全等三角形t
证明三角形全等的五种方法

证明三角形全等的五种方法
方法一:边边边(SSS)——三条边都对应相等的两个三角形全等。
三角形具有稳定性,三条边都确定了,整个三角形都可以固定下来了。
这样就具有了唯一性,而这样的两个三边都对应相等的三角形,自然就是全等的。
但是需要注意的是三个角都相等的两个三角形不能判定全等。
方法二:边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。
这个判定方式是课本上直接给出的,同一个角度的有很多,但是确定了夹这个角的两条边的长短,这个就被确定下来了,这是举不出反例的。
方法三:角边角(ASA)——两角和它们之间的夹边对应相等的两个三角形全等。
这个判定方式也是课本上直接给出的,一个角的边可以无限延长,两个角的夹边被确定以后,就无法延长了,另外两条边则肯定会有交点,这样肯定也能将三角形确定下来。
方法四:角角边(AAS)——两个角和其中一个角的对边对应相等的两个三角形全等。
这个判定方式是由方法三角边角衍生出来的,只要记住了方法三,这个方法就很好记了。
三角形的内角和是180,如果两个角都确定了的话,另外一个角度也可以确定下来,这样三个角都是固定的了,那条对边无论如何都是夹在其中两个角中间的,所以也就形成了“角边角”。
方法五:斜边直角边(HL)——斜边和一条直角边对应相等的两个三角形全等。
这个判定方式是利用了勾股定理,如果两条边都知道了,那么利用勾股定理很容易就可以确定第三条边了,这样利用方法一边边边,或者是方法二边角边,都是可以得出两个三角形全等的。
但是前提必须是两个直角三角形。
判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。
判定两个三角形是否全等是数学中的一个重要问题。
下面将介绍判定全等三角形的五种方法。
方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。
如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。
方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。
如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。
方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。
如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。
方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。
如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。
方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。
如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。
通过以上五种方法,我们可以准确地判定两个三角形是否全等。
这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。
需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。
如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。
判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。
通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。
总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。
这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。
全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
三角形全等五个判定方法

三角形全等五个判定方法
一、视图判定
从三角形的外形几何图形来判定三角形是否相等,通常分为三种情况:
1、三角形三边相等:当三角形的三边长都相等时,我们称这三角形为等边三角形,这种三角形的三个内角的角度都是相等的,其面积也是相等的。
2、三角形两边相等:当三角形的两边长度相等,且两条边之间的夹角为直角时,我们称这三角形为等腰直角三角形,此时三角形的面积也是相等的。
3、三角形三个角度相等:当三角形的三个角度都相等时,我们称之为等角三角形,此时三角形的三边长也是相等的,其面积也是相等的。
二、测量距离判定
要判定三角形是否全等,我们可以利用放射线的性质,将三角形各边的距离进行测量,将三边的距离写出来,如果三边的距离相同,则该三角形为全等三角形。
三、勾股定理判定
判定三角形是否相等,也可以利用勾股定理,即如果存在三条直线,当满足其中两条直线的长度平方之和等于另外一条直线的长度平方时,这三条直线就可以组成一个三角形,且该三角形是全等的。
四、测量角度判定
要判定三角形是否全等,我们可以利用圆规将三角形的三角的度数进行测量,如果三角形的三个角的角度都相同,则该三角形就是全等的。
五、勾股定理判定
判定三角形是否相等,也可以利用勾股定理,即如果存在三条直线a,b,c,当满足a/b=b/c的条件时,则该三角形为全等的。
全等三角形的概念

有对顶角的,对顶角是对应角.
在找全等三角形的对应元素时一般有 什么规律?
A
A
B
CE
P
D
BF
C
D
一对最长的边是对应边,一对最短的边是对应边. 一对最大的角是对应角,一对最小的角是对应角.
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为 对应边;最大角与最大角(最小角与最小角)为对 应角; (5)对应角所对的边为对应边;对应边所对 的角为对应角; (6)根据书写规范,按照对应顶点找对应边 或对应角.
观
同一张底片冲洗出来的两张照片
察
形状和大小有什么特征?
观察下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
能够完全重合的两个图形称为全等形.
及时反馈
观察下面两组图形,它们是不是全等形?
只有形状
(1)
相同
只有大小 相同
(2)
全等形的 形状和 大小 都相同
能够完全重合的两个三角形,叫做 全等三角形.
A
12
34 D
B
C
3.如图,若△ABC≌△CDA,对应边是 A__B_与__C_D__,__A__C_与__C__A_,___B_C_与__D__A__,对应角
是_∠__1_与__∠__2_,___∠__4_与__∠__3_,___∠__B_与___∠__D__.
A
D
13
2 4
B
C
4.已知△ABE≌△ACD,且∠1=∠2,∠B = ∠C,指出其他的对应边和对应角.
全等三角形

