MATLAB习题及答案
matlab考试题库及答案大学

matlab考试题库及答案大学# MATLAB考试题库及答案大学一、选择题1. MATLAB中用于生成0到1之间均匀分布随机数的函数是: - A. rand- B. randi- C. randperm- D. randn答案:A2. 下列哪个命令可以用于绘制函数图像?- A. plot- B. text- C. title- D. xlabel答案:A3. MATLAB中,以下哪个不是矩阵的属性?- A. size- B. length- C. rank- D. transpose答案:D4. 以下哪个函数可以用于求解线性方程组?- A. solve- B. linsolve- C. linprog- D. fsolve答案:A5. MATLAB中,用于计算矩阵特征值的函数是:- A. eig- B. eign- C. eigen- D. eigenvalue答案:A二、填空题1. MATLAB的基本数据单位是________。
答案:矩阵2. 使用MATLAB进行数值计算时,可以利用________来存储数据。
答案:变量3. MATLAB中的向量可以是________或________。
- 答案:行向量;列向量4. 矩阵的转置可以通过________操作实现。
答案:.'5. MATLAB中,使用________函数可以计算矩阵的行列式。
答案:det三、简答题1. 简述MATLAB中使用循环结构的注意事项。
答案:在MATLAB中使用循环结构时,应注意以下几点:确保循环体内部逻辑正确,避免无限循环;使用for循环时,循环变量的初始化和步长设置要合理;使用while循环时,循环条件要明确,确保循环能够正常退出。
2. 描述MATLAB中如何实现数组的多维索引。
答案:在MATLAB中,多维数组的索引可以通过使用圆括号来实现,每个维度的索引用逗号分隔。
例如,对于一个三维数组A,可以使用A(i,j,k)来访问第i行、第j列、第k层的元素。
大学matlab考试题及答案

大学matlab考试题及答案大学MATLAB考试题及答案一、选择题1. MATLAB的全称是什么?A. Matrix LaboratoryB. Microprocessor Application Tool SetC. Microsoft Advanced Tool SetD. Microprocessor Application Test System答案:A2. 在MATLAB中,以下哪个命令用于绘制三维图形?A. plotB. scatterC. surfD. bar答案:C3. MATLAB中用于求解线性方程组的函数是?A. solveB. linsolveC. linprogD. fsolve答案:A二、简答题1. 简述MATLAB的基本数据类型有哪些,并给出至少两个每种类型的示例。
答案:MATLAB的基本数据类型包括数值数组、字符数组和单元数组。
数值数组可以是向量、矩阵或多维数组。
例如,向量 `v = [1 2 3]`,矩阵 `M = [1 2; 3 4]`。
字符数组是由单引号或双引号括起来的字符序列,如 `C = 'Hello'`。
单元数组可以包含不同类型的数据,如`{1, 'text', [1; 2; 3]}`。
2. 描述如何在MATLAB中实现矩阵的转置和翻转。
答案:矩阵的转置可以通过 `'T'` 来实现,例如 `A'` 表示矩阵A 的转置。
矩阵的翻转可以通过 `flip` 函数实现,例如 `flip(A)` 可以翻转矩阵A的所有行和列,`flipud(A)` 仅翻转矩阵A的行,而`fliplr(A)` 仅翻转矩阵A的列。
三、编程题1. 编写一个MATLAB函数,该函数接受一个向量作为输入,并返回向量中所有元素的和以及平均值。
```matlabfunction [sumVal, avgVal] = calculateSumAndAverage(V)sumVal = sum(V);avgVal = mean(V);end```2. 设计一个MATLAB脚本来解决以下问题:给定一个3x3的矩阵,找出其中最大的元素,并显示其位置。
matlab习题及答案

习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
matlab习题及答案

matlab习题及答案2. ⽤MATLAB 语句输⼊矩阵A 和B3.假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数⾏提取出来,赋给B 矩阵,⽤magic(8)A =命令⽣成A 矩阵,⽤上述命令检验⼀下结果是不是正确。
4.⽤数值⽅法可以求出∑=++++++==6363622284212i i S ,试不采⽤循环的形式求出和式的数值解。
由于数值⽅法是采⽤double 形式进⾏计算的,难以保证有效位数字,所以结果不⼀定精确。
试采⽤运算的⽅法求该和式的精确值。
5.选择合适的步距绘制出下⾯的图形。
(1))/1sin(t ,其中)1,1(-∈t ;(2))tan(sin )sin(tan t t -,其中),(ππ-∈t6. 试绘制出⼆元函数2222)1(1)1(1),(yx yx y x f z ++++-==的三维图和三视图7. 试求出如下极限。
(1)xxxx 1)93(lim +∞→;(2)11lim0-+→→xy xy y x ;(3)22)()cos(1lim222200y x y x ey x y x +→→++-8. 已知参数⽅程-==tt t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y9. 假设?-=xyt t e y x f 0d ),(2,试求222222y fy x f x f y x ??+-?? 10. 试求出下⾯的极限。
