二元一次方程专题总结

合集下载

初中二元一次方程知识归纳

初中二元一次方程知识归纳

初中二元一次方程知识归纳一、二元一次方程的定义二元一次方程是指只含有两个未知数x和y,且每个未知数的最高次数均为一次的方程,其一般形式为ax+by=c,其中a,b,c为已知实数,且a,b不全为零。

二、二元一次方程的解的表示方法求解二元一次方程ax+by=c的过程是求出x,y使得ax+by=c成立。

解(x,y)构成了方程ax+by=c的解集。

用一个有序数对表示解集就是该方程的解的表示方法。

解集表示为(x,y),其中x是方程的解,y是对应x的解。

三、二元一次方程的解法1. 常用消元法将二元一次方程的两个方程中,所包含相同的未知数,消去该未知数的系数,即可得到一个未知数的一元一次方程。

解出未知数的值,再带入另外一个方程,求出另一个未知数的值。

最终得出方程的解。

2. 代入法先把一个方程中的一个未知量用另一个未知量表示,再将它代入另一个方程中,并把未知量表示成同一个未知量,此时得到一个一元一次方程,解出这个未知量。

然后再代回即可求出另一个未知量。

3. 公式法设ax+by=c为二元一次方程,$D=\\begin{vmatrix} a&b\\\\c&d\\end{vmatrix}$,则有:$$x=\\frac{\\begin{vmatrix} c&b\\\\d&e\\end{vmatrix}}{D},y=\\frac{\\begin{vmatrix} a&c\\\\b&d\\end{vmatrix}}{D}$$4. 矩阵法(高斯消元法)把二元一次方程的系数和常数用矩阵表示出来,然后用高斯消元法化为行阶梯矩阵,再回带求解即可。

四、二元一次方程的分析解1. 无解无解的情况是因为方程组表示的两个直线平行,不可能相交。

2. 唯一解唯一解的情况是因为方程组表示的两个直线相交于一点,有且仅有一个交点。

3. 无数解无数解的情况是因为方程组表示的两个直线重合,方程中含有自由变量,取不同的自由变量,得到无穷多个解。

二元一次方程组总结

二元一次方程组总结

一、二元一次方程定义:方程中含有两个未知数,并且含未知数项的次数都是1的等式一般形式:()00,0ax by c a b ++==≠,任何一个二元一次方程经过处理都可以化成一般形式。

满足3个条件:1、“二元”含有两个未知数.2、“一次”未知数项的最高次数都是1.3、“方程”是整式方程.注意:(1)未知数的指数都是1,即不含两个未知数乘积的形式的单个未知数的指数,10xy +=,其中xy 的指数为2,所以它不是二元一次次方程(2)方程中出现分数形式时,分母中不能含有未知数,如10y x +=,1x是分式,所以10y x+=是分式方程,二不是整式方程 1. 下列方程中,哪些是二元一次方程,哪些不是,请说明理由?23x y z += 290x y -=173y x += 284x +=- 0xy = 32x y π+=-2. 已知()32340x y a xy +--=,当a 为何值时,它是二元一次方程3. 若2380m n x y -+-=是关于,x y 的二元一次方程,求m n +4. 若()2131mx m y m ++=-是关于,x y 的二元一次方程,则m 为何值?二元一次方程的解含义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解 1. 方程27x y +=的正整数解有_________ 2. 二元一次方程321x y -=的解是( )A. 任何一个有理数对B. 无数多个数对,但不是任意一个有理数对C. 仅有一个有理数对D.有限个有数对3. 如果121x y ⎧=⎪⎨⎪=-⎩是方程35ax y -=的解,也是方程21x by +=的解,试求a b -的值二、二元一次方程组方程组含有两个未知数,并且含有每个未知数的项的次数都是1,像这样的方程组叫做二元一次方程组特点:1、方程组中每一个方程都是一次方程2、方程组中含有两个未知数,而不是每一个方程都必须含有两个未知数3、整个方程组中含有两个且只含有两个未知数如2116\\245123612x y x x y x y y x x y +=⎧=+=⎧⎧⎪+=⎨⎨⎨=+=⎩⎩⎪+=⎩是方程组,但62x y y z +=⎧⎨+=⎩就不是二元一次方程组4、方程组中相同的未知数在各个方程中所表示的意义是相同的我们把二元一次方程组中两个方程的公共解,叫做二元一次方程组的解.即方程组中的解满足方程组中的任何一个方程。