全等三角形【知识精读】1.全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2.全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的的性质:全等三角形的对应边相等,对应角相等;4.寻找对应元素的方法根据对应顶点找:如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
根据已知的对应元素寻找:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
A、翻折如图,∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;B、旋转如图,∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;C、平移如图,∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5.判定三角形全等的方法:SSS、ASA、SAS、AAS6.注意问题:在判定两个三角形全等时,至少有一边对应相等;不能证明两个三角形全等的是:a、三个角对应相等,即AAA;b、有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
【分类解析】全等三角形知识的应用1.证明线段(或角)相等例1:如图,已知AD=AE,AB=AC.求证:BF=FC分析:由已知条件可证出ΔACD≌ΔABE,而BF和FC分别位于ΔDBF和ΔEFC中,因此先证明ΔACD≌ΔABE,再证明ΔDBF≌ΔECF,既可以得到BF=FC.2.证明线段(直线)平行例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD分析:要证AB∥CD,需证∠C=∠A,而要证∠C=∠A,又需证ΔABF≌ΔCDE.由已知BF⊥AC,DE⊥AC,知∠DEC=∠BFA=90°,且已知DE=BF,AF=CE.显然证明ΔABF ≌ΔCDE条件已具备,故可先证两个三角形全等,再证∠C=∠A,进一步证明AB∥CD. 3.证明线段(角度)的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段(或者两个角度)相等例3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE分析:(ⅰ)折半法:取CD中点F,连接BF,再证ΔCEB≌ΔCFB.这里注意利用BF是ΔACD 中位线这个条件。
全等三角形知识点

