2014年秋季新版新人教版八年级数学上学期15.1.2分式的基本性质教案6
人教初中数学八年级上册 《15.1.2 分式的基本性质》教案

15.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、教学过程:(一)板书标题,呈现教学目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.(二)引导学生自学:阅读P4-8练习,并思考下列问题:1.分数的基本性质是什么?用类比猜想出分式的基本性质.2.什么是最简分式?如何确定公因式和最简公分母?3.如何约分?如何通分?10分钟后,检查自学效果 (三)学生自学,教师巡视:学生认真自学,并完成P8练习 (四)检查自学效果:1.学生回答老师所提出的问题2.学生回答P8练习(五)引导学生更正,归纳:1.更正学生错误;2.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
3.约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.4.由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的 值不变.如:不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x 3-, n m --2, n m 67--, yx 43---。
(六)课堂练习1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -3.约分: (1)cab b a 2263 (2)2228mn n m(3)532164xyzyz x - (4)x y y x --3)(24.通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a - (4)11-y 和11+y5.不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(--作业: 1.习题15.1 4,5,6,7(B 本);2.《感悟》P2-4;3.预习P10-13 教学反思:2 下列各组中分式,能否由第一式变形为第二式?y3x2b a a-22b a )b a (a -+。
八年级数学上册 15.1.2 分式的基本性质教案 (新版)新人教版

分式的基本性质一、教学目标1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的基本性质?有什么用途?(二)新课1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)解:∵x≠0,学生口答.解:∵z≠0,例2 填空:把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.练习1:化简下列分式(约分)(1)(2)(3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.问:分式约分的依据是什么?分式的基本性质在化简分式时,小颖和小明的做法出现了分歧:小颖:小明:你对他们俩的解法有何看法?说说看!教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.练习2(通分):把各分式化成相同分母的分式叫做分式的通分.(1)与(2)与解:(1)最简公分母是(2)最简公分母是(x-5)(x+5)(三)课堂小结1.分式的基本性质.2.性质中的m可代表任何非零整式.3.注意挖掘题目中的隐含条件.4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版八年级数学上册(教案):15.1.2《分式的基本性质

§15.1.2 分式的基本性质一、教学目标1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的基本性质?有什么用途?(二)新课1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式基本性质的理解:例2 填空:(1),解:∵x≠0,同理可化简第二个.(2)学生自己解答.把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.练习1:化简下列分式(约分)例3(1) (2) (3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.问:分式约分的依据是什么?分式的基本性质在化简分式 时,小颖和小明的做法出现了分歧:小颖: 小明:你对他们俩的解法有何看法?说说看!教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.练习2(通分):把各分式化成相同分母的分式叫做分式的通分.例4:(1) 与 (2) 与 解:(1)最简公分母是22x 20x 5y x 20xy 5=5x x 2-c 2ab 22a 2c a a 2)b a (c a ba b a a b b 22222-=∙∙-=-(2)最简公分母是(x-5)(x+5)(三)课堂小结1.分式的基本性质.2.性质中的m可代表任何非零整式.3.注意挖掘题目中的隐含条件.4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.。
人教版数学八年级上册 15.1.2《分式的基本性质》教学设计

《分式的基本性质》教学设计教材分析分式的基本性质(第1课时)是人教版八年级数学上册第十五章第一节分式的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。
学情分析在学习本节课之前,学生原有的知识是分数的基本性质的运用。
八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
教学目标知识与技能(1) 理解并掌握分式的基本性质(2) 灵活运用分式的基本性质进行分式的变形过程与方法通过类比分数的基本性质,探索分式的基本性质,初步学会运用类比转化的思想方法研究数学问题.情感.态度.价值观通过研究解决问题的过程,培养学生合作交流的意识与探究精神.教学重点理解并掌握分式的基本性质教学难点灵活应用分式的基本性质将分式变形课型探究型课时分配两课时教学准备多媒体课件教学方法启发引导探索的教学方法教学过程一. 导入新课,明确目标情境导入1.下列分数是否相等?可以进行变形的依据是什么? 4832,2416,128,64,322.分数的基本性质是什么?3.类比分数的基本性质,你能猜想出分式有什么性质吗?这节课我们就一起来探究分式的基本性质。
【分析】分数的基本性质:一个分数的分子.分母乘(或除以)同一个不为0的数.分数的值不变。
用式子表示分数的基本性质为其中a ,b ,c 是数。
在导入过程中教师要关注学生对学过的知识是否掌握得较好,还要关注学生对新知识的探究是否有浓厚的兴趣。
二. 自主学习,用心思考(一)自学指导(阅读教材129页内容,完成下列问题)1 .分式的基本性质是什么?2. 如何用式子表示分式的基本性质?教师提出问题学生思考议论后得出分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的数,分式的值不变。
人教初中数学八年级上册 15.1.2 分式的基本性质教案