(完整版)二元一次方程组知识点及典型例题

(完整版)二元一次方程组知识点及典型例题

二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。

(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。

练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。

的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。

二元一次方程组知识点整理、典型例题总结

二元一次方程组知识点整理、典型例题总结

二元一次方程组知识点整理、典型例题总结二元一次方程组一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0)。

2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解。

3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组。

4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解。

二元一次方程组解的情况:①无解,例如:{x+y=1,2x+2y=3};②有且只有一组解,例如:{x+y=1,2x+y=2};③有无数组解,例如:{x+y=1,2x+2y=2}。

5、二元一次方程组的解法:代入消元法和加减消元法。

6、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设:找出能够表示题意两个相等关系,并用字母表示其中的两个未知数;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。

二、典型例题分析例1:二元一次方程组{x=2.2x-3m=1}的解,求m、n的值。

例2:若{nx-my=-5.y=3},求m、n的值。

例3:方程x+3y=10在正整数范围内有哪几组解?例4:将方程10-2(3-y)=3(2-x)变形,用含有x的代数式表示y。

例5:已知{(m+1)x+(n-1)y}/nm=1是关于x、y的二元一次方程,求nm的值。

例6:若方程2m-13n-2x+5y=7是关于x、y的二元一次方程,求m、n的值。

例7:(1)用代入消元法解方程组{7x+5y=3.2x-y=-4}。

七年级上册二元一次方程知识总结

七年级上册二元一次方程知识总结

七年级上册二元一次方程知识总结一、引言二元一次方程是初中数学中的重要内容,掌握好二元一次方程的知识对于进阶学习和科学研究都具有重要意义。

本篇文章将对七年级上册关于二元一次方程的知识进行总结,并向读者介绍相关概念、性质和解题方法,希望能够对读者有所帮助。

二、二元一次方程的概念1. 二元一次方程的定义二元一次方程是指含有两个未知数的一次方程,通常表示为ax+by=c,其中a、b、c为已知常数,x、y为未知数。

这种方程在解析几何和代数中有着广泛的应用。

2. 二元一次方程的一般形式一般情况下,二元一次方程可以表示为Ax+By=C,其中A、B、C 为已知常数,x、y为未知数。

通过二元一次方程的一般形式,我们可以进行方程的变形和简化,从而更好地理解和解决问题。

三、二元一次方程的性质1. 二元一次方程的等价变形二元一次方程经过等价变形后,其解不变。

等价变形通常包括方程两边加减同一个量、方程两边乘除同一个非零数等操作。

2. 二元一次方程的解的存在唯一性对于一组二元一次方程,当且仅当系数行列式不等于零时,其解存在且唯一。

这一性质对二元一次方程的解题过程具有重要指导作用。

四、二元一次方程的解法1. 二元一次方程的图解法通过将二元一次方程表示为直线的形式,我们可以通过图形的交点来求解方程的解。

这是一种直观的解法,有助于帮助学生理解方程的几何意义。

2. 二元一次方程的代入法对于一组二元一次方程,可以通过其中一个方程的解,代入另一个方程中,进而求解另一个未知数。

这是一种常用的解方程方法,也是解题过程中的常见操作。

3. 二元一次方程的消元法通过将两个方程相加或相减,消去一个未知数,然后求解另一个未知数的值,从而得到方程的解。

消元法在实际问题中具有较高的适用性,也是解二元一次方程的重要方法。

五、举例分析1. 实际问题的建立通过一些实际问题,我们可以将问题转化为二元一次方程,然后通过解方程的方法得到问题的解。

这是一个将数学知识与实际问题相结合的过程。

二元一次方程总结(优选9篇)

