2013年中考数学专题复习 第7讲 二元一次方程(组)精品导学案 新人教版

合集下载

人教版初中数学二元一次方程组导学案

人教版初中数学二元一次方程组导学案

课题:二元一次方程组【学习目标】: 1 、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【学习重难点】: 1 、二元一次方程(组)的含义; 2 、检验一对数是否是某个二元一次方程(组)的解;3、用一个未知数表示另一个未知数1、【自主学习】(一)预习自我检测(认真阅读课本 92-94 页,理解掌握以下概念)1 、一元一次方程:只含有 ____ 未知数,且未知数的次数都是 ____ 的方程。

ax=b(a ≠ 0)2 、方程的解:能使方程等号两边相等的 _______ 的值。

3 、二元一次方程:方程中含有 ______ 未知数,并且 _____________ 的次数都是 ____ 。

一般式:ax+by=c(a ≠ 0 ,b ≠ 0)4 、二元一次方程组:把具有 __________ 的 ______ 二元一次方程用 _______ 合在一起,就组成了一个二元一次方程组。

5 、二元一次方程的解:一般地,使二元一次方程两边的值相等的 ______ 未知数的值,叫做二元一次方程的解。

二元一次方程有 ______ 个解。

6 、二元一次方程组的解:一般地,二元一次方程组的两个方程的 ________ ,叫做二元一次方程组的解。

(能使方程组中两个方程等号两边都相等两个未知数的值。

)二元一次方程组有________ 个解。

(二)、我的疑难问题:二、【合作探究】1 、把 3(x+5)=5(y-1)+3 化成 ax+by=c 的形式为 _____________ 。

2 、二元一次方程的一般式:ax+by=c(a ≠ 0 ,b ≠ 0) 用含 x 的式子表示 y, y= ;用含y的式子表示x,x=3 、方程 3x + 2y = 6 ,有 ______ 个未知数,且未知数都是 ___ 次,因此这个方程是 _____ 元_____ 次方程。

