李永乐2012数三习题矩阵及其运算1
2012年考研数学三真题与答案解析

2012年全国硕士研究生入学统一考试数学三试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为( )(A) 0 (B) 1 (C) 2 (D) 3(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f =( ) (A)1(1)(1)!n n --- (B)(1)(1)!n n -- (C)1(1)!n n -- (D)(1)!n n -(3)设函数()ft 连续,则二次积分22202cos d ()d f r r r πθθ=⎰⎰( )(A)2220d ()d x x y y +⎰ (B)2220d ()d x f x y y +⎰(C)222d ()d y x y x +⎰(D)22201d ()d y f x y x +⎰(4)已知级数11(1)n n α∞=-∑绝对收敛,级数21(1)n a n n∞-=-∑条件收敛,则( )(A)102a <≤(B)112a <≤ (C)312a <≤ (D)322a << (5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B)124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -=( )(A)100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B)100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0.1)上的均匀分布,则{}221P X Y +≤=( )(A)14 (B)12 (C)8π (D)4π (8)设1234,,,X X X X 为来自总体2(1,)N σ(σ>0)的简单随机样本,则统计量1234|2|X X X X -+-的分布为( )(A)N (0,1) (B)t(1) (C)2(1)χ (D)F(1,1)二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)()1cos sin 4lim tan x xx x π-→=(10)设函数()ln ,121,1x f x x x ⎧≥⎪=⎨-<⎪⎩,()()y f f x =,则x edy dx ==(11)设连续函数(,)z f x y =满足0x y →→=则()0,1d |z =(12)由曲线4y x=和直线y x =及4y x =在第一象限中围成的平面图形的面积为 (13)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵。
2012年考研数学三真题及标准答案

2012年考研数学三真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)曲线y=x 2+xx2−1渐近线的条数为(A)0 (B)1 (C)2 (D)3 【答案】C。
【解析】由limx→+∞y=limx→+∞x2+xx2−1=1=limx→−∞y=limx→−∞x2+xx2−1,得y=1是曲线的一条水平渐近线且曲线没有斜渐近线;由limx→1y=limx→1x2+xx−1=∞得x=1是曲线的一条垂直渐近线;由limx→−1y=limx→−1x2+xx−1=12得x=−1不是曲线的渐近线;综上所述,本题正确答案是C【考点】高等数学—一元函数微分学—函数图形的凹凸、拐点及渐近线(2)设函数f(x)=(e x−1)(e2x−2)⋯(e nx−n),其中n为正整数,则f′(0)=(A)(−1)n−1(n−1)! (B)(−1)n(n−1)!(C)(−1)n−1(n)! (D)(−1)n(n)!【答案】A【解析】【方法1】令g (x )=(e 2x −2)⋯(e nx −n),则f (x )=(e x −1)g (x )f ′(x)=e xg (x )+(e x −1)g′(x )f ′(0)=g (0)=(−1)(−2)⋯(−(n −1))=(−1)n−1(n −1)!故应选A.【方法2】由于f (0)=0,由导数定义知f ′(0)=lim x→0f(x)x =lim x→0(e x −1)(e 2x −2)⋯(e nx −n)x =lim x→0(e x −1)x ∙lim x→0(e 2x −2)⋯(e nx −n)=(−1)(−2)⋯(−(n −1))=(−1)n−1(n −1)!.【方法3】排除法,令n =2,则f (x )=(e x −1)(e 2x −2)f ′(x )=e x (e 2x −2)+2e 2x (e x −1)f ′(0)=1−2=−1则(B)(C)(D)均不正确综上所述,本题正确答案是(A )【考点】高等数学—一元函数微分学—导数和微分的概念(3)设函数f(t)连续,则二次积分∫dθπ20∫f(r 2)rdr 22cos θ= (A )∫dx 20∫√x 2+y 2f(x 2+y 2)dy √4−x 2√2x−x 2(B) ∫dx 20∫f(x 2+y 2)dy √4−x 2√2x−x 2。
2012年考研数学三真题

2012年考研数学三真题2012年考研数学三真题一、选择题1.已知当x→0时,函数A k=1,c=4B k=a, c=-4C k=3,c=4D k=3,c=-42.A B C D03.设是数列,则下列命题正确的是A若收敛,则收敛B若收敛,则收敛C若收敛,则收敛D若收敛,则收敛4.设A I<J<KB I<K<JC J<I<KD K<J<I5.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一行得单位矩阵。
记则A=A B C D14.设二维随机变量(X,Y)服从,则三、解答题15.求极限16.已知函数具有连续的二阶偏导数,是的极值,。
求17.求18.证明恰有2实根。
19.在有连续的导数,,且,,求的表达式。
20.,,不能由,,线性表出, 求;‚将,,由,,线性表出。
21.A为三阶实矩阵,,且(1)求A的特征值与特征向量;(2)求A。
22.X01P1/32/3Y-101P1/31/31/3求:(1)(X,Y)的分布;(2)Z=XY的分布;(3)23.(X,Y)在G上服从均匀分布,G由x-y=0,x+y=2与y=0围成。
(1)求边缘密度;(2)求。
答案:一选择题CBABBCDD二填空题9. 10. 11.2x+y=012. 13. 14.三解答题15.解:原式=16.解:由于是的极值,可知故18.证明:19.解:21.解:1)22.解:Y-101X01/301/3 01/301/31/3 11/31/31/3Z-101P1/31/31/323.解:如图。
2012考研数学三真题及答案解析