二元一次方程总结(优选9篇)

二元一次方程总结(优选9篇)【第1篇】二元一次方程组及其应用教学总结在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx 市校际组成员安排到xx中学进行授课,我是其中之一。

在接到这个任务时,我就先向xx中学的同课异构教师——叶xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。

针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。

然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的`同解原理,了解二元一次方程组解的意义,最后,我引出20xx年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。

在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。

但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。

听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。

【第3篇】2023年二元一次方程组及其应用教学总结范文在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx 市校际组成员安排到xx中学进行授课,我是其中之一。

(完整版)二元一次方程知识点总结

(完整版)二元一次方程知识点总结

二元一次方程组一、二元一次方程及其解(1)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.(2)条件:1)含有两个未知数 2)所含未知数的项的次数是13)等号两边是等式二、二元一次方程组及其解(1)、二元一次方程组:含有两个未知数,并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.(2)、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩.】例1、若方程213257m n x y --+=是关于x y 、的二元一次方程,求m 、n 的值.例2、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值.例3、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值.(变式训练)已知218(26)(2)0n m m xn y +--++=是关于x y 、的二元一次方程,当2y =-时,求x 的值.二元一次方程的变形:用一个未知数表示另一个未知数例:已知二元一次方程5x-2y=10 ①将其变形为用含x 的代数式表示y 的形式。

②将其变形为用含y 的代数式表示x 的形式例4:已知在方程8x-6y=10中,请用含有x 的代数式表示y ,用含有y 的代数式表示x .知识点1:二元一次方程及其解1、下列各式是二元一次方程的是( )..A 67x y -= .B 105x y-= .C 45x xy -= .D 210x x ++= 2、若32x y =⎧⎨=⎩是关于x y 、的二元一次方程30x ay -=的一个(组)解,则a 的值为( ).A 3 .B 4 .C 4.5 .D 63、对于二元一次方程21x y -=有无数个解,下列四组值不是该方程的解的一组是( ).A 012x y =⎧⎪⎨=⎪⎩ .B 11x y =⎧⎨=⎩ .C 10x y =⎧⎨=⎩ .D 11x y =-⎧⎨=-⎩。

二元一次方程的知识点总结

二元一次方程的知识点总结

二元一次方程的知识点总结一、二元一次方程的定义1. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

-例如:\(x + y=5\),\(2x - 3y = 8\)等都是二元一次方程。

这里\(x\)和\(y\)是两个未知数,且方程中含\(x\)、\(y\)项的次数都是1。

二、二元一次方程的解1. 定义-使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

-例如对于方程\(x + y = 3\),\(x = 1\),\(y = 2\)就是它的一组解,因为当\(x = 1\),\(y = 2\)时,\(1+2 = 3\),方程左右两边相等。

2. 二元一次方程有无数组解-以\(x + y = 3\)为例,当\(x = 0\)时,\(y = 3\);当\(x = 2\)时,\(y = 1\)等等,所以二元一次方程的解有无数个。

三、二元一次方程组1. 定义-把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

-例如\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\)就是一个二元一次方程组。

2. 二元一次方程组的解-二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

-对于上面的方程组\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\),\(x = 2\),\(y = 3\)是它的解,因为\(x = 2\),\(y = 3\)既满足\(x + y = 5\)(\(2+3 = 5\)),又满足\(2x - y = 1\)(\(2×2 - 3 = 1\))。

四、二元一次方程组的解法1. 代入消元法-步骤:-从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。

例如对于方程组\(\begin{cases}x + y = 5\\2x - y = 1\end{cases}\),由\(x + y = 5\)可得\(y = 5 - x\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程专题总结
知识框架
1、二元一次方程的定义
含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做
二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方
程组的解。