2013年中考数学专题复习第7讲(30-7):二元一次方程(组)--学生版

2013年中考数学专题复习第7讲(30-7):二元一次方程(组)--学生版

2013年中考数学专题复习第七讲:二元一次方程(组)【基础知识回顾】一、 等式的概念及性1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:1、性质①等式两边都加(减) 所得结果仍是等式即:若a=b,那么a ±c=2、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 若:a=b,那么a c= 若a=b (c ≠o )那么a c = 【名师提醒:①用等式性质进行等式变形,必须注意“都”不被漏项 ②等式两边都除以一个数式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解3、 叫做解方程4、方程两边都是关于未知数的 这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的多步骤的一句分别是等式的性质和合并同类法则要注意灵活准确运用 2、去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a ≠o,b ≠o)1、 由几个含有相同未知数的 合在一起,叫做二元一次方程组2、 二元一次方程组中两个方程的 叫做二元一次方程组的解3、 解二元一次方程组的基本思路是:4、 二元一次方程组的解法:① ②【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知点和未知点2、设:直接或间接设未知数3、列:根据题意寻找等关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出(单位)【名师提醒:1、列方程(组)解应用题的关键是:2、几个常用的等量关系:①路程= X ②工作效率= 】【重点考点例析】x=a y=b 的形式】考点一:等式性质及一元一次方程的解法例1 (2012•漳州)方程2x-4=0的解是.思路分析:根据一元一次方程的解法,移项,系数化为1即可得解.解:移项得,2x=4,系数化为1得,x=2.故答案为:x=2.点评:本题考查了移项解一元一次方程,是基础题,注意移项要变号.对应训练1.(2012•郴州)一元一次方程3x-6=0的解是.考点二:二元一次方程组的解法(巧解)例2 (2012•厦门)解方程组:34 21x yx y+=⎧⎨-=⎩.思路分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.解:3421x yx y+=⎧⎨-=⎩①②,①+②得,5x=5,解得x=1;把x=1代入②得,2-y=1,解得y=1,故此方程组的解为:11 xy=⎧⎨=⎩.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.对应训练2.(2012•南京)解方程组31 328 x yx y+=-⎧⎨-=⎩.考点三:一次方程(组)的应用例3 (2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.2035701225x yx y+=⎧⎨+=⎩B.2070351225x yx y+=⎧⎨+=⎩C.1225703520x yx y+=⎧⎨+=⎩D.1225357020x yx y+=⎧⎨+=⎩330思路分析:(1)首先设掷到A 区和B 区的得分分别为x 、y 分,根据图示可得等量关系:①掷到A 区5个的得分+掷到B 区3个的得分=77分;②掷到A 区3个的得分+掷到B 区5个的得分=75分,根据等量关系列出方程组,解方程组即可得到掷中A 区、B 区一次各得多少分;(2)由图示可得求的是掷到A 区4个的得分+掷到B 区4个的得分,根据(1)中解出的数代入计算即可. 解:(1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:53773575x y x y +=⎧⎨+=⎩,解得:109x y =⎧⎨=⎩,答:求掷中A 区、B 区一次各得10,9分. (2)由(1)可知:4x+4y=76,答:依此方法计算小明的得分为76分.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.对应训练3.(2012•宁夏)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩元,则小华家该月用电量属于第几档?【聚焦中考】1.(2012•滨州)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( )A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩B .158********x y x y +=⎧⎨+=⎩C . 14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D .152********x y x y +=⎧⎨+=⎩ 3.(2012•菏泽)已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( ) A .±2 B . C . 2 D . 44.(2012•临沂)关于x、y的方程组的解是,则|m﹣n|的值是()A.5 B.3 C.2 D.1 5.(2012•聊城)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?6.(2012•东营)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【备考过关】一、选择题1.(2012•漳州)二元一次方程组221x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.11xy=⎧⎨=⎩C.11xy=-⎧⎨=⎩D.2xy=⎧⎨=⎩2.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C.5(x+21-1)=6x D.5(x+21)=6x3.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.244.(2012•凉山州)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆 客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A .702.5 2.5420x y x y +=⎧⎨+=⎩B .702.5 2.5420x y x y -=⎧⎨+=⎩C .702.5 2.5420x y x y +=⎧⎨-=⎩D . 2.5 2.5702.5 2.5420x y x y -=⎧⎨+=⎩ 5.(2012•桂林)二元一次方程组的解是( )A .B .C .D .6.(2012•杭州)已知关于x ,y 的方程组,其中﹣3≤a≤1,给出下列结论: ①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解;④若x≤1,则1≤y≤4.其中正确的是( )A .①② B .②③ C .②③④ D .①③④7.(2012•黑龙江)某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( )8.(2012•衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A .B .C .D .9.(2012•鸡西)为庆祝“六•一”国际儿童节,鸡冠区某小学组织师生共360人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有( )A .3种B . 4种C . 5种D . 6种二、填空题10.(2012•怀化)方程组257213x y x y +=-⎧⎨-=⎩的解是 .11.(2012•连云港)方程组的解为 . 12.(2012•达州)若关于x 、y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足x+y >1,则k 的取值范围是 .13.(2012•湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元.设每人向旅行社缴纳x元费用后,共剩15、某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需元.16.(2012•天门)学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有个.17.(2012•阜新)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.三、解答题18.(2012•湖州)解方程组281x yx y+=⎧⎨-=⎩.2•苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资23.(2012•广西)有甲、乙两种车辆参加来宾市“桂中水城”建设工程挖渠运土,已知5辆甲种车和4辆乙种车一次可运土共140立方米,3辆甲种车和2辆乙种车一次可运土共76立方米.求甲、乙两种车每辆一次可分别运土多少立方米?23.(2012•吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.24.(2012•海南)为了进一步推进海南国际旅游岛建设,海口市自2012年4月1日起实施《海口市奖励旅行社开发客源市场暂行办法》,第八条规定:“旅行社引进会议规模达到200人以上,入住本市A类旅游饭店,每次会议奖励2万元;入住本市B类旅游饭店,每次会议奖励1万元.”某旅行社5月份引进符合奖励规定的会议共18次,得到28万元奖金,求此旅行社引进符合奖励规定的入住A类和B类旅游饭店的会议各多少次?25.(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.26.(2012•龙岩)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A 型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.。

