高频感应加热原理电路及应用精品PPT课件
《高频电子技术》课件

THANKS
谢谢
在此添加您的文本16字
带阻滤波器允许除某一频段外的信号通过,抑制该频段信 号。
滤波器的性能指标
通带和阻带性能
插入损耗
通带和阻带的边缘频率、带宽等参数决定 了滤波器的频率选择性和抑制能力。
滤波器对有用信号的衰减程度,以dB为单 位表示。
群时延
稳定性
滤波器对信号相位变化的量度,反映信号 通过滤波器的速度。
振荡原理
高频电子电路中的元件通 过正反馈和负反馈等机制 ,产生振荡信号,实现信 号的调制和解调等功能。
传输线原理
高频电子电路中的信号传 输遵循传输线理论,信号 在传输过程中会受到线路 的分布参数影响。
03
CHAPTER
高频电子技术中的放大器
放大器的分类与特点
分类
按功能可以分为电压放大器、功率放 大器、跨导放大器等;按频率可分为 低频放大器、高频放大器、微波放大 器等。
特点
高频放大器具有较高的增益和带宽, 能够放大微弱的高频信号;低频放大 器具有较低的噪声系数和较好的线性 度,适用于放大低频信号。
放大器的性能指标
增益
放大器的输出信号幅度与输入信号幅 度之比,反映了放大器的放大能力。
带宽
放大器能够正常工作的频率范围,反 映了放大器的频率响应能力。
线性度
放大器在小信号和大信号输入下的性 能差异,反映了放大器的失真程度。
频率范围
高频电子电路的工作频率范围,通常指几百 千赫兹到几百兆赫兹。
带宽
高频电子电路的频率响应范围,通常指电路 能够正常工作的频率范围。
增益
高频电子电路的放大倍数,用于衡量电路的 放大能力。
噪声系数
高频电子电路的噪声与信号比值,用于衡量 电路的噪声性能。
高频电路原理与分析PPT课件

第1章 绪论
1.3 本课程的特点
高频电子线路是在科学技术和生产实践中发展起 来的, 也只有通过实践才能得到深入的了解。 因此, 在 学习本课程时必须要高度重视实验环节, 坚持理论联系 实际, 在实践中积累丰富的经验。 随着计算机技术和电 子设计自动化(EDA技术)的发展, 越来越多的高频电 子线路可以采用EDA软件进行设计、 仿真分析和电路 板制作, 甚至可以做电磁兼容的分析和实际环境下的仿 真。因此, 掌握先进的高频电路EDA技术, 也是学习高 频电子线路的一个重要内容。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
•3
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。
•13
第1章 绪论
射线
(a) 电离层
(b) 对流层
(c)
(d)
图1— 5
(a) 直射传播; (b) 地波传播; (c) 天波传播; (d) 散射传播
•14
第1章 绪论
5. 调制特性 无线电传播一般都要采用高频(射频)的另一个原 因就是高频适于天线辐射和无线传播。 只有当天线的尺 寸到可以与信号波长相比拟时, 天线的辐射效率才会较高, 从而以较小的信号功率传播较远的距离, 接收天线也才能 有效地接收信号。
高频感应加热原理、电路及应用_电力电子ppt课件

应用领域
感应加热可用于金属熔炼、透热、热处理和焊接等 过程
已成为冶金、国防、机械加工等部门及铸、锻和船 舶、飞机、汽车制造业等不可缺少的能源
感应加热已经不断进入家庭生活中,例如微波炉、 电磁炉、热水器等都可以用感应加热作为能源
感应加热的其它应用:塑料橡胶行业、热粘合行业、 电子工业等
带电容缓冲的串联谐振逆变器电路图
逆变侧功率调节方式
脉冲密度调制(PDM) 脉冲宽度调制(PWM) 脉冲频率调制(PFM)
优点:输出频率一般保持不变,功率器件的开关损耗相对 较小,数字化控制容易实现,适合在开环的场合中应用
缺点:逆变器输出频率不完全等于负载固有频率,系统稳定 性比较差。率动态响应不理想,属于有级的调功方式。
串联谐振电路的优点
关断时间短,换流时开关管自然关断 启动较简单、适用于频繁启动场合 感应器与逆变电源可以相距较远,负载分布电感对
输出功率影响较小 对二极管反向恢复速度要求较低 对驱动脉冲要求较低 调功方式
串、并联谐振逆变器电路图
感性负载及容性负载输出电压电流波形
臂间换流 臂内换流
由于直流电流源采用大电感滤波,大电感能够抑制短路电流的上升,所以 有利于过流保护。由于 IGBT 内部封装有反并联二极管,所以 IGBT 不能承受反 向电压,因此要为每个主开关器件串联一个同等容量的电力二极管以承受换流 后相应桥臂要承受的反压。电路中每个主开关器件都并联有阻容网络构成的保 护电路。
串联谐振电路特点
串联型电路谐振时电源电压都加在负载等效电阻上,电源供给负载的全 都是有功功率。电感和电容上的电压大小相等,而且等于逆变器母线电压的 Q倍,但方向相反,常称此谐振为电压型谐振。而流过补偿电容和感应器上 的电流为逆变器输出电流。
感应加热的原理及其应用

