北师大版-数学-八年级上册-学案:一次函数的综合应用

合集下载

北师大版八年级上册一次函数教案

北师大版八年级上册一次函数教案
例2 某辆汽车油箱有汽油60L,汽车每行驶50km耗油6L.
(1)完成下表:
汽车行驶路程x/km
0
50
100
150
200
300
油箱剩余汽油量y/L
(2)你能写出x与y之间的关系式吗?
(3)你能写出油箱剩余量z(L)与汽车行驶路程x(km)之间的关系式马?
通过观察、探索、总结,归纳出一次函数与正比例函数的概念:
一般地,若两个变量x,y间的关系式可以表示成
北师大版八年级上册一次函数教案这篇文章共2855字。
提出问题:
1什么是函数?
2函数有哪些表示方式?
二:新课讲授
例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:
x/kg
0
1
2
3
4
5吗?
第1课时
课型
新课
主 备
审核
班级
教学目标
(1)理解一次函数和正比例函数的概念;
(2)能根据所给条件写出简单的一次函数表达式.
(3)经历一般规律的探索过程,发展学生的抽象思维能力
重点难点
重点:理解一次函数和正比例函数的概念
难点:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.
教学过程
一:复习引入
1三年语文上册4古诗三首生字拼音组词我会写寒hn严寒寒冷寒来暑往径jng径直途径大相径庭斜xi斜线斜坡目不斜视霜shung霜冻风霜霜期赠zng赠言赠送
北师大版八年级上册一次函数教案
《北师大版八年级上册一次函数教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!

北师大版数学八年级《一次函数应用》教学案例

北师大版数学八年级《一次函数应用》教学案例

北师大版数学八年级《一次函数应用》教学案例本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!一、学生起点分析学生已学习了一次函数及其图象,掌握了一次函数的性质.在现实生活中也接触过简单的函数图象,所以初步具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于学生的年龄特点,认识事物不够全面、系统,阅读材料时不能很好的处理已知与未知的关系,所以还需通过具体实例来培养他们这方面的能力.二、教学任务分析《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.教学任务主要是利用一次函数图象解决有关现实问题。

本节课注重学生图象信息的识别与分析,提高学生的识图能力和阅读能力,通过读取的信息回答和解决现实生活中的具体问题,进一步培养学生的数形结合能力和数学阅读能力,发展形象思维.三、教学目标分析知识与技能目标:1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识和数学阅读能力,发展形象思维;2.通过具体问题的解决,发展学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在解决实际问题中,使学生认识到数学与生活是密不可分的,培养学生学习数学的兴趣,进而更好的解决实际问题.●教学重点一次函数图象的应用.●教学难点从函数图象正确读取信息,解决实际问题.四、课前准备多媒体.五教学过程第一环节创设情境内容:在前几节课里,我们已通过生活实际例子出发,学习了一次函数,一次函数的图象以及一次函数图象的性质。

