华师九年级上册§第24章图形的相似回顾与思考

合集下载

华师大版九年级上册第24章_图形的相似复习课课件PPT

华师大版九年级上册第24章_图形的相似复习课课件PPT
11 x - 2 xy 3 y 2已知, x y : 4 y : 3, 则 _______ . 5 2 2 x y
2 2
已知1, 2, 3三个数,请你再添上一个 数,写出一个比例式。
6
6或2/3或1.5
2.比例中项:
当两个比例内项相等时, 即
a b (或 a:b=b:c), = , b c
做一做做一做3如图王华在晚上由路灯如图王华在晚上由路灯aa走向路灯走向路灯bb当他走到点当他走到点pp时发现身后他影子的顶部刚好接触到路灯时发现身后他影子的顶部刚好接触到路灯aa的底部的底部当他向前再行当他向前再行12m12m到达点到达点qq时发现身前他影子的顶部时发现身前他影子的顶部刚好接触到路灯刚好接触到路灯bb的底部
对于四条线段a、b、c、d,如果其中两条线 段的长度的比与另两条线段的长度的比相等, a c 即 b = d ,那么这四条线段叫做成比例线段, 简称比例线段(proportional segments)
a c (1)比例基本性质 = b d a b = b c
合比性质:
a b c d
b2=ac
x的取值范围,并求出当BD为何值时AE取得最小值
解:∵△ABD∽△DCEAB D ∴ CD CE即
∴ ∴
A 1 B
y
E
2-x
1- y
C
1 x 2 - x 1- y
x
2
D
1- y x

2-x


PB QB AB CB
,即PQ∥AC;另一种情况为
PB QB CB AB
相似三角形性质应用
2. 如图, AD⊥BC, D为垂足, AD=8, BC=10, EFGH是 △ABC内接矩形,(H、G是BC上的两个动点,但H不到达点B,

华师版数学九年级上册第24章章目标总览教案与反思金品

华师版数学九年级上册第24章章目标总览教案与反思金品

第24章解直角三角形人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】,不迷路!本章的内容主要包括:测量、直角三角形的性质、锐角三角函数、解直角三角形.在学生掌握了全等三角形、相似三角形及特殊的三角形的性质的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.在中考中,本章重点考查有特殊锐角三角函数值的计算及解直角三角形的应用.【本章重点】特殊角的锐角三角函数值、解直角三角形及其应用.【本章难点】解直角三角形及其应用.【本章思想方法】1.体会方程思想:如:根据锐角三角函数构建方程解决直角三角形问题.2.体会数形结合思想:如:解直角三角形及其应用都要用到数形结合思想,由数到形,由形到数,二者完美结合,是解直角三角形的关键所在.3.体会转化思想:如:在一些问题中,需要通过作辅助线构造出直角三角形,把一般三角形的问题转化为直角三角形问题.24.1 测量 1课时24.2 直角三角形的性质 1课时24.3 锐角三角函数 2课时24.4 解直角三角形 3课时【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。