感应加热设备按电源频率可分为工频、中频、超音频、高频,其各自的频率范围和加热的功率密度见表1。
▼表1感应加热频段的频率范围和加热功率密度一、感应加热原理感应加热原理图感应加热的主要依据是:电磁感应、“集肤效应”和热传导三项基本原理。
当交变电流在导体中通过时,在所形成的交变磁场作用下,导体内会产生感应电动势。
由于越接近心部,感应电动势越大,导体的电流便趋向于表层,电流强度从表面向心部呈指数规律递减,如图1所示。
这种现象即所谓交变电流的集肤效应。
▲图1交变电流在导体中的分布情况图2所示,为两根矩形截面的导体同向电流和反向电流时的磁场分布情况。
由于电源电动势和自感应电动势的作用,同向电流系统中最大的磁场强度产生在导体表面的外侧,反向电流系统最大磁场强度产生在导体表面内侧,这就是邻近效应。
利用邻近效应,可以选择适当形状的感应器对被处理零件表面的指定部位进行集中加热,使电流集中在与感应器宽度大致相等的区段内。
导体间的距离越小临近效应表现的越强烈。
▲图2存在邻近效应时,磁场和电流分布示意图a)同向电流磁场在外侧b)反向电流磁场在内侧通过感应圈的电流集中在内测表面的现象称为环状效应,见图3。
环状效应是由于感应圈交流电流磁场的作用使外表面自感应电动势增大的结果。
▲图3交流电流的环状效应加热外表面,环状效应是有利的,而加热平面与内孔时,它会使感应器的电效率显著降低。
为了提高平面和内孔感应器的效率,常常设置导磁体,以改变磁场强度的分布,迫使电流趋近于零件所需加热的表面,见图4。
由图可见,导磁体有把电流驱向其对侧的作用。
▲图4加导磁体后电流在感应圈中的分布a)内孔加热b)平面加热表面效应、邻近效应、环状效应均随交变电流频率的增加而加剧。
此外,邻近效应和环状效应还随导体截面的增大、两导体间距的减小和圆环半径的减小而加剧。
由磁场强度分布方程可得出式中:若将上式画成曲线图,其结果如图5a)所示。
▲图5涡流强度由工件表面向纵深的变化I0-表面涡流强度I2-距表面x处的涡流强度从式中得知,K=;但由磁场强度分布的基本方程式得知,K²=8πμf/ρ,故K==式中ρ——材料的电阻率(Ω·cm)μ——材料的磁导率f——电流的频率磁场强度分布的基本方程表明,涡流强度随表面距离的变化呈指数规律。
精品课件-高频电路原理与应用-第5章

第5章 振荡器
5.1 概述 5.2 反馈振荡器的原理 5.3 LC 振荡器 5.4 振荡器频率稳定度 5.5 石英晶体振荡器 5.6 实用振荡器电路分析 本章小结 思考题与习题
第5章 振荡器
5.1 概 振荡器是一种能够自动地将直流电能转换为一定波形的交变 振荡信号能量的电路,它与放大器的区别在于无需外加激励信号, 就能产生具有一定频率、一定波形和一定振幅的交流信号。各种 各样的振荡器广泛应用于电子技术领域。在发送设备中,利用振 荡器作为载波产生电路,然后进行电压放大、调制和功率放大等 处理,把已调波发射出去。在超外差式接收机中,利用振荡器产 生本地振荡信号,通过混频器得到中频信号。在教学实验和电子 测量仪器中,正弦波振荡器是必不可少的基准信号源;在自动控 制中,振荡电路用来完成监控、报警、无 触点开关控制以及定时控制;在医学领域,振荡电路可以产生
所需的要求,起振电压总是从无到有地建立起来的,那么在振荡 器刚接通电源时,原始的输入电压从哪里来呢?又如何能够建立
实际上,刚接通电源时,振荡电路各部分必定存在着各种电 扰动,如晶体管电流的突然增加、电路的热噪声等,这些扰动是 振荡器起振的初始激励,它们都包含有各种频率分量。当这种微 小的扰动作用于基本放大器的输入端时,由于谐振回路的选频作 用,只有频率接近于回路谐振频率的分量,才能由放大器进行放 大,而后通过反馈又加到主网络的输入端,如果该电压与主网络 原先的输入电压同相,且具有更大的振幅,则经过放大和反馈的 反复循环,该频率分量的电压振幅将不断增长,于是从小到大地
在平衡条件下,反馈到放大管的输入信号电压正好等于放大
管维持振荡所需要的输入电压,从而保持反馈环路各点电压的平
衡。实际上,满足平衡条件仅仅说明反馈放大器能够成为反馈振
《高频高频电路基础》PPT课件