那么学习这些到底有什么用呢?其实在我们的日常生活中经常遇到运用一次函数的图像及性质来解决的实际问题。

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计
3.设计一道关于一次函数应用的题目,要求包含至少两个变量,并包含优化问题(如最大值或最小值)。题目需简洁明了,解题步骤要详细。
4.写一篇学习心得,总结一次函数在实际问题中的应用,以及在本节课中学到的解题策略和技巧。要求不少于300字,重点突出自己的收获和感悟。
5.预习下一节课的内容,提前思考如何将一次函数的知识应用到更广泛的实际问题中。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生已有的知识经验,通过生活中的实例,引发学生的思考,激发他们的学习兴趣。
“同学们,我们在前面的学习中已经了解了一次函数的概念和性质。那么,你们知道一次函数在实际生活中有哪些应用吗?”通过这个问题,让学生回顾一次函数的知识,并思考其与现实生活的联系。
5.总结反思,提升认识
课后,教师应引导学生对所学知识进行总结反思,提炼关键点,形成知识体系。同时,教师也要对课堂教学进行反思,了解学生的学习情况,不断调整教学策略,提高教学效果。
6.关注个体差异,因材施教
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,教师要有耐心,帮助他们克服困难,增强自信心;对于优秀生,则要适当提高要求,激发他们的潜能。
3.根据一次函数的性质,我们可以求出使总费用最低的小车数量。
(三)学生小组讨论,500字
在学生小组讨论环节,我将把学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.你还能想到生活中哪些问题可以用一次函数来解决?
2.在解决实际问题时,如何正确列出一次函数表达式?
3.如何利用一次函数的性质,找到实际问题的最优解?
接着,我展示一个实例:“假设我们班要组织一次郊游活动,需要租车。租车公司给出了如下收费标准:每辆小车租金100元,每辆大车租金200元。我们班共有50人,请同学们思考,如何选择车辆才能使总费用最低?”

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

4 一次函数的应用(第3课时)学习目标1.能通过函数图象获取信息,掌握两个一次函数图象的应用;(重点)2.能利用同一坐标系内两个函数图象的关系,解决简单的实际问题. (难点)自主学习学习任务一 新课导入1.某工程队在“村村通”工程中修建的公路长度y (米)与时间x (天)之间的关系如图1.根据图象提供的信息,可知该公路的长度是 米.图1 图22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆质量x (千克)与他手中持有的钱(含备用零钱)y (元)的关系如图2所示,结合图象回答下列问题:(1)农民自带的零钱是 ;(2)降价前他每千克土豆出售的价格是 ;(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,他一共带了 千克土豆.学习任务二 探究两个一次函数图象在同一坐标系中的应用1.如图3,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t 时,销售收入= 元, 销售成本=元.(2)当销售量为6 t 时,销售收入= 元, 销售成本=元.(3)当x =3时,销售收入= 元,销售成本= 元;盈利(收入-成本)= 元.(4)当销售量等于 时,销售收入等于销售成本.(5)当销售量 时,该公司盈利(收入大于成本);当销售量 时,该公司亏损(收入小于成本).(6) l 1对应的函数表达式是 ,l 2对应的函数表达式是 .分组讨论.k 1表示 ,b 1表示 ;k 2表示 ,b 2表示 .2.我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图4①),图4②中l 1,l 2分别表示两船相对于海岸的距离s (n mile)与追赶时间t (min)之间的关系.① ②图4根据图象回答下列问题:(1) 表示B 到海岸的距离与追赶时间之间的关系.(2) 速度快.(3)10 min 内B (填“能”或“不能”)追上A .(4)如果一直追下去,那么B (填“能”或“不能”)追上A .(5)当A 逃到离海岸12 n mile 的公海时,B 将无法对其进行检查.照此速度,B (填“能”或“不能”)在A 逃入公海前将其拦截.(6)l 1与l 2对应的两个一次函数s =k 1t +b 1与s =k 2t +b 2中,k 1,k 2的实际意义分别是 ,可疑船只A 与快艇B 的速度分别是 .合作探究如图5,小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?当堂达标1.如图6,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和运动时间,根据图象可知,快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米图6 图7 图52.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.如图7表示的是甲、乙两人前往目的地所行驶的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是( )A.0.5千米B.1千米C.1.5千米D.2千米3.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (时)函数关系的图象是( )A B C D4.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通信时间x (分)与收费y (元)之间的函数关系如图8所示.(1)有月租费的收费方式是 (填“①”或“②”),月租费是 元;(2)分别求出①②两种收费方式中y 与x 之间的函数关系式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.课后提升 如图9,l A 与 l B 分别表示A 步行与B 骑车同一路上行驶的路程s 与时间t 的关系.(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇?(4)若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?在图中表示出这个相遇点C .反思感悟我的收获:我的易错点:图8参考答案当堂达标1.C2.A3.C4.解:(1)①30(2)设y有=k1x+30,y无=k2x,由题意得500k1+30=80,k1=0.1;500k2=100,k2=0.2. 故所求的关系式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300.当x=300时,y有=y无=60.故由题图可知当通话时间在300分钟内时,选择通信收费方式②实惠;当通话时间超过300分钟时,选择通信收费方式①实惠;当通话时间为300分钟时,选择通信收费方式①,②一样实惠.课后提升解:(1)由题图可知,B出发时与A相距10千米.(2)B修理自行车所用的时间为:1.5-0.5=1小时.(3)3小时时两人的路程都是22.5千米,所以,B出发后3小时与A相遇.(4)出发时A的速度为22.5103=256千米/时,B的速度为7.50.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,根据题意得,15x-256x=10,解得x=1213.答:经过1213h与A相遇,图10中点C即为相遇点.图10。