(1)-++-+-+-∞→1)2(1161141121lim 2222n n ;(2))131211(lim 2222ππππn n n n n n n ++++++++∞→ 11. 试求出以下的曲线积分。
(1)?+ls y x d )(22,l 为曲线)sin (cos t t t a x +=,)cos (sin t t t a y -=,)20(π≤≤t 。
(2)?-+++ly y y xe x e yx )dy 2(xy d )(33,其中l 为22222c y b x a =+正向上半椭圆。
matlab试题及答案

matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。
答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。
矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。
矩阵的转置使用单引号`'`,例如`A'`。
矩阵的求逆使用`inv`函数,例如`inv(A)`。
2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。
`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。
A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。
答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。
matlab期末考试题目及答案

matlab期末考试题目及答案1. 题目:编写一个MATLAB函数,实现矩阵的转置操作。
答案:可以使用`transpose`函数或`.'`操作符来实现矩阵的转置。
例如,对于一个矩阵`A`,其转置可以通过`A'`或`transpose(A)`来获得。
2. 题目:使用MATLAB求解线性方程组Ax=b,其中A是一个3x3的矩阵,b是一个3x1的向量。
答案:可以使用MATLAB内置的`\`操作符来求解线性方程组。
例如,如果`A`和`b`已经定义,求解方程组的代码为`x = A\b`。
3. 题目:编写MATLAB代码,计算并绘制函数f(x) = sin(x)在区间[0, 2π]上的图像。
答案:首先定义x的范围,然后计算对应的函数值,并使用`plot`函数绘制图像。
代码示例如下:```matlabx = linspace(0, 2*pi, 100); % 定义x的范围y = sin(x); % 计算函数值plot(x, y); % 绘制图像xlabel('x'); % x轴标签ylabel('sin(x)'); % y轴标签title('Plot of sin(x)'); % 图像标题```4. 题目:使用MATLAB编写一个脚本,实现对一个给定的二维数组进行排序,并输出排序后的结果。
答案:可以使用`sort`函数对数组进行排序。
如果需要对整个数组进行排序,可以使用`sort`函数的两个输出参数来获取排序后的索引和值。
代码示例如下:```matlabA = [3, 1, 4; 1, 5, 9; 2, 6, 5]; % 给定的二维数组[sortedValues, sortedIndices] = sort(A(:)); % 对数组进行排序sortedMatrix = reshape(sortedValues, size(A)); % 将排序后的值重新构造成矩阵disp(sortedMatrix); % 显示排序后的结果```5. 题目:编写MATLAB代码,实现对一个字符串进行加密,加密规则为将每个字符的ASCII码值增加3。
matlab期末考试题及答案

matlab期末考试题及答案MATLAB期末考试题及答案一、选择题(每题2分,共20分)1. MATLAB中用于创建向量的函数是:A. vectorB. arrayC. linspaceD. ones答案:D2. 下列哪个命令可以计算矩阵的行列式?A. detB. diagC. traceD. rank答案:A3. 在MATLAB中,以下哪个选项是用于绘制三维图形的?A. plotB. plot3C. barD. scatter答案:B4. MATLAB中,用于计算向量范数的函数是:A. normB. meanC. medianD. std答案:A5. 下列哪个命令可以用于创建一个二维数组?A. array2dB. matrixC. create2dD. make2d答案:B6. MATLAB中,用于求解线性方程组的函数是:A. solveB. linsolveC. equationD. linprog答案:A7. 以下哪个函数可以用于生成随机数?A. randB. randomC. randnD. randi答案:A8. MATLAB中,用于实现循环结构的关键字是:A. loopB. forC. whileD. repeat答案:B9. 下列哪个命令可以用于绘制函数图形?A. plotB. graphC. drawD. functionplot答案:A10. MATLAB中,用于计算矩阵特征值的函数是:A. eigB. eigenvalueC. characteristicD. eigen答案:A二、简答题(每题5分,共30分)1. 简述MATLAB中矩阵的基本操作有哪些?答案:矩阵的基本操作包括矩阵的创建、矩阵的加法、减法、乘法、转置、求逆、求行列式等。