15.1.2分式的基本性质教学目标1、会根据分数的基本性质类比推导出分式的基本性质;2、理解分式的基本性质及符号法则,并会用分式的基本性质将分式变形;3、经历探索分式的基本性质的过程,体会类比这一数学思想;体验分式变形的方法与技巧,以培养学生的恒等变形的运算能力。
重点理解分式的基本性质及分式的符号法则。
难点1.灵活应用分式的基本性质将分式进行简单的变形;2.利用分式的符号法则,把分子或分母是多项式的分式变形。
一、复习旧知问题1:下列两式成立吗?为什么?分数的基本性质:分数的分子与分母同时乘以(或除以)一个不等于0的数,分数的值不变.即:对于任意一个分数 ba有:二、类比探究问题2:你认为分式“a 2a ”与“21”;分式“mn ”与“mn n2”相等吗?(a ,m ,n 均不为0)类比分数的基本性质,你能得到分式的基本性质吗?说说看! 分式的基本性质:分式的分子与分母同时乘以(或除以)同一个不等于0的整式 ,分式的值不变. 用公式表示为:例1 :下列等式的右边是怎样从左边得到的?)(0c c 4c 343≠=)(0c 65c 6c 5≠=)(0c cb c a b a c b c a b a ≠÷÷=⋅⋅=)0M M B A (.MB M A B A ,M B M A B A ≠÷÷=⨯⨯=是整式,且、、其中(1))0c (bc2acb 2a ≠= ; (2)y x x y x 23=.解:(1)∵c ≠0∴bc2acc b 2c a b 2a =⋅⋅=; (2) ∵x ≠0∴yxx x y x x x y x 233=÷÷=.思考:为什么(1)中给出c ≠0 ,而(2)中没有给出 x ≠0? 反馈练习:下列各组分式,能否由左边变形为右边?(1) 与 ; (2) 与 ;(3) 与 ; (4) 与 ;(5) 与 .反思: 运用分式的基本性质应注意什么?(1)分子、分母应同时做乘、除法中的同一种运算; (2)所乘(或除以)的必须是同一个整式; (3)所乘(或除以)的整式应该不等于零. 三、运用新知例2:填空(1)yxyx )(3=, )(63322yx xxy x +=+;(2)ba ab2)(1=,)0()(222≠=-b ba ab a 。
八年级数学上册-15.1.2-分式的基本性质教案-(新版)新人教版

八年级数学上册-15.1.2-分式的基本性质教案-(新版)新人教版一、教学目标1.使学生理解并掌握分式的基本性质及变号法则;并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的基本性质;这是学好本章的关键.2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的基本性质?有什么用途?(二)新课1.类比分数的基本性质;由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式;分式的值不变;即:2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析;并反问:为什么c≠0?解:∵c≠0;教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.) 解:∵x≠0;解:∵z≠0;练习1 填空:把学生分为四人一组开展竞赛;看哪个组做得又快又准确;并能小结出填空的依据.(1)看分母如何变化;想分子如何变化;(2)看分子如何变化;想分母如何变化; 例2 不改变分式的值;使下列分式的分子和分母都不含“-”号:规律总结分式符号变换的依据与分数符号变换的依据相同;也遵循“同号得正;异号得负”的原则。
练习2:不改变分式的值;把分子或分母中多项式的第一项都不含“-”号.b a a b a 2224) ( )(=-b a ab 2)(13 )(=y xy x ) ( )(=31;633222)(y x )(+=+x xy x 5(1) 6b a --(2) 3xy -2(3) m n -55(1)5 66(1)6b b b a a a --⨯-==--⨯-解(1)()333x x x y y y -=-÷=-(2)222()m m m n n n=÷-=--(3).y x y x 2b a c 1--+-+-);()(解:(三)课堂小结本节课学习了哪些内容?1.什么是分式的基本性质?分式的分子与分母乘(或除以)同一个不等于0的整式 ;分式的值不变.2. 运用分式的基本性质应注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.(四)作业(五)板书15.1.2 分式的基本性质1.分式的基本性质2.典例分析3.小结(六)反思.yx y x )y x ()y x (y x y x 2b a c )b a (c b a c 1+-=+---=--+---=--=+-)(;)(。
八年级数学上册 15.1.2分式的基本性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学