全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
全等三角形的知识点总结

全等三角形的知识点总结判定公理三角形全等的条件:1、全等三角形的对应角相等。
2、全等三角形的对应边相等3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:1、三边对应相等的两个三角形全等。
(SSS)2、两边和它们的夹角对应相等的两个三角形全等。
(SAS)3、两角和它们的夹边对应相等的两个三角形全等。
(ASA)4、有两角及其一角的对边对应相等的两个三角形全等(AAS)5、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)性质要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的`话,该两个三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形1.若两个三角形全等,猜想它们对应的高、中线、角平分线的关系是。
2.如图,△ABC≌△CDA,AC=7cm,AB=5cm,BC=8cm,则AD的长是()A、7cmB、5cmC、8cmD、6cm3.如果∆ABC≌∆ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=____,DC=__cm4.如图,已知△ABE≌△ACD,∠B=∠C,∠ADE=∠AED,指出这两个三角形的其他相等的边或角.5、如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.●拓展提高1.下列说法不正确的是()A、全等三角形的周长相等;B、全等三角形的面积相等;C、全等三角形能重合;D、全等三角形一定是等边三角形.2.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A、9.5cmB、9.5cm或9cmC、9cmD、4cm或9cm 3.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .4.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,求∠BAC的度数.A 'B DAC5.如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,求∠DGB 的度数 。
6、如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )(A)40°. (B)30°. (C)20°. (D)10°.7、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于( ) (A ) 70°(B ) 65° (C ) 50°(D ) 25°2.如图,是一个三角形测平架,已知AB =AC,在BC 的中点D 挂一个重锤,自然下垂.调整架身,使点A 恰好在重锤线上,AD 和BC 位置关系为______.3.如图,AC=AD ,BC=BD ,AB 是∠CAD 的平分线吗?1.如图,AC=DF ,BC=EF ,AD=BE ,∠BAC=72°,∠F=32°,则∠ABC=EDBC′FCD ′AACBD2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是()A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。
试用你所学的知识说明理由。
4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.●感受中考1.(2009年怀化)如图,AD=BC,AB=DC. 求证:∠A+∠D=180°2.(2009年四川省宜宾市)已知:如图,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A.1.如图,AC 与BD 交于O 点,若OA=OD ,用“SAS ”证明△AOB ≌△DOC ,还需( ) A 、AB=DC; B 、OB=OC; C 、∠A=∠D;D 、∠AOB=∠DOC2.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A 、BC=BD;B 、CE=DE;C 、BA 平分∠CBD;D 、图中有两对全等三角形3.如图,点B 、E 、C 、F 在同一直线上,AC=DF ,BE=CF ,只要再找出边 =边 ,或∠ =∠ ,或 ∥ ,就可以证得△DEF ≌△ABC.4.如图,AE=AF ,∠AEF=∠AFE ,BE=CF ,说明AB=AC 。
OEA BDC5.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC, 且 AE ∥BC. 说明:(1)△AEF ≌△BCD ;(2) EF ∥CD.●体验中考1.(2009年湖南省娄底市)如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE . 求证:△ABE ≌△ACE2.(2008年遵义市)如图,OA OB =,OC OD =,50O ∠= ,35D ∠=,则AEC ∠等于( ) A .60B .50C .45D .301.如图,O 是AB 的中点,∠A=∠B ,△AOC 与△BOD 全等吗?为什么?2.已知如图,AB=AC,AD=AE,∠BAC=∠DAE,试说明BD=CE。
3.如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC。
试说明AD=CB。
4.如图,已知AC、BD相交于点0,∠A=∠B,∠1=∠2,AD=BC.试说明△AOD≌△BOC.A CED1例:如图:已知AE 交BC 于点D ,∠1= AB=AD. 求证:DC=BE 。
5.玻璃三角板摔成三块如图,现在到玻璃店在配一块同样大小的三角板,最省事的方法( ) A 、带①去 B 、带②去 C 、带③去 D 、带①②③去6. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .7.如图,已知AC 、BD 交于E ,∠A=∠B ,∠1=∠2.求证:AE=BE .ABCDE8.如图,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm,求△ABC 的周长。
9.如图,在△ABC 中,∠B=∠C ,说明AB=AC10.已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
⑴求证:∠ABE=∠C ;⑵若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
11.如图,D 是AB 上一点,DF 交AC 于点E ,AE EC =,CF AB ∥. 求证:AD CF =.12.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B 、F 、C 、D 在同一条直线上. (1)求证AB ⊥ED ;(2)若PB=BC ,请找出图中与此条件有关的一对..全等三角形,并给予证明.●体验中考1.(2009年江西省)如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠2.(2009年福建省龙岩市)如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可).3.(2009年福建省福州市)如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD4.(2009年武汉市)如图,已知点E C ,在线BF线段上,BE CF AB DE ACB F =∠=∠,∥,.求证:ABC DEF △≌△.CEBFDAAB EFCD1.(2009年浙江省湖州市)如图:已知在ABC △中,DE=DF ,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,.求证:BED CFD △≌△2.(2009年北京市).已知:如图,在△ABC 中,∠ACB=90,CD AB 于点D,点E 在AC上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB=FC1.如图所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm .2.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。
3.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到DCBEAFAE3题图DCBABC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。
4.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是 ( )A、DE=DFB、AE=AFC、BD=CDD、∠ADE=∠ADF5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2,则两平行线间AB、CD的距离等于。
6.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点2.典例分析例:如图所示,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC +CD.1.已知△ABC 中,∠A=80°,∠B 和∠C 的角平分线交于O 点,则∠BOC= 。
2.如图,已知相交直线AB 和CD ,及另一直线EF 。
如果要在EF 上找出与AB 、CD 距离相等的点,方法是 ,这样的点至少有 个,最多有 个。
3.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。
A.9 cmB.5 cmC.6 cmD.不能确定4.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD•相等吗?请说明理由.●体验中考1.(2009年河南)如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 .2.(2009年临沂市)如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥, 垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OPOBAP DCAE1.下列各作图题中,可直接用“边边边”条件作出三角形的是( ) A .已知腰和底边,求作等腰三角形 B .已知两条直角边,求作等腰三角形 C .已知高,求作等边三角形 D .已知腰长,求作等腰直角三角形2.下列条件不可以判定两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .两个锐角对应相等 C .一条直角边和它所对的锐角对应相等 D .一个锐角和锐角所对的直角边对应相等3.△ABC 中,AB =AC,BD 、CE 是AC 、AB 边上的高,则BE 与CD 的大小关系为( ) A .BE >CD B .BE =CD C .BE <CD D .不确定4.如图,若△OAD≌△OBC,且∠0=65°,∠C=20°,则∠OAD= .5.如图,AB ∥CD ,AB =CD ,O 为AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,E 、F 在直线MN 上,且OE =OF 。