2. MATLAB中如何实现条件语句?答案:MATLAB中实现条件语句主要使用if-else结构,也可以使用switch-case结构。
3. 请解释MATLAB中的函数定义方式。
matlab习题及答案

matlab习题及答案Matlab习题及答案Matlab是一种强大的数学计算软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习和使用Matlab的过程中,习题是一种非常有效的学习方式。
本文将给出一些常见的Matlab习题及其答案,帮助读者更好地掌握Matlab的使用技巧。
一、基础习题1. 计算1到100之间所有奇数的和。
解答:```matlabsum = 0;for i = 1:2:100sum = sum + i;enddisp(sum);```2. 编写一个函数,计算任意两个数的最大公约数。
解答:```matlabfunction gcd = computeGCD(a, b)while b ~= 0temp = b;a = temp;endgcd = a;end```3. 编写一个程序,生成一个5×5的随机矩阵,并计算矩阵的行和列的平均值。
解答:```matlabmatrix = rand(5);row_average = mean(matrix, 2);col_average = mean(matrix);disp(row_average);disp(col_average);```二、进阶习题1. 编写一个程序,实现插入排序算法。
解答:```matlabfunction sorted_array = insertionSort(array)n = length(array);for i = 2:nj = i - 1;while j > 0 && array(j) > keyarray(j+1) = array(j);j = j - 1;endarray(j+1) = key;endsorted_array = array;end```2. 编写一个程序,实现矩阵的转置。
解答:```matlabfunction transposed_matrix = transposeMatrix(matrix) [m, n] = size(matrix);transposed_matrix = zeros(n, m);for i = 1:mfor j = 1:ntransposed_matrix(j, i) = matrix(i, j);endendend```3. 编写一个程序,实现二分查找算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574 (2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv)12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
(应用max,min,mean,std) 14, 参照课件中例题的方法,计算表达式()22e 1053y x y x z ---=的梯度并绘图。
(应用meshgrid, gradient,contour, hold on, quiver)15, 用符号函数法求解方程a t 2+b*t +c=0。
(应用solve) 16, 用符号计算验证三角等式:(应用syms,simple)17, 求矩阵⎥⎦⎤⎢⎣⎡=22211211a a a a A 的行列式值、逆和特征根。
(应用syms,det,inv,eig) 18, 因式分解:6555234-++-x x x x (应用syms, factor) 19, ⎥⎥⎦⎤⎢⎢⎣⎡=)sin()log(12x x ex x af ax ,用符号微分求df/dx 。
(应用syms,diff) 20, 符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t 的变化范围为[0,2π]。
(应用syms,ezplot)21, 绘制曲线13++=x x y ,x 的取值范围为[-5,5]。
(应用plot)22, 有一组测量数据满足-at e =y ,t 的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线,在图中添加标题-at e =y ,并用箭头线标识出各曲线a 的取值,并添加标题-at e =y 和图例框。
(应用plot,title,text,legend)2324, x= [66 49 71 56 38],绘制饼图,并将第五个切块分离出来。
25, 用sphere 函数产生球表面坐标,绘制不通明网线图、透明网线图、表面图和带剪孔的表面图。
(应用sphere, mesh, hidden off, surf, NaN)26, 编制一个解数论问题的函数文件:取任意整数,若是偶数,则用2除,否则乘3加1,重复此过程,直到整数变为1。
27, 有传递函数如下的控制系统,用Simulink 建立系统模型,并对系统的阶跃响应进行仿真。
841)(2++=s s s G27, 建立一个简单模型,用信号发生器产生一个幅度为2V 、频率为0.5Hz 的正弦波,并叠加一个0.1V 的噪声信号,将叠加后的信号显示在示波器上并传送到工作空间。
28 建立一个模拟系统,将摄氏温度转换为华氏温度(T f = 9/5T c +32)。