又召他到寝阁,对他说:“中兴的大事,全部委托给你了。

”金人攻打拱州、亳州,刘锜向朝廷告急,宋高宗命令岳飞火速增援,并在赐给岳飞的亲笔信中说:“设施之事,一以委卿,朕不遥度。

”岳飞于是调兵遣将,分路出战,自己率领轻装骑兵驻扎在郾城,兵锋锐气十足。

但是,后来高宗和秦桧决定与金议和,向金称臣纳贡。

就在岳飞积极准备渡过黄河收复失地的时候,高宗和秦桧却连发12道金字牌班师诏,命令岳飞退兵。

后岳飞被以“莫须有”的罪名毒死于临安风波亭,时年仅39岁。

华师大版-数学-九年级上册-24.1 相似的图形 修订版教案

华师大版-数学-九年级上册-24.1 相似的图形 修订版教案

第24章图形的相似单元要点分析教学内容本单元主要学习相似图形,了解相似图形的特征以及如何判定两个图形相似.前面所学习的全等图形实际上是相似图形的一个特例.学习本单元后,将在合情推理与逻辑推理以及解决几何问题方面得到提升.相似图形在实际中是常见的,对相似图形的研究,能够起到让学生更好地认识、描述物体的形状、体会图形相似在刻画现实世界中的重要作用,也可以通过解决现实世界中的具体问题,增强学生数学意识和分析、交流的能力.本单元较系统地研究线段的比、成比例线段、形状相同的图形、图形与坐标、中位线定理等,通过学生熟悉的生活经历和已有的数学知识,以大量存在的成比例线段、黄金分割、形状相同的图形为切入点,直观地认识形状相同的图形,并且逐步探索和了解相似多边形的本质特征,领会相似三角形的判定条件,以事件引入相似性质,感受图形相似的应用价值和丰富内涵.通过一个图形的放缩,了解位似图形和它的性质,并将图形的相似,位似与已学过的图形结合起来,最后学习图形与坐标,感受数形结合的实际应用.知识结构三维目标1.知识与技能.在丰富的实际情境中,经历对图形相似问题的观察、操作、思考、交流、类比、归纳等过程,进一步发展学生的探究精神、合作意识以及从图形相似的角度提出问题、分析问题、解决问题的能力.2.过程与方法.结合实际的情境了解线段的比、成比例线段;经历建筑、艺术等方面的实例了解黄金分割,并通过对图形的具体应用,进一步体会数学与自然及人类社会的密切联系,在实例中了解实际生活中的相似图形;了解相似多边形,相似三角形性质的过程,知道相似的性质,并探索掌握判定两个相似三角形的条件,学会位似图形的画法和应用.3.情感、态度与价值观.关注学生识图能力,语言表达能力,提高学生创新意识和实践能力以及对数学文化价值的认识.教学重点探索相似三角形的条件和相似三角形有关性质.教学难点从图形中找出相似三角形,解决这一难点是图形相似的前提.教学关键引导学生积极参与学习.从观察、分析、画图入手调动学生的积极性,解决难点的关键是熟悉比例性质和判断相似三角形的条件,掌握基本图形的常见对应关系.课时划分§24.1 相似的图形 1课时§24.2 相似图形的性质 3课时§24.3 相似三角形 8课时§24.4 中位线 2课时§24.5 画相似图形 1课时§24.6 图形与坐标 2课时复习与小结 1课时24.1 相似的图形教学内容本节课主要学习图形的相似,掌握形状相同的图形有关概念.教学目标1.知识与技能.感知相似图形在现实中的应用,认识形状相同的图形,了解相似图形的基本内涵.2.过程与方法.通过观察、操作,了解相似图形的过程,进一步了解相似形在实际生活中的应用,掌握简单的画图方法,在动手操作中认识相似图形.3.情感、态度与价值观.关注学生能否从图形相似的角度识别现实生活中大量存在的观察和规律,培养合作交流意识.重难点、关键1.重点:认识形状相同的图形.2.难点:对相似图形概念的理解.3.关键:抓住形状相同的图形的特征,认识其内涵.教学准备1.教师准备:制作多媒体课件,收集各类图形,•并通过技术处理满足本节课对图形的放大与缩小的要求.2.学生准备:图画纸、橡皮筋、放大镜.教学过程一、创设情境,激发兴趣1.播放课件:展示丰富的有关相似图形的图案、相片等.教师活动:操作课件,提出问题.问题:同学们通过观察上述实物、图片等生活中的图形,它们有怎样的共性呢?观察联想:通过大量的不同类型的图案、实物图片等,可以非常直观地感受到它们的特征.它们共同的特征是:形状相同,但是大小不一定相等.学生回答:像形状相同、大小不等的图形在生活中随处可见.教师活动:继续操作课件,提出问题.学生活动:观看课件,观察联想、寻找特征.2.回归课本:阅读课本P42~43.观察课本图24.1.3和图24.1.4.点评:本节课包括三维图形的相似,也包括平面图形的相似,但有明确“相似图形”的概念,只渗透相似图形的基本含义,其原因:(1)•本章研究重点是相似三角形;(2)为了不出现过渡上的困惑.学生活动:解决课本P45“试一试”.活动形式:四人小组,合作交流.二、动手操作,感悟新知1.做一做:利用下面方法放大图形,请同学们试一试.操作步骤:(1)将2个长短相同的橡皮筋系在一起.(2)选取一个图形,在图形外取一个定点.(3)将系在一起的橡皮筋的一端固定在定点,•把一枝铅笔固定在橡皮筋的另一端.(4)拉动铅笔,使2个橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新图形,这个新图形与已知图形形状相同.2.教师活动:引导、巡视、关注学生操作.学生活动:动手制图,样图可自己先画,也可以自带.学生形式:四人小组合作交流.三、课堂总结,评价他人与自我1.你对学习本节课内容有什么收获?2.在动手能力上你与同伴谁制图最好?3.在学习中,能联想到什么知识?四、布置作业,专题突破1.课本P44习题24.1第1、2题.2.选用课时作业设计.五、课后反思(略)课时作业设计1.将一个五边形各边放大3倍,这个五边形的形状________.(填写“不变”或“改变”) 2.请你想出2种放大(缩小)图形的方法:______________.3.下列说法正确的是()A.用同一张底片洗出的不同尺寸的照片,改变了人物的形状B.两个长方体的形状一定相同C.复印一个几何图形,如正方形、长方形等不会改变所复印图形的形状和大小D.所有的五边形形状都相同4.将如图24.1-1所示图形放大2倍.5.四边形OABC为边长为1的正方形,在直角坐标系中的位置如图24.1-2(甲),•请你解决下面的两个问题.(1)求出点O、A、B、C的坐标.(2)将点O、A、B、C的两个点的横坐标都乘以2,而后所得到的四个点O′、A•′、B′、C′的坐标分别标在图24.1-2(乙)的直角坐标系中,连续OA′、A′B′、B′C′得到的是怎样的图形?它和原图形OABC具有怎样的关系?答案:1.不变 2.用牛筋,用位图 3.C 4.用位似法画图 5.略。