人教版数学七年级下册-《二元一次方程组》导学案

人教版数学七年级下册-《二元一次方程组》导学案

8.1二元一次方程组导学案学习目标、重点、难点【学习目标】1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.【重点难点】重点:二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解,用一个未知数表示另一个未知数.难点:二元一次方程组的解的含义及用一个未知数表示另一个未知数.知识概览图二元一次方程组的概念二元一次方程——二元一次方程组二元一次方程组的解的概念新课导引我们都听过“鸡兔同笼”(如图所示)的问题“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡、兔各几何”.就我们目前的知识,解决这个问题有两种方法:方法1:(算术方法)把兔子都看成鸡,则多出94—35×2=24(只)脚,每只兔子比鸡多出两只脚,故由此先求出兔子共有24÷2=12(只),进而求出鸡有35-12=23(只).或先求出鸡的数量:35×4-94=46,46÷2=23(只).从而求出兔子的数量:35—23=12(只).方法2:(列一元一次方程法)设有x只鸡,则有(35-x)只兔.根据题意,得2x+4(35-x)=94,解得x=23,35-x=35-23=12.在列一元—次方程时,我们设一个未知数,得到一个一元一次方程,那么我们如果设两个未知数,即鸡有x只,兔有y只,那么由题意可列出两个方程:x+y=35,①2x+4y=94,②这两个方程合在一起叫什么?它们的解又是什么?教材精华知识点1 二元一次方程的概念在方程2x +y =40中,含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.常出现的错误是对二元一次方程的概念理解得不准确.其表现形式有两种:一种是把“舍未知数的项的次数都是1”理解为“每个未知数的次数都是1”,误认为xy +2=0也是二元一次方程.另一种是遇到含有字母系数的方程时,客易忽略“未知数的系数不等于零”这个隐含条件.如二元一次方程ax +y =6中,a ≠0这个条件知识点2 二元一次方程组的概念像 这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.知识点3 二元一次方程(组)的解的概念一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.【规律方法小结】二元一次方程与一元一次方程有很多类似的地方,学习时可运用类比 的思想比较二元一次方程与一元一次方程有关概念的相同点和不同点.这样,不但能加深对概念的理解,提高对“元”和“次”的认识,还能够逐步培养类比分析和归纳概括的能力.结合方程、一元一次方程、二元一次方程、二元一次方程组的概念类比学习,这样更能加深对概念的理解,同时更能有规律地掌握和区分相关知识.课堂检测基本概念题 1、给出下列三组数:① ② ③(1) 是方程x+y=7的解;x +y =53x +y =6 x =5, y =2; x =6, y =1; x =4,y =5.(2) 可使方程3x+y=17的左右两边的值相等;(3) 是方程组 的解.基础知识应用题2、下列方程中,哪个是二元一次方程?(1)8x-y =y ; (2)xy =3; (3)2x 2-y =9; (4)12x y=-.综合应用题3、已知方程(2m -6)x |n |+1+(n +2)28m y -=0是关于x ,y 的二元一次方程,求m ,n 的值.