.
的每条边和对角线的长都等于 ,点 B.
分别是 C.
(Ⅰ)求椭圆 的方程;
(Ⅱ)过点
作直线 与椭圆 交于 , 两点,点 满足
求此时直线 的方程.
的焦点恰好是椭圆 的一个焦点.
( 为坐标原点),求四边形
面积的最大值,并
【市级联考】河北省石家庄市2018-2019学年高二上学期期末考试数学(理)试题
23. 已知
,函数
(
, 为自然对数的底数).
(Ⅰ)当
时,求函数 的单调递增区间;