(小复习)九年级数学上册 第24单元 图形的相似课件 华东师大

(小复习)九年级数学上册 第24单元 图形的相似课件 华东师大
数学·新课标(HS)
数学·新课标(HS)
第24章复习2 ┃ 知识归类
判定方法3:如果一个三角形的 三条边 和另一个三角形的 三条边 对应成比例,那么这两个三角形相似.
4.相似三角形的性质 (1)两个相似三角形对应 高 的比、对应 中线 的比、对应 角平分线 的比都等于它们对应边的比. (2)两个相似三角形周长的比等于 相似比 ,相似三角形 面积的比等于 相似比的平方 . 5.相似多边形 (1)如果两个多边形的 边数 相同,并且一个多边形的 各角分别与另一个多边形的各角对应相等,各边对应成比例,那 么这两个多边形叫做相似多边形.
(2)画出位似图形 A1B1C1D1 向下平移五个单位长度后的图形 A2B2C2D2.
数学·新课标(HS)
第24章复习2 ┃ 考点攻略
数学·新课标(HS)
第24章复习2ห้องสมุดไป่ตู้┃ 考点攻略
[解析] (1)把原图形缩小到原来的12,也就是使新图形上各顶点 到位似中心的距离与原图形各对应顶点到位似中心的距离之比为 1∶2;(2)向下平移五个单位长度也就是纵坐标相应地减 5.
数学·新课标(HS)
第24章复习2 ┃ 考点攻略
易错警示 相似三角形对应边的比等于相似比,相似比具有顺序性,在书 写时应避免弄错顺序.
数学·新课标(HS)
第24章复习2 ┃ 考点攻略 ► 考点三 比例式与等积式的应用 例3 如图24-10,矩形纸片ABCD中,AB=5 cm,BC=10
cm ,CD上有一点E,ED=2 cm,AD上有一点P,PD=3 cm, 过点P作PF⊥BC于F,将纸片折叠,使P点与E点重合,折痕与 PF交于点Q,则PQ的长是___1_3____cm.
4
数学·新课标(HS)