第2章 高频电路基础
2.1.2 高频电路中的组件
• 振荡(谐振)回路 • 高频变压器 • 谐振器 • 滤波器 • 平衡调制(混频)器 • 正交调制(混频)器 • 移相器 • 匹配器 • 衰减器 • 分配器与合路器等
13 第二讲 高频电路中的元件、器件和组件
dH( f ) 0 df
1.0 0.8
0.6
通频带外的幅频特性应满足
0.4
2Δf0.7
H(f)0
0.2
理想的幅频特性应是矩形, 0
既是一个关于频率的矩形窗函数。
f1 fo f2 2Δf0.1
理想 实际 f
定义矩形系数K0.1表示选择性:
K0.12 2 ff0 0..7 1
P% P/2
2Δf0.7称为通频带 :B f 2 f 1 2 ( f 2 f 0 ) 2 f 0 . 7
单振荡回路
振荡回路(由L、C组成)
并联振荡回路
耦合振荡回路
各种滤波器
LC集中滤波器 石英晶体滤波器 陶瓷滤波器 声表面波滤波器
17 第二讲 高频电路中的元件、器件和组件
第2章 高频电路基础
要求
选频电路的通频带宽度 传输信号有效频谱宽度
相一致
理想的选频电路通频带内的幅频特性
α(f)=H(f ) / H(fo)
C
Solution:
(a)
1. At f = 5.5MHz, = 2*5.5MHz = 34.56M rad/s,
XL = L = 345.6Ω, XC = 1/C = 289.4Ω,
|ZS|
Hence, Z = 10 + j345.6 - j289.4 = 10 + j56.2 =
【完整】高频加热电路分析资料PPT

电路二
单元电路:整流
单元电路:直流电源
单元电路:风扇和指示
单元电路:电磁线圈和谐振
单元电路:功率开关
单元电路:PWM驱动
单元电路: PWM
单元电路:谐振高压保护
单元路:谐振同步
单元电路:电磁线圈和谐振 单元电路:谐振高压保护 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:谐振高压保护 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振
高频加热电路分析
高频电磁加热电路
•总体结构 •单元电路分析 •时序分析
电路结构
AC220V
整流滤波
负载 电磁线圈
功率电路
DC24V DC15V DC5V
检测保护 谐振控制 PWM驱动
状态显示 时序控制
PWM
FAN电机 外控接口
功率调节
电 路 一
单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:谐振高压保护 单元电路:电磁线圈和谐振 单元电路:谐振高压保护 单元电路:谐振高压保护 单元电路:谐振高压保护 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:谐振高压保护 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振
单元电路:PWM信号整形
单元电路:谐振高压IN保D护UCT2 单单元元电 电路路::电电磁磁线线圈圈IN和和D谐谐U振振CT1
单元电路:谐振高压保护 单元电路:谐振高压保护
电磁线圈两 单元电路:电磁线圈和谐振
单元电路:谐振高压保护
端电压信号 单元电路:电磁线圈和谐振
单元电路:电磁线圈和谐振 单元电路:电磁线圈和谐振
输出到-> PWM信号 整形电路
《高频电子线路》课件