分式的基本性质教学准备1. 教学目标1.1 知识与技能:使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.1.2过程与方法:通过分式的恒等变形提高学生的运算能力。
1.3情感态度与价值观:通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
2. 教学重点/难点2.1 教学重点使学生理解并掌握分式的基本性质,这是学好本章的关键.2.2 教学难点灵活运用分式的基本性质和变号法则进行分式的恒等变形3. 教学用具4. 标签教学过程1课堂引入问题1:下列各组分数是否相等?可以变形的依据是什么?生:依据分数的基本性质问题2.分数的基本性质是什么?需要注意的是什么?生:分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.师:一般地,对于任意一个分数,有师:(1)分数分子和分母做乘法、除法中的同一种运算;(2)乘(或者除以)同一个数;(3)所乘(或除以)的数不为0;(4)分数值不变.问题3.运用分数的基本性质进行约分和通分的时候要注意什么?生:分数的基本性质是进行分数的约分和通分的依据,也是分数四则运算的基础.分数的约分:关键是确定分子和分母的最大公约数,再依据分数的基本性质进行化简成最简分数;分数的通分:关键是确定各个异分母分数所有分母的最小公倍数,再依据分数的基本性质进行通分.问题4.以下分式的变形是否成立?请简要说明理由.生:(1)成立.等号左边的分式的分子和分母都乘2;等号左边的分式的分子和分母都除以2.生:(2)成立.等号左边的分式的分子和分母都乘不为0的整式a;等号左边的分式的分子和分母都除以不为0的整式a.问题5:类比分数的基本性质,你能猜想出分式的基本性质吗?分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(C≠0)其中A , B , C是整式. 师:类比分数的基本性质,应用分式的基本性质时要注意什么?(1)分子和分母应同时做乘法或除法中的一种变换;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式不为0.2例2 填空:(1)(2)师:你是怎么想的?生:因为中的xy除以x才能变成y,根据分式的基本性质,分子也得除以x。
人教版数学八年级上册15.1.2:分式的基本性质 教案设计