华师大版九年级上册第24章图形的相似复习

华师大版九年级上册第24章图形的相似复习

平行法
如果两个多边形一组对应边平行且 对应边的比相等,则这两个多边形 相似。
交错相乘法
如果两个多边形一组对应边的交错 相乘之和等于另一组对应边的交错 相乘之和,则这两个多边形相似。
相似多边形的性质
对应角相等
01
相似多边形的对应角相等,这是相似的基本性质。
对应边成比例
02
相似多边形的对应边成比例,这是判定相似多边形的重要依据。
面积比等于相似比的平方
03
相似多边形的面积比等于其相似比的平方,这是计算面积比的
一个重要公式。
相似多边形的应用
01
02
03
测量
在测量中,常常需要比较 两个相似物体的大小,通 过测量和计算可以得出它 们的相似比和大小关系。
建筑设计
在建筑设计中,常常需要 设计出与原建筑相似的模 型,通过相似多边形可以 方便地实现这一目标。
相似图形的判定方法
根据定义,可以通过测量角度和边长比例来判断两 个图形是否相似。
相似图形的性质
02
01
03
相似三角形的性质
相似三角形的对应边长度的比值相等,对应角相等。
相似多边形的性质
相似多边形的对应边长度的比值相等,对应角相等。
相似多边形的面积比
相似多边形的面积比等于对应边长度的比的平方。
相似图形的应用
图形变换
在图形变换中,可以通过 相似变换将一个图形变为 另一个图形,保持其形状 不变。
04
图形相似的综合应用
图形相似的几何证明
掌握相似图形的定义和 性质,能够判断两个图 形是否相似。
掌握相似三角形的判定 定理,能够根据给定条 件证明两个三角形是否 相似。
掌握相似多边形的性质 ,能够证明两个多边形 是否相似。

华师大版数学九上24.2《相似图形的性质》word知识拓展

华师大版数学九上24.2《相似图形的性质》word知识拓展

九年级上第24章第2节相似图形的性质知识拓展
转换线段比的桥梁——平行线
线段成比例问题是初中几何中一类很棘手的证明问题,不少同学面对题目难以下手.事实上,有的问题,如果能仔细观察待证比例式和图形的结构特点,巧妙地添加适当的平行线作为转换比例的桥梁,往往能收到柳暗花明之效.现举例说明.
例如图1,在中,已知D为BC的中点,E为AC上一点,DE的延长线与BA的
延长线交于点F.求证:.
分析:从图上看,与并没有直接的联系,但它们都分属同一直线上的线段比.因此,可考虑过某分点添加平行线来寻求过渡比.由条件和待证式,可有以下几种作平行线的思路:
(1)过A作,交于G,如图2.
(2)过A作,交于G,如图3.
(3)过B作,交CA的延长线于G,如图4.
(4)过B作,交FD的延长线于G,如图5.
(5)过C作,交FD的延长线于G.如图6.
(6)过C作,交BF的延长线于G,如图7. 现以图2为例证明如下.
证明:过A作交DF于G,如图2.