探索创新题4、某校九年(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如右表所示.表中捐款2元和3元的人数被墨水污染,已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组 ( )A.272366x y x y +=⎧⎨+=⎩ B.2723100x y x y +=⎧⎨+=⎩C.273266x y x y +=⎧⎨+=⎩D.2732100x y x y +=⎧⎨+=⎩ 捐款(元)1234人数(人)67x +y =7,3x+y =17;1、已知x,y满足方程组25,2 4.x yx y+=⎧⎨+=⎩则x-y的值为.2、若关于x,y的方程组2,x y mx my n-=⎧⎨+=⎩的解是2,1.xy=⎧⎨=⎩则|m-n|为()A.1B.3C.5D.2学后反思【解题方法小结】(1)二元一次方程组的解是方程组中各个方程的公共解,因此在检验方程组的解时,应对每个方程都进行检验,不应只对一个方程进行检验,而忽略对另一个方程的检验.(2)要判断一个方程是否为二元一次方程或一个方程组是否为二元一次方程组时,关键抓住两点,即只有两个未知数和含未知数的项的次数为1.附:课堂检测及体验中考答案1、(1)①②(2)①③(3)①【解析】这类题只需验证所给的值是否满足每个方程.二元一次方程组的解是方程组中各个方程的公共解,因此,在检验方程组的解时,应对每个方程都进行检验,不要只对一个进行检验,而忽略对另一个方程的检验.2、解:(1)是二元一次方程.(2)(3)(4)都不是二元一次方程.【解析】本题考查二元一次方程的判定,判定的依据是二元一次方程的概念,由于方程(2)中含未知数的项xy的次数是2,而不是1,所以xy=3不是二元一次方程;同理,(3)中的2x2-y=9也不是二元一次方程;又因为方程(4)中的1x y-不是整式,所以1x y-=2也不是二元一次方程.一个方程是否为二元一次方程必须满足下列三个条件:(1)等式两边的式子都是整式;(2)含有两个未知数;(3)含有未知数的项的次数是1.3、解:由题意,得所以所以【解析】根据二元一次方程的概念,可知所给方程必须含有两个未知数,一个是x,另一个是y这就要求2m-6≠0,n+2≠0.另外,含未知数的项的次数都是1,即|n|+1=1,m2-8=1.(1)解这类问题极易漏掉隐含条件“2m-6≠0,n十2≠0”.(2)对于形如ax e+by k=c这样的方程,如果它是关于x,y的二元一次方程,那么就可得从而确定未知系数.4、A 【解析】本题考查根据实际意义列方程组,题目中的两个等量关系是:捐款总人数为40,即6+x+y+7=40,得x+y=27;①捐款总数为100元,即2x+3y=100-1×6-4×7,得2x+3y=66.②由①②组成方程组,得27,2366.x yx y+=⎧⎨+=⎩故选A..|n|+1=1,m2-8=1,2m-6≠0,n+2≠0,n=0,m=3或m=-3,m≠3,n≠-2,m=-3,n=0.e=1,k=1,a≠0,b≠0,体验中考1、1 解析:可先求出x,y的值,再代入x-y求数式的值,也可直接用①-②求得x-y=1,故填1.本题目已知25,2 4.x yx y+=⎧⎨+=⎩一般方法是解这个二元一次方程组,可得2,1.xy=⎧⎨=⎩但对一个填空题来说,这种方法是费时且易错的.我们观察这个二元一次方程组发现,可把两个方程直接相减,即得x-y=1.2、D 解析:把x=2,y=1代入2x-y=m,得2×2-1=m,m=3,把x=2,y=1,m=3代入x+my=n,得2+3×1=n,n=5,则|m-n|=|3-5|=2,故选D.。

