七年级下数学第三次月考试卷%5b原创%5dAlHKqU

合集下载

七年级下学期数学第三次月考试卷及答案

七年级下学期数学第三次月考试卷及答案

七年级下学期数学第三次月考试卷一、选择题(共10小题,每小题3分,共30分)1.下列汽车标志中可以看作是由某图案平移得到的是()A B C D2.∠1、∠2是邻补角的为()A B C D3.下列方程组中是二元一次方程组的是()A.⎩⎨⎧=+=+1487764zxyxB.⎪⎪⎩⎪⎪⎨⎧=-=+211342yxyx C.⎩⎨⎧=+=321yxxyD.⎪⎪⎩⎪⎪⎨⎧=+=+422652yxyx4.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上.若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°4题图 6题图 8题图5.若⎩⎨⎧-==12yx是关于x、y的二元一次方程ax+by-5=0的一组解,则2a-b-2的值为()A.-3 B.3 C.-7 D.76.如图,下列条件中不能判断AB∥CD的是()A.∠1+∠3=180°B.∠1=∠2 C.∠1+∠2=180° D.∠1=∠47.下列命题是真命题的是()A.互补的角是邻补角B.内错角相等C.过一点,有且只有一条直线与这条直线平行D.在同一平面内,已知直线a⊥b,直线b⊥c,则直线a∥c8.将一张长方形纸条ABCD沿EF折叠后点B、A分别落在B′、A′位置上,FB′与AD的交点为G.若∠DGF=100°,则∠FEG的度数为()A.40°B.45°C.50°D.55°9.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤.设有x 人、y 两银(古代1斤等于16两),则所列方程组正确的是( )A .⎩⎨⎧=+=-y x y x 8877B .⎩⎨⎧=-=-y x y x 8877C .⎩⎨⎧=+=+y x y x 8877D .⎩⎨⎧=-=+y x y x 8877 10.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人二、填空题(本大题共5个小题,每小题4分,共20分)11.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是___________________________12.如图,AD ∥BC ,∠C =30°,∠2=2∠1,则∠2的度数是____________13.如图,将周长为14的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于___________11题图 12题图 13题图14.在同一平面内,两条直线的位置关系只有两种 , .15. 设m是的整数部分,n是的小数部分,则2m ﹣n= .三、解答题(一)(本大题共5个小题,每小题6分,共30分)16.解二元一次方程组:⎩⎨⎧-=--=+ ②y x ①y x 5231217.解三元一次方程组:⎪⎩⎪⎨⎧=-+=+-=+-③z y x ②z y x ①z y x 132723343218.填空,并在后面的括号中填理由:如图,已知∠B +∠E =∠BCE ,求证:AB ∥DE证明:如图,过点C 作CF ∥AB∴∠B =∠_______( )∵∠B +∠E =∠BCE即∠B +∠E =∠1+∠2∴∠E =∠_______∴_______∥_______( )∵AB ∥CF ,____________(已证)∴_______∥_______( )19.若关于x 、y 的方程组⎩⎨⎧--=++=-4525223k y x k y x 的解x 、y 互为相反数,求k 的值20.如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB=60°,求∠EDC 的度数.四、解答题(二)(本大题共5个小题,每小题8分,共40分)21..已知 A D ⊥BC ,FG ⊥BC ,垂足分别为 D 、G ,且∠1=∠2.求证:∠BDE=∠C22.如图,直线AB ,CD 相交于点O ,∠DOE ︰∠BOE =3︰1,OF 平分∠AOD ,∠AOC =∠AOF -30°,求∠EOF ;23.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?24.如图所示,已知∠1+∠2=180°,∠B=∠3,DE和BC平行吗?如果平行,请说明理由.25.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°(1) 求证:AB∥CD(2) 如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E七年级下学期数学第三次月考参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共5小题,每小题3分,共15分) 11.垂线段最短12.100° 13.16 14. 平行,相交 15.6-5三、解答题(共5题,共35分)16.解:由①×2得4X+2Y+-2 ③③+②得X=-1把X=-1代入得Y=1所以原方程组的解为⎩⎨⎧=-=11y x 17解:③×2-①得7Y-10Z=-1④③×3-②得8Y-10Z=-4⑤⑤-④得Y=-3把Y =-3代入④ 得Z=-2把Y=-3 Z=-2代入③ 得X=1所以原方程组的解⎪⎩⎪⎨⎧-=-==231z y x18.解:1,两直线平行,内错角相等2DE 、CF 、内错角相等,两直线平行DE ∥CFAB 、DE 、平行于同一条直线的两条直线平行19.解:根据题意得因为X 、Y 互为相反数,所以X=-Y方程可变为⎩⎨⎧--=+=-43525k y k y解得⎩⎨⎧-==35y k所以K 的值为520.解: ∵DE ∥BC∴∠EDC=∠DCB∵CD 是∠ACB 的平分线∴∠DCB=∠ACD=1/2∠ACB∵∠ACB=60°∴∠EDC=∠DCB=30°21.解:22.解:∵OF 平分∠AOD∴∠AOF=∠DOF=1/2∠AOD∵∠AOD+∠AOC=180∠AOC=∠AOF-30∴∠AOF=∠DOF=70∵∠DOE:∠BOE=3:1∠AOC=∠DOB∴∠DOE=30∴∠EOF=∠DOF +∠DOE=70+30=10023.解:设A 饮料生产了X 瓶,B 饮料生产了Y 瓶。