而,
∴.。

初中数学华东师大九年级上册图形的相似(新)华师版九年级数学上--相似图形PPT

初中数学华东师大九年级上册图形的相似(新)华师版九年级数学上--相似图形PPT

AB=2 A’B’=
BC=2 B’C’=1
CD=2 C’D’=1
DE=2 D’E’=
EA=2 E’A’=1
相似多边形的性质:
相似多边形的对应边成比例,对 应角相等。
实际上这也是我们判定两个多边形是否相似的方法:即对于两个边数相同的多边形,如果对应边成比例,对应角相等,那么这两个多边形相似。
放大镜下的图形和原来的图形相似吗?
放大镜下的角与原图形中角是什么关系?
你知道吗
图23.2.3中两个四边形是相似图形,仔细观察这两个图形,它们的对应边之间是否有关系呢?对应角之间又有什么关系?(行列之间距离为1)
再看看图23.2.4中两个相似的五边形,是否与你观察图23.2.3所得到的结果一样?
∴两个矩形为相似图形。
2.如图所示的两个相似四边形中,求边BC的长度和角α的大小
分析 利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,再利用相似多边形的性质时,必须分清对应边和对应角。
A B D F
1.如图所示的两个矩形是否相似?
2.矩形ABCD沿AD与BC中点EF对折后恰好与原矩形相似,求原矩形长与宽比?
全等图形
指能够完全重合的两个图形,即它们的形状和大小完全相同。
回忆Leabharlann 情景导入想一想:我们刚才所见到的图形有什么相同点?
形状相同.
推进新课
生活中我们会碰到许多这样形状相同的.大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为:
相似图形 注意: 1.相似图形只与图形的形状有关 ,与图形的 大小、位置无关。 2.全等图形是相似图形的特例。 3.两个图形相似,其中一个图形可以看作是由 另一个图形放大或缩小或只是方位变化得到。

华师大版-数学-九上-24.5画相似图形

华师大版-数学-九上-24.5画相似图形

《九年级上第二十四章第五节画相似图形》教案【教学课型】:新课◆课程目标导航:【教学目标】:了解位似图形及其有关概念,能利用位似的方法将一个图形放大或缩小.【教学重点】:能够利用作位似图形等方法将一个图形放大或缩小.【教学难点】:怎样利用位似方法画相似图形.【教学工具】:投影仪◆教学情景导入展示课件:教师展示预先制作好的课件,课件内容可以用现实生活中的图片、实物.经过电脑制作展示出丰富多彩的形状相同的图形,而后定格在一组有代表性的图片上.师问:银幕上一组图片是形状相同的图形,在图片上任取一点A,•它与另一个图片相应的位置上取一点B,连线必经过中心P.在图片上换其他的点试一试,还有类似的规律吗?学生活动:观看课件,观察、讨论、探索规律.发现有上述类似的规律.引入新知:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.◆教学过程一、新授:探索:课本P71介绍画相似多边形的方法.思路点拨:先在两个多边形左侧(或右侧、上侧、下侧)任取一点O.然后以此点(位似中心)向外作射线OA、OB、OC、…….由于它们的相似比是1:1.5,•而放大原图,使各边都是原图的1.5倍,根据相似三角形相似比的概念可得,分别在射线OA•、•OB、OC、……上取A′、B′、C′、……,使OA′:OA=OB′:OB=OC′:OC=…=1.5,最后连接A′B′、B′C′、……,得到放大以后的图形A′B′C′D′E•′.•(•见课本P71图24.5.1)(教师活动:将作图方法提示给学生,然后再由学生跟随教师一起来画,教师边画边讲.)例如:将多边形ABCDE放大到1.5倍.(如图)( 教师在学生画图其间,巡视,帮助中等以下的学生.在学生完成此题后,提出:请同学们用刻度尺和量角器量一量,观察一下,所画的图形是否和原图形相似,并证明.)师:想一想,此图还有别的画法吗?生:有,看位似中心取在哪里.二、巩固练习P72练习三、小结本节课学习的是相似变换,位似图形是有特殊位置关系的相似图形,位似图形的变换是特殊的相似变换,◆课堂板书设计标题探索概念例题课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:下面的说法正确吗?为什么?(1)分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形.(2)分别在△ABC的边AB、AC的延长线上取两点D、E,使DE∥BC,那么△ADE•是△ABC放大以后的图形.(3)分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,那么△ADE•是△ABC放大以后的图形.答案:(1)、(2)两种说法是正确的.(3)的说法不正确,此时有△ADE∽△ABC,•但无法确定是放大还是缩小.课下作业:1.如图,已知:A′B′∥AB,B′C′∥BC,请问△A′B•′C•′是否是由△ABC缩小而成的图形,如果不是,请说明原因,如果是,要说明理由.2.如图,已知:BC∥B′C′,AC∥A′C′,请问AB和A′B•′平行吗?•如果BC=2B′C′,那么AB是A′B′的多少倍?△ABC与△A′B′C′是否构成位似关系?•为什么?答案:1.是2.AB=2A′B′,能构成位似关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24章图形的相似回顾与思考教学目标:
1.能理清本章的知识及其联系,画出知识结构图。