二元一次方程组(导学案)

二元一次方程组(导学案)

第八章二元一次方程组导学案 8.1二元一次方程组导学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.导学导学重点:理解二元一次方程组的解的意义.导学导学难点:求二元一次方程的正整数解.导学过程:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=222x+y=40 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.x y上表中哪对x 、y 的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围.(2)方程x ∣a ∣–1+(a -2)y =2是二元一次方程,试求a 的值. 例2 若方程x 2m –1+5y 3n –2=7是二元一次方程.求m 、n 的值 例3 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2) 哪几对数值是方程组 的解? 例4 求二元一次方程3x +2y =19的正整数解. 课堂练习:教科书第94页练习 作业布置:教科书第95页3、4、5题导学案 8.2 消元(第一课时)导学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.导学重点:用代入消元法解二元一次方程组.导学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 导学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?21x -y =6 2x +31y =-112、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

2013年中考数学复习 第二章方程与不等式 第7课 一元二次方程课件

2013年中考数学复习 第二章方程与不等式 第7课 一元二次方程课件
4+2m+n=0, 2m+n=-4, 即 16+4m+n=0, 4m+n=-16, m=-6, 解得 n=8.
(3)(2010· 广州)已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两
ab2 个相等的实数根,求 的值. 2 2 a-2 +b -4
分析:对于(3),由于这个方程有两个相等的实数根,因此△=b2
(2)已知a是方程x2-2009x+1=0的一个根,试求a2-2008a + 2009 值. a2+1 解:∵x=a,∴a2-2009a+1=0,
∴a2-2008a=a-1,a2+1=2009a, 2009 = 2009 =1 . a2+1 2009a a 1 a2-a+1 a2+1-a ∴原式=a-1+ = = a a a = 2009a-a = 2008a =2008. a a
∴x2+x-2=0,x1=1,x2=-2,另一个根是-2.
4.(2011· 大理)三角形的两边长分别是3和6,第三边的长是方程 x2-6x+8=0的一个根,则这个三角形的周长是( C ) A.9 C.13 B.11 D.11或13
解析:方程x2-6x+8=0的根为x=2或4,而第三边3<x<9,
故x=4,三角形周长为3+6+4=13.
的说法?说明你的理由. 解:不同意小聪的说法. 理由如下:x2-10x+36=x2-10x+25+11=(x-5)2+11≥11, 当x=5时,x2-10x+36有最小值11.
题型三
应用方程根的定义解题
【例 3】(1)(2010· 绵阳)若实数m是方程x2- 10 x+1=0的一个根, 则m4+m-4=________. 62 解析: ∵x=m, ∴m2- 10 m+1=0, 1 ∴m2+1= 10m,m+ = 10 , m 1 1 两边平方,得m2+2+ 2 =10,m2+ 2=8, m m 再平方,得m4+2+ 14=64,m4+ 14 =62, m m 即m4+m-4=62.

初中数学二元一次方程组导学案

初中数学二元一次方程组导学案

2.2《二元一次方程组》一、课前热身:(1)若2x 3m+1+3y 2n-1=0是二元一次方程,则m= ,n= . (2)二元一次方程 3x+2y=12的解有 个, 正整数解有 个,分别是 . (3)若⎩⎨⎧==21y x 是二元一次方程2x+3my=1的解,则m= . 二、情景导入:某摄影兴趣小组师生共8人去著名诸暨五泄风景区采风,他们购买门票共花了280元。

你们想了解一下他们去了几位老师和几位学生吗?(1)如果设老师x 人,学生y 人,那么我们可以得到怎样的方程? (2)请用列表法写出该方程的解(3)若成人票每人50元,学生票每人30元,如果设老师x 人,学生y 人,那么我们可以又得到怎样的方程? 上述两个方程中的x 、 y 的含义相同吗?得出二元一次方程组的定义: (4)请用列表尝试法求方程组的解得出二元一次方程组解的定义: 三、例题解析摄影小组的6位学生游览了五泄风景区后,发现五泄风景纪念章很有纪念意义,其中经典纪念章每枚5元,普通纪念章每枚3元,每人都买了一枚,共花了26元。

如果设有x 位学生买了经典纪念章,有y 位学生买了普通纪念章,请根据条件列出关于x 、y 的方程组,并用列表尝试的方法求解。

实际问题求解 四、拓展提高(1)已知0)1(622=+++-y x x ,求y x 2+的值(2)已知方程组 ,由于甲看错了方程(1)中的a 得到方程组的解 ,乙看错了方程(2)的b 得到方程组的解 .求a + b 的值(3)用8块相同的长方形地砖拼成一个矩形,每个小长方形的长宽如图,请列出关于x 、y 的方程组?515(1)42(2)ax y x by +=⎧⎨-=-⎩31x y =-⎧⎨=⎩14x y =⎧⎨=⎩。