北师大版八年级上册数学一次函数的综合应用(共17张)

北师大版八年级上册数学一次函数的综合应用(共17张)

G都在x轴上,且点G与点B重合.
(1)求△ABC的面积. (2)求矩形DEFG的边DE与EF的长.
y l2 E
l1 D
(3)S矩形DEFG:S△ABC =_________.
C
AO
B F (G) x
(3)∵S矩形DEFG=4×8=32 S△ABC=½ ×[8-(-4)]×6=36
∴S矩形DEFG:S△ABC =32:36=8:9
例4:一辆客车从甲地开往乙地,一辆出租车从乙地开往 甲地,两车同时出发,设客车离甲地的距离为y1(km), 出租车离甲地的距离为y2(km),客车行驶时间为x (h),y1,y2与x的函数关系图象如图所示: (1)根据图象,求出y1,y2关于x的函数关系式。 (2)若设两车间的距离为S(km),请写出S关于x的 函数关系式。 (3)甲、乙两地间有A、B两个加油站,相距200km, 若客车进入A站加油时,出租车恰好进入B站加油。求A 加油站到甲地的距离。
(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,
出租车恰好进入B站加油。求A加油站到甲地的距离。
y
练习: B
1y轴.如于图点,A在,平B,面将直△角A坐O标B系绕中点,O顺直时线针l:旋y=转90x°43+后4分得别到交x轴,
A
△A′OB′. (1)求直线A′B′的解析式;
y ox (k>0,b<0
y ox (k<0,b<0
典型题分析
y
C
例1.如图,已知直线l:y=
3 x 3
3 与x轴交于点A,
l
B
与y轴交于点B,将△AOB沿直线l折叠,点O落在
点C处,则直线CA的表达式为_________.

北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版八年级上册课题:《一次函数》复习课教案一. 教材分析北师大版八年级上册《一次函数》复习课教案旨在帮助学生巩固已学的一次函数知识,提高解题能力和思维水平。

本节课的主要内容有一次函数的定义、性质、图像和应用等方面,通过本节课的学习,学生可以更好地理解和掌握一次函数的知识,并能够运用一次函数解决实际问题。

二. 学情分析学生在学习一次函数时,已经具备了一定的数学基础和思维能力,能够理解和掌握一次函数的基本概念和性质。

但学生在应用一次函数解决实际问题时,还存在着一些困难,如对一次函数图像的理解和运用不够灵活等。

因此,在复习课中,需要针对这些难点进行讲解和练习,帮助学生更好地掌握一次函数的知识。

三. 教学目标1.掌握一次函数的定义、性质和图像。

2.学会运用一次函数解决实际问题。

3.培养学生的逻辑思维和解题能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的理解和运用。

3.运用一次函数解决实际问题。

五. 教学方法采用讲授法、练习法、讨论法等教学方法,通过讲解、示例、练习和讨论等方式,帮助学生理解和掌握一次函数的知识,提高学生的解题能力和思维水平。

六. 教学准备1.教学课件或黑板。

2.练习题和答案。

3.教学参考书和资料。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾一次函数的定义和性质,激发学生的学习兴趣和思维能力。