2.会运用相似三角形的识别方法、性质进行有关问题的简单的说理或计算,提高解决实际问题的能力,培养应用数学知识的意识。

3.能用坐标来表示物体的位置,感受点的坐标由于图形的变化而相应地也发生变化,让学生体会到数与形之间的关系。

教学过程:
一、知识结构
二、讲解例题巩固知识
1、如图所示的两个矩形会相似吗?请说明理由。

目的:复习多边形相似的定义,理解平常说的相像与数学中的相似还是有一点区别的,必须是对应的角相等,对应的边成比例的两个多边形才是相似的。

2.判断下列各组中的两个三角形是否相似,并简单说明理由:
(1)△ABC中,∠A=28°,∠C是直角,△A′B′C′中,∠B′=62°,∠C是直角。

(2)△ABC中,AB=5,BC=7,AC=8,△A′B′C′中,A′B′=16。

B′C′=14,A′C′=10。

(3)△ABC中,AB=4.5,AC=6,∠B=50°,△A′B′C′中,A′B′=6,A′C′=9,∠B′=50°。

(4)如图DB,EC交于A,AB=3,AC=4.5,AD=2,AE=3。

目的:复习识别三角形相似的三种方法,特别是方法(2):两边对应成比例,相等的角要看看是否它们的夹角。

3.小黄同学在公路上测得一条高为6米的电线杆的影子长为8米,此时路旁有一棵树的影子长为12米,那么这棵树有多高?
求DE BC

4.在△ABC中,如果DE∥BC,AD=3,AE=2,BD=4,
值及EC的长。

5.如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD 与a、b之间满足怎样的关系式时,△ACB∽△CBD。

目的:这三题都是复习相似三角形的识别方法及其性质应用,用对应边成比例计算某一边长时,要注意对应边的位置。

(4)中所求的是EC,并不是三角形的边,因此由比例式先求出AC的长,再计算AC-AE。

6.将下图分成四小块,使它们的形状、大小完全相同,并且与原图相似,应怎样分?
把整个图形分割成若干个小方形,缺口也补上成为一个完整的正方形,完整正方形分成16个小正方形,原图形有12个小正方形,要分成四小块,每一小块要3个小正方形。

7.在直角坐标系中△ABC的三个顶点坐标为:A(3,0),B(- 1,2),C(4,5)。

(1)把△ABC沿x轴向右平移3个单位得△A′B′C′,求各顶点的坐标。

(2)如果△A′B′C′的顶点坐标为A′(3,0),B′(-2,4),C′(8,l0),那么△A′B′ C′是△ABC如何变换以后得到的。

8.下面是某市旅游景点的示意图,试建立直角坐标系,用坐标表示各个景点的位置。

如果以角度和距离来表示,碑林在中心广场的什么位置?(一格表示10千米)
碑林在中心广场的北偏东45°方向上(或东北方向),距中心广场约57千米的地方。

目的:复习图形与坐标这部分知识,理解在同一坐标系内图形变化其顶点坐标变化的情况,解题时要画出图形,增强数形结合的思想。

三、练习
1.课本第80页复习题。

2.补充练习。

△ABC中,AC=3,BC=4,AB=5,∠ACB=90°,D是AB中点,点P由C沿CD方向运动,每秒钟移1个单位,若△APD的面积为y,点P移动时间为x秒,求y与x之间的函数关系式,多少秒钟后△APD的面积为2.4?
四、小结
通过复习,比较系统地理清本章知识,进一步灵活运用相似三角形的有关知识。

五、作业
1.P80 复习题A组。

2.学有余力的学生可选作P81 B组。

相关文档
最新文档