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。

专题07 二元一次方程组(原卷版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题07 二元一次方程组(原卷版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题07二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用技巧3:二元一次方程(组)的解的五种常见应用【题型】一、二元一次方程组的有关概念【题型】二、用代入法解二元一次方程组【题型】三、用加减法解二元一次方程组【题型】四、用整体消元法解二元一次方程组【题型】五、同解方程组【题型】六、列二元一次方程组【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【考点总结】一、二元一次方程组【注意】1.解二元一次方程组的步骤(1)代入消元法①变:将其一个方程化为y =ax +b 或者为x =ay+b 的形式②代:将y =ax +b 或者为x =ay+b 代入另一个方程③解:解消元后的一元一次方程④求:将求得的未知数值代入y =ax +b 或x =ay+b ,求另一个未知数的值⑤答:写出答案(2)加减消元法①化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,②加减:将变形后的方程组通过加减消去一个未知数③解:解消元后的一元一次方程方程组的解.加减法解二元一次方程组的一般步骤:a .方程组的两个方程中,如果同一个未知数的系数不互为相反数又不相等,就用适当的数去乘方程的两边,使它们中同一个未知数的系数相等或互为相反数;b .把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;c.解这个一元一次方程;d.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.常见运用题型解应用题的步骤:①审清题意;②找等量关系;③设未知数;④列方程;⑤解方程;⑥验根;⑦作答.工作(或工程)问题:工作量=工作效率×工作时间利息问题:利息=本金×利率×期数;本息和=本金+利息行程问题:路程=速度×时间;其中,相遇问题:s 甲+s 乙=s 总;追及问题:(同地异时)前者走的路程=追者走的路程;(异地同时)前者走的路程+两地间的距离=追者走的路程利润问题:利润=卖价-进价;利润率=进价利润×100%.数字问题:两位数=10×十位数字+个位数字;三位数=100×百位数字+10×十位数字+个位数字④求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法【技巧归纳】技巧1:二元一次方程组的五种特殊解法【类型】一、引入参数法解二元一次方程组1.用代入法解方程组:+y 6=0,①x -y )-4(3y +x )=85.②【类型】二、特殊消元法解二元一次方程组题型1:方程组中两未知数系数之差的绝对值相等2015x +2016y =2017,①016x +2017y =2018.②题型2:方程组中两未知数系数之和的绝对值相等3+14y =40,①+13y =41.②【类型】三、利用换元法解二元一次方程组4y )+4(x -y )=20,-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y -by =4,-y =5+by =16,-7y =1的解相同,求(a -b)2018的值.【类型】五、运用主元法解二元一次方程组6-3y -3z =0,-3y -z =0(x ,y ,z 均不为0),求xy +2yz x 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用【类型】一、整体思想1.先阅读,然后解方程组.-y-1=0,①(x-y)-y=5②时,由①,得x-y=1,③然后再将③代入②,得4×1-y=5,解得y=-1,从而进一步求得x=0.=0,=-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:0,2y=9.2.若x+2y+3z=10,4x+3y+2z=15,求x+y+z的值.【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:+18y=17,①+16y=15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x+2y=2,所以x+y=1.③③×16,得16x+16y=16,④②-④,得x=-1,将x=-1代入③,得y=2.=-1,=2.018x+2017y=2016,016x+2015y=2014.【类型】三、方程思想4.已知(5x-2y-3)2+|2x-3y+1|=0,求x+y的值.5.若3x2m+5n+9+4y4m-2n-7=2是二元一次方程,求(n+1)m+2018的值.【类型】四、换元思想6+x-y3=6,y)-5(x-y)=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8-y =5,+by =-1+y =9,-4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用【类型】一、已知方程(组)的解求字母的值1.若关于x ,y-y =m ,+my =n=2,=1,则|m -n|的值为()A .1B .3C .5D .22=2,=3=-4,=2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y+2y =3m ,-y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y+ny =60,-y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y+5y =-6,-by =-4-5y =16,+ay =-8有相同的解,求(2a +b)2018的值.