呈现(15分钟)讲解一次函数的图像和应用,通过示例和练习,让学生理解和掌握一次函数图像的特点和运用方法。

操练(15分钟)让学生独立完成练习题,教师进行个别辅导和指导,帮助学生巩固已学知识,提高解题能力。

巩固(10分钟)通过讨论和练习,让学生进一步理解和掌握一次函数的知识,培养学生的思维能力和解决问题的能力。

拓展(10分钟)讲解一次函数在实际问题中的应用,通过示例和练习,让学生学会运用一次函数解决实际问题。

小结(5分钟)总结一次函数的知识点,强调一次函数的定义、性质和图像的重要性,提醒学生注意运用一次函数解决实际问题。

北师大版八年级数学上册【教学设计】一次函数的实际应用【新版】

北师大版八年级数学上册【教学设计】一次函数的实际应用【新版】

4.4.2 一次函数的实际应用教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y为方案一的1为方案二的函数图象.从图中信息解答如下问题:函数图象,y2的函数关系式;(1)求y1(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案. 【答案】(1)设y 1的函数表达式为y=kx(x ≥0). ∵y 1经过点(30,720), ∴30k=720.∴k=24.∴y 1的函数表达式为y 1=24x(x ≥0). (2)根据图象可知x=50,把x=50代入y 1=24x 得:y 1=24×50=1200,∴A(50,1200)当销售量为50件时两种方案工资相同,都是1200元. (3)设y 2的函数表达式为y 2=ax+b(x ≥0),经过点(30,960),(50,1200) ∴,解得:,∴b=600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【答案】设月薪y(元),月销售额为x(元). 方案甲:y=1500+x(x ≥0) 方案乙:y=750+x(x ≥0)当y 甲=y 乙时,1500+x=750+x,解得x=7500.求得y 甲=y 乙=2250 即销售额为7500元时,这两种方案所定的月薪相同. 在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7500,y 甲>y 乙,x>7500时,y 甲<y 乙. 提问:说一说用图象的方法解决问题有哪些优点? 二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(图1).图2中l 1,l 2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与追赶时间之间的关系? (2)A,B 哪个速度快? (3)15 min 内B 能否追上A?(4)如果一直追下去,那么B 能否追上A?(5)当A 逃到离海岸12n mile 的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?(6)l 1与l 2对应的两个一次函数y=k 1x+b 1与y=k 2x+b 2中,k 1,k 2的实际意义各是什么?可疑船只A 与快艇B 的速度各是多少?【答案】(1)当t=0时,B 距海岸0 n mile,即s=0,故l 1表示B 到海岸的距离与追赶时间之间的关系.(2)t 从0增加到10时,l 2的纵坐标增加了2,而l 1的纵坐标增加了5,即10 min,A 行驶了2n mile,B 行驶了5n mile,所以B 的速度快.(3)延长l 1,l 2(图3),可以看出,当t=15时,l 1上的对应点在l 2上对应点的下方,这表明,15 min 时B 尚未追上A.(4)如图3,l 1,l 2相交于点P.因此,如果一直追下去,那么B 一定能追上A. (5)图3中,l 1与l 2交点P 的纵坐标小于12,这说明,在A 逃入公海前,B 能够追上A.(6)k 1表示快艇B 的速度,k 2表示可疑船只A 的速度.可疑船只A 的速度是0.2n mile/min,快艇B 的速度是0.5n mile/min. 三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s 的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到: 距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版八年级上册课题:《一次函数》复习课教学设计一. 教材分析《一次函数》是北师大版八年级上册数学第二章的内容,主要介绍了函数的概念、一次函数的定义、图像和性质。