七年级下第三次月考数学试卷含解析-(苏科版)

七年级下第三次月考数学试卷含解析-(苏科版)

七年级下第三次月考数学试卷含解析-(苏科版)一、选择题(共6小题,每小题3分,满分18分)1.如图,a∥b,∠1=130°,则∠2等于()A.130°B.50° C.60° D.120°2.下列计算正确的是()A.a+2a2=3a3 B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a63.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>05.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个二、填空题:(本大题共10小题,每小题3分,共30分)7.若0.0002014用科学记数法表示为2.014×10n,则n的值为.8.一个n边形的内角和是1800°,则n= .9.命题“若a>0,b>0,则a+b>0”这个命题是命题(填“真”或“假”).10.因式分解:﹣3m2+6m﹣3= .11.若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为.12.已知m x=1,m y=2,则m x+2y= .13.如图,在△ABC中,∠A=65°,若剪去∠A得到四边形BCDE,则∠1+∠2= .14.关于x、y的方程组,则x+y的值为.15.已知二元一次方程x﹣y=1,若y的值大于﹣2,则x的取值范围是.16.若不等式组无解,则符合条件的自然数m的值有.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.计算:﹣3101×(﹣)100﹣(π﹣3)0+(﹣)﹣2.18.先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.19.解方程组:.20.(16分)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.(2)解不等式组:,把解集在数轴上表示出来,并写出不等式组的所有整数解.21.(1)如图,点A、B、C、D在一条直线上,填写下列空格:∵EC∥FD(已知),∴∠F=∠().∵∠F=∠E(已知),∴∠=∠E(),∴∥().(2)说出(1)的推理中运用了哪两个互逆的真命题.22.(1)设a+b=2,a2+b2=10,求(a﹣b)2的值;(2)观察下列各式:32﹣12=4×2,42﹣22=4×3,52﹣32=4×4,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.23.求证:平行于同一条直线的两条直线平行.24.)已知,关于x,y的方程组的解满足x>y>0.(1)求a的取值范围;(2)化简|a|﹣|2﹣a|.25.某商场用18万元购进A、B两种商品,其进价和售价如下表:(2)若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?26.(12分)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.2015-2016学年江苏省泰州市兴化市顾庄学区三校七年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.如图,a∥b,∠1=130°,则∠2等于()A.130°B.50° C.60° D.120°【考点】平行线的性质.【分析】先根据补角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=130°,∴∠2=180°﹣130°=50°.∵a∥b,∴∠2=∠3=50°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.2.下列计算正确的是()A.a+2a2=3a3 B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D【点评】此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【考点】因式分解的意义.【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选A.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心原点的区别是解答此题的关键.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【考点】命题与定理.【分析】先写出命题的逆命题,再对逆命题的真假进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个【考点】三角形三边关系.【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.【点评】此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c 的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二、填空题:(本大题共10小题,每小题3分,共30分)7.若0.0002014用科学记数法表示为2.014×10n,则n的值为﹣4 .【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002014=2.014×10﹣4,则n=﹣4.故答案为:﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.一个n边形的内角和是1800°,则n= 12 .【考点】多边形内角与外角.【分析】根据多边形内角和定理即可列方程求解.【解答】解:根据题意得180(n﹣2)=1800,解得:n=12.故答案是:12.【点评】本题考查了多边形的内角和定理,题目较简单,只要结合多边形的内角关系来寻求等量关系,构建方程即可求解.9.命题“若a>0,b>0,则a+b>0”这个命题是真命题(填“真”或“假”).【考点】命题与定理.【专题】常规题型.【分析】根据两个正数的和依然为正数可判断命题为真命题.【解答】解:若a>0,b>0,则a+b>0”,这个命题是真命题.故答案为:真.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.因式分解:﹣3m2+6m﹣3= ﹣3(m﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据完全平方公式即可得出结论.【解答】解:原式=﹣3(m2﹣2m+1)=﹣3(m﹣1)2.故答案为:﹣3(m﹣1)2.【点评】本题考查的是提公因式法与公式法的综合运用,在解答此类题目时要注意各种运算方法的灵活应用.11.