,
1 0
a 0 0 1
0
(Ⅰ)计算行列式 A ;
(Ⅱ)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解.
1 0 1
(21)已知
A
0 1
1 0
1 a
,二次型
f
x1,
x2 ,
x3
xT
AT A x 的秩为 2,
0
a 1
(Ⅰ)求实数 a 的值;
(Ⅱ)求正交变换 x Qy 将 f 化为标准形.
(13)设 A 为 3 阶矩阵, A 3 , A* 为 A 的伴随矩阵。若交换 A 的第 1 行与第 2 行得矩 阵 B ,则 BA*
(14)设 A 、 B 、 C 是随机事件, A 与 C 互不相容, P( AB) 1 , P(C) 1 ,则 P( AB | C)
2
3
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说 明、证明过程或演算步骤.
0
2
0
0 0 1
(7)设随机变量 X 与 Y 相互独立,且都服从区间(0.1)上的均匀分布,则
P X 2 Y 2 1 ( )
(A) 1 4
(B) 1 2
(C) 8
(D) 4
(8)设 X1, X 2 , X 3 , X 4 为来自总体 N(1, 2 ) ( 0) 的简单随机样本,则统计量
4
2 2
2
(10)
dy dx
xe
(ln
x 1)
xe
1 e
【分析】本题主要考查复合函数求表达式及复合函数求导数。先利用分析法得到
y f ( f (x)) 的表达式,再求导数,或直接根据分段函数的定义用复合函数求导法求导
2012年考研数学三真题及答案

2012年考研数学三真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)曲线y=x 2+xx2−1渐近线的条数为(A)0 (B)1 (C)2 (D)3 【答案】C。
【解析】由limx→+∞y=limx→+∞x2+xx2−1=1=limx→−∞y=limx→−∞x2+xx2−1,得y=1是曲线的一条水平渐近线且曲线没有斜渐近线;由limx→1y=limx→1x2+xx2−1=∞得x=1是曲线的一条垂直渐近线;由limx→−1y=limx→−1x2+xx2−1=12得x=−1不是曲线的渐近线;综上所述,本题正确答案是C【考点】高等数学—一元函数微分学—函数图形的凹凸、拐点及渐近线(2)设函数f(x)=(e x−1)(e2x−2)⋯(e nx−n),其中n为正整数,则f′(0)=(A)(−1)n−1(n−1)! (B)(−1)n(n−1)!(C)(−1)n−1(n)! (D)(−1)n(n)!【答案】A【解析】【方法1】令g (x )=(e 2x −2)⋯(e nx −n),则f (x )=(e x −1)g (x ) f ′(x)=e x g (x )+(e x −1)g′(x )f ′(0)=g (0)=(−1)(−2)⋯(−(n −1)) =(−1)n−1(n −1)! 故应选A. 【方法2】由于f (0)=0,由导数定义知 f ′(0)=limx→0f(x)x =limx→0(e x −1)(e 2x −2)⋯(e nx −n)x=limx→0(e x −1)x∙lim x→0(e 2x −2)⋯(e nx −n)=(−1)(−2)⋯(−(n −1))=(−1)n−1(n −1)!. 【方法3】排除法,令n =2,则 f (x )=(e x −1)(e 2x −2)f ′(x )=e x (e 2x −2)+2e 2x (e x −1)f ′(0)=1−2=−1则(B)(C)(D)均不正确综上所述,本题正确答案是(A )【考点】高等数学—一元函数微分学—导数和微分的概念(3)设函数f(t)连续,则二次积分∫dθπ20∫f(r 2)rdr 22cos θ= (A )∫dx 2∫√x 2+y 2f(x 2+y 2)dy √4−x 2√2x−x 2 (B ) ∫dx 20∫f(x 2+y 2)dy √4−x 2√2x−x 2(C ) ∫dy 20∫√x 2+y 2f(x 2+y 2)dx √4−y 21+√1−y2 (D ) ∫dy 20∫f(x 2+y 2)dx √4−y 21+√1−y 2【答案】B 。
2012考研数学(三)真题及答案详解

