量子力学全同粒子体系特性-图文(精)
全同粒子体系

第六章 全同粒子体系6.1 全同粒子体系之前所讨论的问题都是单粒子问题,在自然界中经常碰到由多个粒子所组成的体系,称为多粒子体系,这些体系或者由非全同粒子构成或者由全同粒子构成,而我们关注是由全同粒子构成的体系。
首先研究由全同粒子组成的多粒子体系的特性。
1、全同粒子我们称质量m ,电荷q ,磁矩M,自旋S 等固有属性完全相同的微观粒子为全同粒子。
其中,固有属性又叫内禀属性,如所有的电子,所有的质子系都是全同粒子系,在相同的物理条件下,全同粒子体系中的全同粒子的行为应该是相同的。
全同粒子体系有个重要的特点,就是我们量子力学第5个基本假设给出的。
2、量子力学基本假设全同性原理假设(不能由量子力学中的基本假设推出):全同粒子具有不可区分性,交换任何两个粒子不引起体系物理状态的改变。
(不可区分性与交换不变性)量子力学中,粒子的状态是用波函数来描述的,如果描述两个粒子的波没有重叠,例如:把两个粒子分别置于两个不同的容器中,自然可以区分哪个是1粒子,哪个是2粒子;但如果描述两个粒子的波发生重叠,例如:氢原子中的两个电子,这两个全同电子就无法区分了,因为一切测量结果都不会因为交换而有所改变。
由于全同粒子的不可区分性,每个粒子都是处于完全相同的状态,所以交换任何两个全同粒子并不形成新的状态。
在自然界中,实际出现的状态,只是那些交换不变的态,其余的态实际都不存在,由全同性原理假设出发,可以得到全同粒子体系的一些重要性。
3、全同粒子体系ˆH算符的交换不变性 粒子不可区分,单体算符形式一样。
在量子力学情况下,微观粒子不存在严格意义的轨道,对于粒子的坐标,我们仅知道粒子在某处出现的几率,设有两个全同粒子在不同时刻给它们照相,根据照片上的位置,在某一时刻把它两个粒子编号,则在后一时刻的照片上没有任何根据能指出哪个是第一号,哪个是第二号,即使两次的照片时间间隔再短,也无法分辨。
但我们又必须给粒子的“坐标”i q 编上号码(1,2,i N = ),因为不可能把各个粒子的不同坐标的哦要用一个变量q 来表示,这样,12,N q q q 代表第一个位置(含自旋),第二个位置,……各有一个粒子,不能规定是哪一个粒子;于是,12,N q q q 表示粒子的坐标(含自旋),但每一个坐标q 都不专属于某一个粒子,若把12,N q q q 顺序作任意置换后,也还是在(1,2,)i q i N = 各有一个粒子。
全同粒子的特性

一、全同粒子 二、全同性原理 三、全同粒子体系的波函数与哈密顿及其特性 四、玻色子和费米子
§7-5 全同粒子的特性
一、全同粒子
1.全同粒子: 所有固有(内禀)性质(静止质量、电荷、寿命、自旋、同位 旋、内禀磁矩等)完全相同的微观粒子。 例如:金属中的电子、氢原子中的电子和氦原子中的电子等。 不论电子处于何种物质中,在什么地方,内禀性质都一样,故所有 电子是全同粒子。 再如:质子和中子,正、负电子,内禀性质不完全相同(如带 电状态不同),它们不是全同粒子。 2.全同粒子体系: 由两个或两个以上的全同粒子组成的体系。 例如:金属中的电子;氦原子中的电子;核中的质子或中子的 集合。
ˆ 2 (q ,...,q ,...,q ,...,q , t ) 2 (q ,...,q ,...,q ,...,q , t ) P ij 1 i j N 1 i j N
ˆ 2 (q ,...,q ,...,q ,...,q , t ) (q ,...,q ,...,q ,...,q , t ) P ij 1 i j N 1 i j N
又
ˆ 的本征值为 于是 P ij 当 1 时,有
1
(...,q j ,...,qi ,...) (...,qi ,...,q j ,...)
则波函数是交换对称的,用 S 表示; 当 1 时,有 (..., q j ,..., qi ,...) (..., qi ,..., q j ,...) 则波函数是交换反对称的,用 Φ A 表示。
粒子 ( s 0)。 如光子 ( s 1) 、处于基态的氦原子( s 0) 、
(1)交换体系中任一对全同粒子,体系的哈密顿不变。
2 N 1 2 ˆH ˆ (q ,..., q ,..., q ,..., q , t ) P ˆ P U ( q , t ) W ( q , q ) ij 1 i j N ij i i j 2 i 2 i j i 1
自旋和全同粒子2