5、代入消元法解二元一次方程组:
(1)基本思路:未知数又多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:
1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如
y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,
即“变”
2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即
“代”。

3、解出这个一元一次方程,求出x的值,即“解”。

4、把求得的x值代入y=ax+b中求出y的值,即“回代”
5、把x、y的值用{联立起来即“联”
6、加减消元法解二元一次方程组
(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫
做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解
1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那
么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即
“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,
即“加减”。

3、解这个一元一次方程,求得一个未煮熟的值,即“解”。

4、将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数
的值即“回代”。

5、把求得的两个未知数的值用{联立起来,即“联”。

题型分类
一、定义类
1、下列方程组中为二元一次方程组的是( )
A .
12x y xy -=⎧⎨=⎩ B .4123x y y x -=⎧⎨=+⎩ C .2201x x y x ⎧--=⎨=+⎩ D .1
130y
x x y ⎧-=⎪⎨⎪+=⎩ 2、下列方程:(1)21x=3
1x-1;(2)5y x -=1;(3)m 2-1=n;(4)5xy=7;(5)7x 2+5y=2
(6)11x=6y+5;其中是二元一次方程的有
3、下列方程组中,不是二元一次方程组的是( ) A. 123x y =⎧⎨
+=⎩ B. 12x y x y +=⎧⎨-=⎩ C. 10x y xy -=⎧⎨=⎩ D. 21
y x
x y =⎧⎨-=⎩
4、若方程x m-1+2y 3n+1=1是二元一次方程,则m= ,n= .
二、解的个数问题
1、二元一次方程5x -11y=21 ( )
A .有且只有一解
B .有无数解
C .无解
D .有且只有两解 2、二元一次方程x+2y=12在正整数范围内的解有( )组. A. 3 B. 4 C. 5 D. 无数
3、方程x+2y =5的正整数解的个数是( )
(A)一个 (B)二个 (C)三个 (D)四个 三、计算题 1.(1)
(2)
(3))(6441125为已知数a a y x a
y x ⎩
⎨⎧=-=+
(4)
(5)
(6)

(7)
(8)
⎩⎨⎧=--+=-++0
)1(2
)1()1(2
x y x x x y y x
(9)
(10) ⎪⎪⎩⎪⎪⎨
⎧=-++=-++1
213
2
22
1
32y x y x
2.求适合的x ,y 的值.
3.已知关于x ,y 的二元一次方程y=kx+b 的解有和

(1)求k ,b 的值.
(2)当x=2时,y 的值. (3)当x 为何值时,y=3?
四、已知方程组的解求待定字母的值
例3、甲、乙两人共同解方程组⎩
⎨⎧-=-=+2415
5by x y ax 由于甲看错了方程①中的a ,得到
方程组的解为⎩⎨⎧-=-=13
y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==45y x ,
求a+b
1、若方程2x-ay=4的一组解是⎩⎨⎧==,2y ,
0x 那么a= .
2、方程组⎩

⎧=+=+32y x a
y x 的解为⎩⎨⎧==b y x 2,则a = ,b = 。

3、已知b kx y +=.如果x = 4时,=y 15;x =7时,y =24,则k = ;b =
五、方程(组)有相同解问题
1、二元一次方程组⎩⎪⎨⎪⎧x+y=5
a 2 x+3y=13的解也是二元一次方程5x-3y=1的解,则a 的值
是( )
2、若下列三个二元一次方程:3x-y=7;2x+3y=1;y=kx-9有公共解,那么k 的取值应是( )
A 、k=-4
B 、k=4
C 、k=-3
D 、k=3
3、已知方程组⎩⎨⎧=-=-1y 7x 45y x 3的解也是方程组⎩⎨⎧==-5by -x 34
y 2ax 的解,则a=_______,
b=________ ,3a+2b=___________。

4、已知方程组⎩⎨⎧-=--=+4
652by ax y x 和方程组⎩⎨
⎧-=+=-8
1653ay bx y x 的解相同,求(b a +)2。

相关文档
最新文档