目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
20
优点:控制电路容易实现,负载适应性号,调节范围宽 缺点:频率变化较小,功率器件的利用率较低,EMI 比较大。
21
PFM 法即是一般所说的调频调功,也称为扫频调功。 它是逆变器侧调功模式中最简单的一种。PFM 是通过改变 逆变器的工作频率,从而改变负载输出阻抗以实现调节输 出功率的目的。
f :逆变器功率管的开关频率, f0 :负载的谐振频率 P :逆变器的输出功率
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
22
由上图可知,负载固有频率不变,改变逆变器开关频率即可改变电 源的输出功率。当 f / f0 < 1时,逆变器处于容性状态,输出功率随着逆变 器开关频率的增大而增大;当 f / f0 = 1时,逆变器处于谐振状态,此时逆 变器输出最大功率;当 f / f0 > 1时,逆变器呈感性,开关频率越大感抗越 大,输出功率减小。所以在逆变器的输入电压恒定时,逆变器的工作频 率越偏离负载谐振频率,负载的等效阻抗越大,则逆变器的输出功率越 小。PFM 就是利用这一原缓冲的串联谐振逆变器电路图
16
17
18
逆变侧功率调节方式
脉冲密度调制(PDM) 脉冲宽度调制(PWM) 脉冲频率调制(PFM)
19
优点:输出频率一般保持不变,功率器件的开关损耗相对 较小,数字化控制容易实现,适合在开环的场合中应用
缺点:逆变器输出频率不完全等于负载固有频率,系统稳定 性比较差。率动态响应不理想,属于有级的调功方式。
12
串联谐振电路的优点
关断时间短,换流时开关管自然关断 启动较简单、适用于频繁启动场合 感应器与逆变电源可以相距较远,负载分布电感对
输出功率影响较小 对二极管反向恢复速度要求较低 对驱动脉冲要求较低 调功方式
13
串、并联谐振逆变器电路图
14
感性负载及容性负载输出电压电流波形
臂间换流 臂内换流
串联谐振电路特点
串联型电路谐振时电源电压都加在负载等效电阻上,电源供给负载的全 都是有功功率。电感和电容上的电压大小相等,而且等于逆变器母线电压的 Q倍,但方向相反,常称此谐振为电压型谐振。而流过补偿电容和感应器上 的电流为逆变器输出电流。
串联型电源的滤波器是通过大电容实现的,逆变器的供电电压不变。如果 同一桥臂出现短路,由此产生的短路电流会对功率器件造成严重损坏。因此 串联逆变器中,同一桥臂的功率管换流时一定遵循“先断后通”的原则,即 在上下桥臂的驱动脉冲之间加入“死区时间”。在这段“死区时间”里,为 了确保无功电流的续流,必须在功率管的两端反并联一个快恢复二极管。
10
并联谐振电路特点
并联型电路谐振时电源的电流全部加在等效电阻上,电感和补偿电容上的 电流是输入电流的Q倍,常把此谐振称作电流型谐振。而补偿电容和感应器上的 电压为逆变器输出电压。
并联谐振电路必须用电流源供电,电流源由整流器和大电感构成。如果并联 型逆变器的上、下桥臂同时断开,则积蓄在大电感中的能量将无处排放,会严重 损害功率器件。因此需在上下桥臂的驱动信号中加入“重叠时间”。在这个时间 内,虽然桥臂处于短路状态,但由于电感的“通直隔交”特性,电流不会突变, 只要换流足够快,就不会对功率器件造成危害。
2
3
高频感应加热方式的特点
非接触式加热、加热温度高 加热效率高、节能 加热速度快,被加热物质表面氧化少 温度容易控制,可以局部加热,产品质量稳定 容易实现自动控制 污染少、环保
4
感应加热电源有主电路和控制及保护电路两大块组成。 主电路由整流器、滤波器、逆变器和负载电路组成。其中整 流滤波发展较为成熟,通常是逆变器、负载阻抗匹配及控制 电路的发展水平限制着感应加热电源的发展。
高频感应加热原理及应用
原理 主要电路 应用
1
当导体中通过交变电流时,导体周围形成交变磁场,磁场的强 弱直接与电流强度成正比"如果将材料放在高频磁场内,刚磁 力线同样会切割材料,在材料中产生感应电动势,从而产生涡 流"涡流也是高频电流,同样具有高频电流的一些性质"由于 材料具有电阻,结果使材料发热,利用感应涡流的热效应进行 加热,叫感应加热"
5
6
7
降低逆变器的损耗 负载阻抗匹配技术的效率问题 控制电路数字化、智能化发展
8
电路实现
9
串联、并联谐振逆变器的拓扑结构
高频感应加热电源的负载可以等效成一个电阻和一个电感串联或 并联的形式。等效的电感、电阻是感应器和负载耦合的结果,其值受耦 合程度的影响。这种负载都是功率因素很低的感性负载;为了提高功率 因数,一般采用增加补偿电容的方法来提高。一般有并联补偿和串联补 偿两种方式,从而形成两种基本的谐振电路:并联谐振电路、串联谐振 电路。
由于直流电流源采用大电感滤波,大电感能够抑制短路电流的上升,所以 有利于过流保护。由于 IGBT 内部封装有反并联二极管,所以 IGBT 不能承受反 向电压,因此要为每个主开关器件串联一个同等容量的电力二极管以承受换流 后相应桥臂要承受的反压。电路中每个主开关器件都并联有阻容网络构成的保 护电路。
11