32
16
2005-06
基础物理学(下)
17
2005-06
基础物理学(下)
18
ˆ Pij .( 对 任 何 i j )
反对称波函数
1பைடு நூலகம்
二粒子互换后波函数变号, 即
(q1 , q2 , qi q j qN , t ) (q1 , q2 , q j qi qN , t )
ˆ ˆ 可以证明: [ P ij , H ] 0
i j
Sij q1 , q2 ) (
1 2
[ i ( q1 ) j ( q2 ) j ( q1 ) i ( q2 )]
(2)Fermi 子体系
i j
Aij q1 , q2 ) (
1 2
[i (q1 ) j (q2 ) j (q1 )i (q2 )]
描写全同粒子体系状态的波函数只能是对称的或反对称的,其对 称性不随时间改变。如果体系在某一时刻处于对称(或反对称) 态上,则它将永远处于对称(或反对称)态上。
(三)Fermi 子和 Bose 子
实验表明:对于每一种微观粒子,它们的多粒子体系波函数的交换对 称性是完全确定的,而且该对称性与该粒子的自旋有确定的联系。 (1)Bose 子 凡自旋为 整数倍(s = 0,1,2,……) 的粒子,其多粒子波函数 对于交换 两个粒子总是对称的,这种粒子遵从Bose-Einstein统计, 故称为 Bose 子。
0 0 1 0 -1 0 1 0 -1 2 1 0 -1 -2
ms
½ ½ ½ ½ ½ ½ ½ ½ ½ -½ -½ -½ -½ -½ -½ -½ -½ -½
2(2l+1)
2 2
§5.5 全同粒子系统

既然所有Pij都是守恒量,所以其对称性不 随时间变化,即全同粒子的统计性质(Bose 或Fermi统计)是不变的。
结论:描写全同粒子系统状态的波函数只能是 5对2 称的或反对称的,它们的对称性不随时间变化。10
④全同粒子的分类 所有的基本粒子可分为两类:
玻色子Fermion和费米子Boson
1)玻色子:
凡自旋为整数倍,波函数满足交换对称,
遵从Bose-Einstein统计的粒子。 如π介子(s=0)、光子( s=1 )等。
52
11
引力子(Graviton)
引力子(Graviton),又称重力子,在物理学中是一个传 递引力的假想粒子。为了传递引力,引力子必须永远 相吸、作用范围无限远及以无限多的型态出现。在量 子力学中,引力子被定义为一个自旋为2、质量为零的 玻色子。
52
16
2、两个全同粒子组成的体系 ①简介
忽略相互作用,Hamiltonian可表为
Hˆ h(q1) h(q2 )
q1 q2 Hˆ 不变
故
[P12, Hˆ ] 0
设h(q)的单粒子本征态为
k
(q),本征能为
,
k
则有
h(q)k (q) kk (q)
其中k为力学量(包含Hˆ)的一组完备量子数
(q1, q2,, qi ,q j ,)
来描述。其中 qi (i 1,2,N) 表示第i个
粒子的全部坐标(空间和自旋)。
若Pij表示第i个粒子与第j个粒子的全部 坐标变换,即
Pij (q1, q2,, qi ,q j ,, qN )
52
(q1, q2,, q j ,qi ,, qN ) 5
全同粒子体系