【类型】五、已知二元一次方程组的误解求字母的值6+y =5,-by =13时,由于粗心,甲看错了方程组中的a=72,=-2;乙看错了方程组中的b=3,=-7.(1)甲把a 错看成了什么?乙把b 错看成了什么?(2)求出原方程组的正解.【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为()A.3B.3,-3CD.【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x,y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a,b的值为()A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392x yx y⎧=+⎪⎪⎨⎪+=⎪⎩B.2392x yx y⎧=-⎪⎪⎨-⎪=⎪⎩C.2392x yx y⎧=+⎪⎪⎨-⎪=⎪⎩D.2392x yx y⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是()A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y +=⎧⎨=⎩的解是()A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是().A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是()A .1xy =B .210x -=C .1x y -=D .11x y+=5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b -的值是()A .2-B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法:解:由①得x ﹣y =1③将③代入②得:4×1﹣y =5,即y =﹣1把y =﹣1代入③得x =0,∴方程组的解为01x y =⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x y x y y -=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3aa 、b 的值分别是()A .2和1B .1和2C .2和2D .1和12.(2022·福建·平潭翰英中学一模)已知12x y =⎧⎨=⎩是二元一次方程组m −n =8m +n =1的解,则43m n +的立方根为()A .±1BC .±D .1-3.(2022··二模)我们知道二元一次方程组233345x y x y -=⎧⎨-=⎩的解是31x y =⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x y x y +--=⎧⎨+--=⎩,它的解是()A .123x y =-⎧⎪⎨=⎪⎩B .123x y =-⎧⎪⎨=-⎪⎩C .123x y =⎧⎪⎨=⎪⎩D .123x y =⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x 辆车,y 人,根据题意,列方程组是()A .2932y x y x =+⎧⎨=-⎩B .293(2)y x y x =+⎧⎨=-⎩C .2932y x y x =-⎧⎨=-⎩D .()2932y x y x =-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x ,y 的方程组436626x y x my -=⎧⎨+=⎩的解是整数,那么整数m 的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组:(1)1223334m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩;(3)0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩;(4)23433x y x y ⎧=⎪⎨⎪-=⎩.8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元.(1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲:二元一次方程(组)【基础知识回顾】 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:1、性质①等式两边都加(减) 所得结果仍是等式即:若a=b,那么a ±c=2、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 若:a=b,那么a c= 若a=b (c ≠o )那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”不被漏项 ②等式两边都除以一个数式时必须保证它的值 】 二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做组方程4、方程两边都是关于未知数的 这样的方程叫做整式方程 三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的多步骤的一句分别是等式的性质和合并同类法则要注意灵活准确运用2、去分母时应注意不要漏乘项,移项时要注意。