本节课的教学内容是对一次函数的复习,通过复习使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

二. 学情分析学生在之前的学习中已经掌握了函数的概念和一次函数的基本知识,但部分学生对一次函数的图像和性质理解不够深入,解决实际问题的能力有待提高。

此外,学生的数学基础和学习兴趣存在差异,因此在教学过程中需要关注学生的个体差异,激发学生的学习兴趣。

三. 教学目标1.知识与技能:通过对一次函数的复习,使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

2.过程与方法:通过复习课的教学,培养学生自主学习、合作交流的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的数学素养,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一次函数的基本概念、图像和性质。

2.难点:一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。

2.启发式教学法:引导学生通过自主学习、合作交流,发现一次函数的性质。

3.案例教学法:通过解决实际问题,培养学生应用一次函数的能力。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教学课件:制作一次函数的复习课件,包括一次函数的基本概念、图像和性质。

2.教学案例:准备一些实际问题,用于巩固一次函数的应用。

3.作业布置:提前布置一次函数的相关作业,了解学生的掌握情况。

七. 教学过程1.导入(5分钟)通过生活实例引入一次函数,激发学生的学习兴趣。

例如,讲解购物时打折优惠的问题,引导学生发现折扣率与价格之间的关系是一次函数。

2.呈现(10分钟)呈现一次函数的基本概念、图像和性质,让学生回顾和巩固一次函数的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的综合应用
教学目标:
知识与技能:
1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题
过程与方法:
1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;
2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.情感态度与价值观:
在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.
教学重难点:
重点:一次函数图象的应用
难点:从函数图象中正确读取信息
教学过程
(一)课前研究:
学生自学教材93--94页,并完成书中问题完成课本P93
(二)课中展示:
小组合作交流,完成展示。

例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?
例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B 追赶(如图),下图中l1,l2分别表示两船相对于海岸
的距离s(海里)与追赶时间t(分)之间的关系.
根据图象回答下列问题:
(1)哪条线表示B到海岸的距离与时间之间的关系?
解:观察图象,得当t=0时,B距海岸0海里,即
S=0,故l1表示B到海岸的距离与追赶时间之间的关系;
(2)A,B哪个速度快?
解:从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.
(3)15分钟内B能否追上A?
解:可以看出,当t=15时,l1上对应点在l2
上对应点的下方,
(4)如果一直追下去,那么B能否追上A?
解:如图l1 ,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.
(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃
到公海前将其拦截?
解:从图中可以看出,l1与l1交点P的纵坐标小于12,
这说明在A逃入公海前,我边防快艇B能够追上A.
(三)应用新知:
例观察甲、乙两图,解答下列问题
1. 填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节。

2. 根据1中所填答案的图象填写下表:
绿线
红线
平均速度
(米/分)
最快速度
(米/分)
到达
时间(分)
主人公
(龟或免)
项目
线型
3. 根据1中所填答案的图象求:
(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);
(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程
(四)小结梳理:
在知识我有那些收获?
在能力上有那些提高?
还有那些需要交流的地方?
(五)后测达标:
5. 沙尘暴发生后,经过开阔荒漠时加速,经过乡镇、遇到防
护林带区则减速,最终停止。

某气象研究所观察一场沙尘暴
从发生到结束的全过程,记录了风速y(km/h)随时间t (h )
变化的图象(如图)
(1)求沙尘暴的最大风速;
(2)用恰当的方式表示沙尘暴风速
y
与时间t 之间的关系。

(六)拓展延伸:
1.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:
4. 请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:
(1)用简洁明快的语言概括大意,不能超过200字;
(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量。

(1)1l 是 ______行驶过程的函数图象, 2l 是 ________行驶过程的函数图象.
(2)哪一个人出发早?早多长时间?哪一个人早到达目的地? 早多长时间?
(3)求出两个人在途中行驶的速度是多少?
(4)分别求出表示自行车和摩托车行驶过程的函数解析式, 并求出自变量x 的取值范围.。

相关文档
最新文档