第六章 全同粒子体系§6.1 电子自旋及其描述 1. 电子自旋的发现Stern-Gerlach 实验:测量氢原子的磁矩。
经典理论的预言是M M M z≤≤-,连续变化。
实验结果是:.B z M M ±= eB m e M 2≡(Bohr 磁子) 结论:电子有磁矩,其投影是量子化的。
推论:电子有自旋(内禀角动量),其投影也是量子化的。
Uhlenbeck-Goudsmit 假设(1925):电子有自旋角动量,其投影只能取两个值:,2±=z S这自旋角动量又导致电子有自旋磁矩,其投影为.2B ez e z M m e S m e M ==-= (SI 制) 写成矢量关系,自旋角动量算符记为∧S ,自旋磁矩算符记为s M ∧,则.∧∧-=S m e M es2. 电子自旋的描述自旋有纯量子力学的起源,只能用矩阵描写。
自旋的分量只有两个可能的测量值,所以算符zy x S S S ˆ,ˆ,ˆ都是22⨯矩阵。
通常选z S ˆ是对角矩阵,这些矩阵是: .10012ˆ,002ˆ,01102ˆ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛= z y x S i i S S 引入Pauli 矩阵.1001,00,0110⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛=z y x ii σσσ则.2σ=∧SPauli 矩阵的主要性质是:,z x y y x i σσσσσ=-= 和x z y x →→→的轮换,222I z y x ===σσσ I 是22⨯单位矩阵显然,zS ˆ的对应于本征值2±的本征矢量是:,01,2⎪⎪⎭⎫ ⎝⎛=+=+v S z.10,2⎪⎪⎭⎫ ⎝⎛=-=-v S z3. 带有自旋的电子波函数现在电子的波函数还应该同时描写它的自旋状态。
由叠加原理,-+⋅ψ+⋅ψ=ψv t r v t r t r ),(),(),(21,),(),(21⎪⎪⎭⎫ ⎝⎛ψψ=t r t r 这称为电子的二分量波函数,又称为旋量。
第4章-2.全同粒子体 西南大学量子力学PPT(考试必备)

§4.2
全同粒子体系的波函数
[本节要求]:深刻理解泡利原理,掌握如何
构造玻色子、费米子波函数
[本节内容]:讨论在忽略粒子之间相互作
用的情况下,如何去构造具有交换对称的波函数. 在计及相互作用时, 可以用它们作为基矢来展 开. 先讨论两个全同粒子体系, 然后推广到多 粒子体系.
一. 两个全同粒子体系的波函数:
N个粒子在N个单粒子态上的不同排列数有N! 个, 或者说有N! 个置换,所以上式共有N!项
奇置换:从标准排列式出发, 若经过奇数次对换才达到
排列P,记为 P 1 偶置换:从标准排列式出发, 若经过偶数次对换才达到 排列P,记为 P 1
注意到: 1.在N!个置换中, 偶置换与奇置换各占一半; 2.并且注意到对换两个粒子波函数的次序,体
1 2
体系能量为 E k1 k2 的本征态为
1 2
k q1 k q2
体系能量为 k1 k 2
k q2 k q1
C1 k1 q1 k2 q2 C 2 k1 q2 k2 q1
1 2
这说明体系的能级是简并的, 这种与全同粒子 交换对称性相联系的简并, 称为交换简并.
反对称 对称 反对称 对称
对称 反对称 反对称 对称
费米子 玻色子
反对称 对称
例1:对两电子体系, 总波函数为
A
1 2
11 1 s1z 1 s2 z
2 2
A r1 , r2 s s1 z , s2 z
k1 r1 k 2 r2
两者相差一相因子
ˆ P ij
全同粒子

第七章 全同粒子本章介绍:本章首先介绍全同粒子的特性,然后介绍了全同粒子体系的波函数及泡利不相容原理。
§7.1 全同粒子的特性§7.2 全同粒子体系的波函数◆全同粒子的定义:我们称质量、电荷、自旋、同位旋即其他所有内禀固有属性完全相同的粒子为全同粒子。
例如:所有电子是全同粒子。
◆全同粒子的重要特点:在同样的物理条件下,它们的行为完全相同,因此用一个全同粒子代替另一粒子,不引起物理状态的变化。
◆在经典力学中,即使是全同粒子,也总是可以区分的。
因为我们总可以从粒子运动的不同轨道来区分不同的粒子。
而在量子力学中由于波粒二象性,和每个粒子相联系的总有一个波。
随着时间的变化,波在传播过程中总会出现重叠,在两个波重叠在一起的区域,无法区分哪一个是第一个粒子的波,哪一个是第二个粒子的波。
因此全同粒子在量子力学中是不可区分的。
我们不能说哪个是第一个粒子,哪个是第二个粒子。
全同粒子的不可区分性,在量子力学中称为全同性原理。
从全同性原理出发,可以推知,由全同粒子组成的体系具有以下性质:全同粒子体系的哈密顿算符具有交换对称性。
讨论一个由N 个全同粒子组成的体系,第i 个粒子的全部变量用i q 表示,体系的哈密顿算符是1ˆ(,,,,)i j N H q q q q t ,由于全同粒子的不可区分性,将粒子i 和j 互换,体系的哈密顿算符不变交换算符ˆij P 引入交换算符ˆijP ,表示将第i 个粒子和第j 个粒子相互交换的运算: ψ是任意波函数,由ˆH 的交换不变性有:即ˆˆ[,]0ijP H =另外,将交换算符作用到薛定谔方程上,得表明:若ψ是薛定谔方程的解,则ˆij P ψ也是薛定谔方程的解。
于是有ˆijP ψλψ=利用22ˆijP ψλψψ==得21,1λλ==± 即ˆˆ,ij ijP P ψψψψ==-由上两式可见,全同粒子组成的体系的状态只能用交换对称或交换反对称的波函数描述。
全同粒子体系波函数的对称性不随时间变化。
全同粒子