】 四、二元一次方程组及解法:二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a ≠o,b ≠o) 由几个含有相同未知数的 合在一起,叫做二元一次方程组 二元一次方程组中两个方程的 叫做二元一次方程组的解 解二元一次方程组的基本思路是:二元一次方程组的解法:① ②【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知 点和未知点2、设:直接或间接设未知数3、列:根据题意寻找等关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意x=a y=b 的形式6:答:写出(名称)【名师提醒:1、列方程(组)解应用题的关键是:2、几个常用的等量关系:①路程= X②工作效率= 】【重点考点例析】考点一:等式性质及一元一次方程的解法例1 (2012•漳州)方程2x-4=0的解是.思路分析:根据一元一次方程的解法,移项,系数化为1即可得解.解:移项得,2x=4,系数化为1得,x=2.故答案为:x=2.点评:本题考查了移项解一元一次方程,是基础题,注意移项要变号.对应训练1.(2012•郴州)一元一次方程3x-6=0的解是.1.x=2.考点二:二元一次方程组的解法(巧解)例2 (2012•厦门)解方程组:34 21x yx y+=⎧⎨-=⎩.思路分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.解:3421x yx y+=⎧⎨-=⎩①②,①+②得,5x=5,解得x=1;把x=1代入②得,2-y=1,解得y=1,故此方程组的解为:11 xy=⎧⎨=⎩.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.对应训练2.(2012•南京)解方程组31 328x yx y+=-⎧⎨-=⎩.2.解:31 328x yx y+=-⎧⎨-=⎩①②由①得x=-3y-1③,将③代入②,得3(-3y-1)-2y=8,解得:y=-1.将y=-1代入③,得x=2.故原方程组的解是21 xy=⎧⎨=-⎩.考点三:一次方程(组)的应用例3 (2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是( )A .2035701225x y x y +=⎧⎨+=⎩B .2070351225x y x y +=⎧⎨+=⎩C .1225703520x y x y +=⎧⎨+=⎩D .1225357020x y x y +=⎧⎨+=⎩思路分析:根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可. 解:设其中有x 张成人票,y 张儿童票,根据题意得,2070351225x y x y +=⎧⎨+=⎩,故选:B .点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,把已知量和未知量联系起来,找出题目中的相等关系.(Ⅰ)用含有t 的式子填写下表: (Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)当330<t <360时,你认为选用哪种计费方式省钱(直接写出结果即可). 思路分析:(I )根据两种方式的收费标准进行计算即可;(II )先判断出两种方式相等时t 的大致范围,继而建立方程即可得出答案. (III )计算出两种方式在此区间的收费情况,然后比较即可得出答案. 解:(Ⅰ)①当150<t <350时,方式一收费:58+0.25(x-150)=0.25t+20.5; ②当t >350时,方式一收费:58+0.25(x-150)=0.25t+20.5;③方式二当t >350时收费:88+0.19(x-350)=0.19t+21.5.(Ⅱ)∵当t >350时,(0.25t+20.5)-(0.19t+21.5)=0.06t-1>0, ∴当两种计费方式的费用相等时,t 的值在150<t <350取得. ∴列方程0.25t+20.5=88, 解得t=270.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)方式二.方式一收费-方式二收费y=0.25t+20.5-0.19t-21.5=0.06t-1, 当330<t <360时,y >0,即可得方式二更划算. 答:当330<t <360时,方式二计费方式省钱.点评:此题考查了一元一次方程的应用,注意根据图表得出解题需要的信息,难度一般,要将实际问题转化为数学问题来求解.例5 (2012•株洲)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A 区和B 区的得分不同,A 区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分 小芳75分 小明: ? 分 (1)求掷中A 区、B 区一次各得多少分? (2)依此方法计算小明的得分为多少分? 思路分析:(1)首先设掷到A 区和B 区的得分分别为x 、y 分,根据图示可得等量关系:①掷到A 区5个的得分+掷到B 区3个的得分=77分;②掷到A 区3个的得分+掷到B 区5个的得分=75分,根据等量关系列出方程组,解方程组即可得到掷中A 区、B 区一次各得多少分;(2)由图示可得求的是掷到A 区4个的得分+掷到B 区4个的得分,根据(1)中解出的数代入计算即可. 解:(1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:53773575x y x y +=⎧⎨+=⎩,解得:109x y =⎧⎨=⎩,答:求掷中A区、B区一次各得10,9分.(2)由(1)可知:4x+4y=76,答:依此方法计算小明的得分为76分.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.对应训练3.(2012•宁夏)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.35120016x yx y+=⎧⎨+=⎩B.351.2606016x yx y⎧+=⎪⎨⎪+=⎩C.35 1.216x yx y+=⎧⎨+=⎩D.351200606016x yx y⎧+=⎪⎨⎪+=⎩3.B例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?4.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350-210)×(0.52+0.05)=189元,故可得小华家5月份的用电量在第二档,设小华家5月份的用电量为x,则210×0.52+(x-210)×(0.52+0.05)=138.84,解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;5.(2012•云南)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水个多少件?5.解:设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,由题意得,20002400 x yx y+=⎧⎨=-⎩,解得:1200800xy=⎧⎨=⎩.答:设该企业向甲学校捐了1200件矿泉水,向乙学校捐了800件矿泉水.【聚焦山东中考】1.(2012•滨州)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是()A.14250802900x yx y⎧+=⎪⎨⎪+=⎩B.15802502900x yx y+=⎧⎨+=⎩C.14802502900x yx y⎧+=⎪⎨⎪+=⎩D.15250802900x yx y+=⎧⎨+=⎩1.D3.(2012•菏泽)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C. 2 D. 4考点:二元一次方程组的解;算术平方根。

810360分析:由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.解答:解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.点评: 此题考查了二元一次方程组的解、二元一次方程组的解法以及算术平方根的定义.此题难度不大,注意理解方程组的解的定义.4.(2012•临沂)关于x 、y 的方程组的解是,则|m ﹣n|的值是( )A .5B . 3C . 2D . 1考点: 二元一次方程组的解。

相关文档
最新文档