答案:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8]; >> a.*b ans =12 36 3 8 42 402, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’; >> X=A\B X =-0.5118 4.0427 1.33183, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
>> a=[1 2 3;4 5 6;7 8 9];>> a.^2 ans =1 4 9 16 25 36 49 64 81 >> a^2 ans =30 36 42 66 81 96 102 126 1504, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
>> x=[30 45 60]; >> x1=x/180*pi; >> sin(x1) ans =0.5000 0.7071 0.8660 >> cos(x1) ans =0.8660 0.7071 0.5000 >> tan(x1) ans =0.5774 1.0000 1.7321 >> cot(x1) ans =1.7321 1.0000 0.57745, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574 (2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []296531877254>> a=[4 2;5 7]; >> b=[7 1;8 3]; >> c=[5 9;6 2]; % (1)>> d=[a(:) b(:) c(:)] d =4 75 5 86 2 1 97 3 2% (2)>> e=[a(:);b(:);c(:)]’e =4 5 2 7 7 8 1 3 5 6 9 2 或利用(1)中产生的d >> e=reshape(d,1,12) ans =4 5 2 7 7 8 1 3 5 6 9 26, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
>> a=[6 3 8];>> pa=poly(a); 也可以用pa=poly([6 3 8])来替换1,2两行 >> ppa=poly2sym(pa) ppa =x^3-17*x^2+90*x-1447, 求解多项式x 3-7x 2+2x +40的根。
>> r=[1 -7 2 40]; >> p=roots(r) p = 5.0000 4.0000 -2.00008, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
>> p=poly([1 2 3 4]); >> polyvalm(p,8) ans = 8409, 计算多项式9514124234++--x x x x 的微分和积分。
clear>>f=sym('4*x^4-12*x^3-14*x^2+5*x+9') >>diff(f) >>int(f) ans =16*x^3-36*x^2-28*x+5 ans =4/5*x^5-3*x^4-14/3*x^3+5/2*x^2+9*x10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
>> a=[2 9 0;3 4 11;2 2 6]; >> b=[13 6 6]'; >> x=a\b x =7.4000 -0.2000 -1.400011, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
>> a=[2 4 7 4;9 3 5 6]; >> b=[8 5]'; >> x=pinv (a)*b x =-0.2151 0.4459 0.7949 0.270712, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
>> a=[4 2 -6;7 5 4 ;3 4 9];>> ad=det(a) >> ai=inv(a) ad = -64 ai =-0.4531 0.6562 -0.5937 0.7969 -0.8437 0.9062 -0.2031 0.1562 -0.093713 y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
>> x=0:0.02*pi:2*pi; >> y=sin(x);>> ymax=max(y) >> ymin=min(y) >> ymean=mean(y) >> ystd=std(y) ymax = 1 ymin = -1 ymean =2.2995e-017 ystd =0.707114, 参照课件中例题的方法,计算表达式()22e 1053y x y x z ---=的梯度并绘图。
>> v = -2:0.2:2;>> [x,y] = meshgrid(v);>> z=10*(x.^3-y.^5).*exp(-x.^2-y.^2); >> [px,py] = gradient(z,.2,.2); >> contour(x,y,z) >> hold on>> quiver(x,y,px,py) >> hold off15, 下面三种表示方法有什么不同的含义? (1)f=3*x^2+5*x+2 (2)f='3*x^2+5*x+2' (3)x=sym('x')f=3*x^2+5*x+2 (1)f=3*x^2+5*x+2表示在给定x 时,将3*x^2+5*x+2的数值运算结果赋值给变量f ,如果没有给定x 则指示错误信息。