具体说明
具体说明
全同粒子的存在是客观物质世界的一项基本实验事实,也是被物理学界所普遍接受的一项基本理论信念。仍 以电子的电荷为例,虽然实验测量受到精确度的限制,而且各次测量结果在最后几位有效数字上有出入,但是当 前绝大多数物理学家仍一致相信,所有电子(包括未被测量过的电子)的电荷值应该完全相同,没有丝毫差别。 任何物理理论,尤其是量子理论,都是在这种信念的基础上建立起来的。
地位
地位
全同粒子是量子力学的基本概念之一。指内禀属性(质量、电荷、自旋等)完全相同的粒子。它们可以是基 本粒子,也可以是由基本粒子构成的复合粒子(如α粒子)。
量子力学
量子力学
量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一。量子力学是在本世纪20年代中期 建立起来的。19世纪末,人们发现大量的物理实验事实不能再用经典物理学中能量是完全连续性的理论来解释。 1900年,德国物理学家普朗克提出了能量子假说,用量子化即能量具有的不连续性,解释了黑体辐射能量分布问 题。1905年,爱因斯坦在此基础上提出了光量子假说,第一次揭示出光具有波粒二象性,成功地解释了光电效应 问题。1906年,爱因斯坦又用量子理论解决了低温固体比热问题。接着,丹麦物理学家玻尔提出了解释原子光谱 线的原子结构的量子论,并经德国物理学家索末菲等人所修正和推广。1924年,德国物理学家德布罗意在爱因斯 坦光量子假说启示下,提出了物质波假说,指出一切实物粒子也同光一样都具有波粒二象性。1925年,德国物理 学家海森堡和玻恩、约尔丹以矩阵的数学形式描述微观粒子的运动规律,建立了矩阵力学。接着,奥地利物理学 家薛定谔以波动方程的形式描述微观粒子的运动规律,建立了波动力学。不久,薛定谔证明,这两种力学完全等 效,这就是今天的量子力学。量子力学用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律。 应用量子力学的方法解决原子分子范围内的问题时,得出了与实验相符的结果;量子力学用于宏观物体或质量、能 量相当大的粒子时,也能得出与经典力学一样的结论。因此,量子力学的建立大大促进了原子物理、固体物理和 原子核物理学的发展,并推动了半导体、激光和超导等新技术的应用。它标志着人类认识已从宏观领域深入到微 观领域。量子力学为哲学研究的发展开辟了新的领域,它向人们提出了一系列新的哲学课题,诸如微观客体的存 在特征、微观世界是否存在因果关系、主客体在原则上是否不可分、主客体之间的互补问题等等。深入和正确地 回答这些问题,无疑将会推动马克思主义哲学的深入发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此得出结论:描写全同粒子体系状态的波函数只能是对称的或反对称的,它们的对称性不随时间改变。
即如果体系在某一时刻处于对称(反对称)的态,则它将永远处于对称(反对称)的态上。
(四)玻色子和费米子(Bosons和Fermions)因为全同粒子的波函数具有确定的对称性,对称波函数保持交换不变号;反对称波函数保持交换变号。
所以,微观全同粒子体系的波函数可按置换对称分为两类,1)交换对称;2)交换反对称。
(迄今为止,无发现例外。
)
实验证明:凡自旋是 /2或的半奇数倍的粒子组成的全同粒子体系,波函数具有反对称性,服从费米—狄拉克(Fermi—Dirac)统计,这类粒子因而被称为费米子。
电子自旋是零或质子中子的整数倍的粒子组成的全同粒子体系,波函数具有对称性,服从玻色—爱因斯坦(Bose—Einstein)统计,这类粒子因而被称为玻色子。
光子基态氦原子α 粒子。