分式的基本性质【课题】:分式的基本性质(平行班)【设计与执教者】:【教学时间】:40分钟【学情分析】:(适用于平行班)学习本课内容前,学生已经掌握分数的基本性质,并且已经具备了分析归纳能力、合作探究能力,可以让学生通过类比的方式来认识和归纳分数的基本性质. 【教学目标】:1、理解分式的基本性质.2、会用分式的基本性质将分式变形.【教学重点】:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。
【教学难点】:灵活应用分式的基本性质将分式变形。
利用分式的变号法则,把分子或分母是多项式的变形。
【教学突破点】:突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.【教法、学法设计】:我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
【课前准备】:课件教学环节教学活动设计意图一、复习引入复习提问1、请同学们考虑:与相等吗?与相等吗?为什么?2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?3、提问分数的基本性质,让学生类比猜想出分式的基本性质.回忆旧知识,为探索新知识做准备.二、探究新知新课讲解:分式的基本性质:分式的分子、分母同乘以(或除以)同一个整式,使分式的值不变.可用式子表示为:BA=CBCA••BA=CBCA÷÷(C≠0)例题讲解例2、填空:(1)()222-=-xxxx()yxxxyx+=+22633(2)()baabba2=+,()()222≠=-bbaaba[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.面向全体,调动学生的积极参与。
4320152498343201524983。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市下峪镇初级中学八年级数学下册《分式的基本性质2》
教案 新人教版 主持人:
时间
参加人员 地点 主备人 课题 分式的基本性质(2) 教学
目标
重、难
点即考
点分析
课时安排 1课时 教具使用 彩色粉笔
教 学 环 节 安 排 备 注
一、
复习 1.分式324
x x +-中,当x 时分式有意义,当x 时分式没有意义,当x 时分式的值为0。
2.分式的基本性质。
二、分式的的变号法则
例1 不改变分式的值,使下列分式的分子和分母都不含
“—”号:
(1)a b 65--; (2)y
x 3-; (3)n m -2. 例2 不改变分式的值,使下列分式的分子与分母的最高次
项的系数是正数:
(1)21x x -; (2)3
22+--x x . 注意:(1)根据分式的意义,分数线代表除号,又起括号的
作用。
(2)当括号前添“+”号,括号内各项的符号不变;当括号
前添“—”号,括号内各项都变号。
例3若x 、y 的值均扩大为原来的2倍,则分式
232y x 的值如何变化?若x 、y 的值均变为原来的一半呢?
三、分式的通分
1.把分数6
5,43,21通分。
解 126261621=⨯⨯=,129433343=⨯⨯=,12
10625265=⨯⨯=。
2.什么叫分数的通分?
答:把几个异分母的分数化成同分母的分数,而不改变
分数的值,叫做分数的通分。
3.和分数通分类似,把几个异分母的分式化成与原来的分
式相等的同分母的分式叫做分式的通分。
通分的关键是确定几个分式的公分母。
4.讨论: (1)求分式
4
322361,41,21xy y x z y x 的(最简)公分母。
分析:对于三个分式的分母中的系数2,4,6,取其最小公
倍数12;对于三个分式的分母的字母,字母x 为底的幂的因式,
取其最高次幂x 3,字母y 为底的幂的因式,取其最高次幂y 4,再
取字母z 。
所以三个分式的公分母为12x 3y 4z 。
(2) 求分式2241x
x -与412-x 的最简公分母。
分析:先把这两个分式的分母中的多项式分解因式,即
4x —2x 2= —2x (x-2),x 2
—4=(x+2)(x
—2),
把这两个分式的分母中所有的因式都取到,其中,系数取正
数,取它们的积,即2x (x+2)(x-2)就是这两个分式的最简公分母。
请同学概括求几个分式的最简公分母的步骤。
答:1.取各分式的分母中系数最小公倍数;
2.各分式的分母中所有字母或因式都要取到;
3.相同字母(或因式)的幂取指数最大的;
4.所得的系数的最小公倍数与各字母(或因式)的最高次
幂的积(其中系数都取正数)即为最简公分母。
5.练习:
求下列各组分式的最简公分母:
(1)22265,41,32bc c a ab ; (2);
2)
3(21,)3)(2(1,)2(31++--x x x x x (3)1
1,1,2222-++x x x x x 6、例3 通分(1)b a 21,21ab ; (2)y x -1,y
x +1; (3)221y x -,xy
x +21. 分析 :分式的通分,即要求把几个异分母的分式分别化为
与原来的分式相等的同分母的分式。
通分的关键是确定几个分式的公分母;要归纳出分式分式是多项式如何确定最简公分母,一般应先将各分母分解因式,然后按上述的方法确定分母。
解:略
(3)因为 x 2-y 2=________________, x 2
+xy =
________________, 所以221y x -与xy
x +21的最简公分母为__________,即x (x 2-y 2),因此2
21y x -=___________, xy
x +21=______
作
业
布
置
本章复习题
重难点及考点巩固性练习
五,达标训练
一,填空:
(1)
z
y
x
z
y
x4
3
2
312
2
1
=;(2)
z
y
x
y
x4
3
3
212
4
1
=;
(3)
z
y
x
xy4
3
412
6
1
=。
二,通分:(1)
2
3
1
x
,
xy
12
5
;(2)
x
x+
2
1
,
x
x-
2
1
(3)
4
,
)
2(
1
2
2—
x
x
x
-
1。