2012年全国硕士研究生入学统一考试数学三试题解析选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222() dx f x y dy+⎰(B)222() dx f x y dy+⎰(C)2221() dx x y dy+⎰⎰(D)2221() dx x y dy+⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C )1<α≤32(D )32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪===-= ⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中123c c c c ,,,为任意常数,则下列向量组线性相关的是()(A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪⎪⎝⎭,123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布() (A )N(0,1) (B )(1)t(C )2(1)χ(D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim (tan )x xx x π-→(10)设函数ln 1(),(()),21,1x dy x f x y f f x dx x x =⎧≥⎪=⎨-<⎪⎩求__(11)函数(,)z f xy=满足1(,)22lim0,x y f x y x y →→-+-=则(0,1)dz=_______.(12)由曲线4y x =和直线y x =及4y x =在第一象限中所围图形的面积为_______.(13)设A 为3阶矩阵,|A|=3,A*为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则|BA*|=________.(14)设A,B,C 是随机事件,A,C 互不相容,11(),(),23P AB P C ==则C P AB ()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos 4limxxx ee x-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线1y y ==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y (万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y (万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本.3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2xf x f x e'+=1)求表达式()f x2)求曲线的拐点22()()xy f x f t dt=-⎰(20)(本题满分10分)设100101010010010a a A b a a ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,(I )求|A|(II )已知线性方程组Ax b =有无穷多解,求a ,并求Ax b =的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y以及XY的分布律如下表所示:求(1)P(X=2Y);(2)cov(,)XY X Y Y -ρ与.(23)(本题满分10分)设随机变量X 和Y 相互独立,且均服从参数为1的指数分布,m in(,),=m ax(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.。
李永乐线性代数考研复习资料。复习提纲+经典例题解答

Page 6
ABC Amber CHM Conver t er Tr i al ver si on, ht t p: / / www. pr ocesst ext . com/ abcchm. ht ml
清华大学考研辅导强化班课程 《线性代数》
同理将Dn中ak2,ak3,… ,akn分别换成c2,c3,… ,cn 则记
而中
中的
是相同的。因此通过计算行列式 解:由以上分析有:
即可求出
Pa ge 1 2
ABC Amber CHM Conver t er Tr i al ver si on, ht t p: / / www. pr ocesst ext . com/ abcchm. ht ml
思路:本行列式元素的特点:每一行与第一行只有两个元素不同,因 丝山 谝恍械模ǎ?)倍分别加到其它各行上。 小结:①对于箭头形行列式,总是用主对角线元素去化第1列(或第1 校 怪 晌 希ㄏ拢┤ 切涡辛惺健R蛭 弥鞫越窍咴 厝セ 闶 ,后边的化零过程不会破坏前面已化成的零元素(请读者思考,为什 从姓饷春玫慕峁 湓 蚴鞘裁矗浚 ②例1.6中,将D中第1列元素化为0(a 11除外)与化第1行元素为0,其难度相同,但对例1.7化第1列元素为0 比化第1行元素来得简便,读者可仔细揣摩其中的区别。
例1.11
例1.12
思路:数字较大,直接计算麻烦。观察可知其第2列与第1 列相差不大,第3列与第2列的3倍相近。 例1.13
本题行列式中没有元素1,若直接化成上(下)三角形, 突岢鱿址质 虼讼冉 ?行的(-1)倍加到第1行,得 ½a11=-1,然后再化零。 (七)、利用行列式是一个多项式,可以分解因式的性质 来计算行列式。 若f(x)是x的一个多项式,显然当f(a)=0时,f(x)应有(x -a)的因式,如f(x)=x2-5x+6,则f(2)=0,f(3)=0,故f (x)=K(x-2)(x-3),再利用x=x0可求出K, 或用某个特定的xm项对比系数定出K。 例1.14
2012研究生入学考试数三真题答案

2012年全国硕士研究生入学统一考试数学三试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】:C 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直的22l i m 11x x x x →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2)【答案】:C【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+--- 所以'(0)f =1(1)!n n -- (3)【答案】:(B ) 【解析】:由22yxx +≤解得y 的下界为22xx -,由222≤+y x 解得y 的上界为24x -.故排除答案(C )(D ). 将极坐标系下的二重积分化为-X 型区域的二重积分得到被积函数为)(22y x f +,故选(B ). (4)【答案】:(D )【解析】:考察的知识点是绝对收敛和条件收敛的定义及常见的p 级数的收敛性结论.∑∞=-11sin)1(i nnn α绝对收敛可知23>α;∑∞=--12)1(i nnα条件收敛可知2≤α,故答案为(D )(5)【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。
故选(C )(6)【答案】:(B ) 【解析】:100110001Q P ⎛⎫⎪= ⎪ ⎪⎝⎭,则11100110001Q P --⎛⎫⎪=- ⎪ ⎪⎝⎭,故111001001001100111011011011101001001012012Q AQ P AP --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-=-= ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选(B )。