若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为 2 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.【解答】解:(x+k)(x﹣2),=x2﹣2x+kx﹣﹣k,=x2+(k﹣2)x﹣2k,∵不含有x的一次项,∴k﹣2=0,解得k=2.故答案为:2.【点评】本题考查了多项式乘多项式的运算法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.已知m x=1,m y=2,则m x+2y= 4 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先求出(m y)2=22=4,再利用m x+2y=m x•(m y)2求解.【解答】解:∵m y=2,∴(m y)2=22=4,∵m x=1,∴m x+2y=m x•(m y)2=1×4=4故答案为:4.【点评】本题考查了积的乘方的性质,熟记运算性质并理清指数的变化是解题的关键.13.如图,在△ABC中,∠A=65°,若剪去∠A得到四边形BCDE,则∠1+∠2= 245°.【考点】多边形内角与外角;三角形内角和定理.【分析】根据三角形内角和为180度可得∠B+∠C的度数,然后再根据四边形内角和为360°可得∠1+∠2的度数.【解答】解:∵△ABC中,∠A=65°,∴∠B+∠C=180°﹣65°=115°,∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣115°=245°,故答案为:245°.【点评】此题主要考查了三角形内角和,关键是掌握三角形内角和为180°.14.关于x、y的方程组,则x+y的值为﹣1 .【考点】解二元一次方程组.【分析】方程组的两个方程相加,再两边都除以3,即可求出答案.【解答】解:,①+②得:3x+3y=﹣3,x+y=﹣1,故答案为:﹣1.【点评】本题考查了解二元一次方程组的应用,主要考查学生能否选择适当的方法求出结果,题目比较好,难度适中.15.已知二元一次方程x﹣y=1,若y的值大于﹣2,则x的取值范围是x>﹣1 .【考点】解一元一次不等式.【分析】先求出y=x﹣1,然后根据y的值大于﹣2,列不等式求解.【解答】解:由题意得,y=x﹣1>﹣2,解得:x>﹣1.故答案为:x>﹣1.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.若不等式组无解,则符合条件的自然数m的值有0,1,2,3,4 .【考点】解一元一次不等式组.【分析】先求出不等式②的解集,再根据不等式①的解集合已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵解不等式②得:x≤,又∵不等式组无解,∴≤2,∴m≤4,∴符合条件的自然数m的值有0,1,2,3,4,故答案为:0,1,2,3,4.【点评】本题考查了解一元一次不等式组的应用,能求出关于m的不等式组是解此题的关键.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.计算:﹣3101×(﹣)100﹣(π﹣3)0+(﹣)﹣2.【考点】幂的乘方与积的乘方;实数的运算;零指数幂;负整数指数幂.【分析】结合幂的乘方与积的乘方、零指数幂和负整数指数幂的概念和运算法则进行求解即可.【解答】解:原式=[(﹣)×(﹣3)]100×(﹣3)﹣1+4=1×(﹣3)﹣1+4=﹣4+4=0.【点评】本题考查了幂的乘方与积的乘方、零指数幂和负整数指数幂的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.18.先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b)=4a2+4ab+b2﹣4a2+4b2﹣3ab﹣5b2=ab,当a=﹣1,b=2时,原式=﹣2.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行化简是解此题的关键.19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,由①×3+②×2,得13x=18+34,解得,x=4.把x=4代入①,得y=3.故原方程组的解为.【点评】本题考查的是解一元二次方程,熟知解一元二次方程的加减消元法和代入消元法是解答此题的关键.20.(16分)(2016春•兴化市校级月考)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.(2)解不等式组:,把解集在数轴上表示出来,并写出不等式组的所有整数解.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集;解一元一次不等式;解一元一次不等式组.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集,即可确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程,通过解该方程即可求得a的值.(2)求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.∴最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.(2),∵解不等式①得:x<4,解不等式②得:x≥3,∴不等式组的解集为3≤x<4,在数轴上表示不等式的解集为.∴整数解为:3【点评】本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(1)如图,点A、B、C、D在一条直线上,填写下列空格:∵EC∥FD(已知),∴∠F=∠ 1 (两直线平行,内错角相等).∵∠F=∠E(已知),∴∠ 1 =∠E(等量代换),∴AE ∥BF (内错角相等,两直线平行).(2)说出(1)的推理中运用了哪两个互逆的真命题.【考点】平行线的判定与性质.【专题】推理填空题.【分析】(1)由EC与FD平行,利用两直线平行内错角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】解:(1)∵EC∥FD(已知),∴∠F=∠1(两直线平行,内错角相等).∵∠F=∠E(已知),∴∠1=∠E(等量代换),∴AE∥BF(内错角相等,两直线平行),故答案为:1,(两直线平行,内错角相等),1,等量代换,(AE,BF),(内错角相等,两直线平行);(2)内错角相等,两直线平行与两直线平行,内错角相等.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)设a+b=2,a2+b2=10,求(a﹣b)2的值;(2)观察下列各式:32﹣12=4×2,42﹣22=4×3,52﹣32=4×4,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.【考点】完全平方公式;平方差公式.【专题】规律型.【分析】(1)将a﹣b=4两边平方,利用完全平方公式展开,把a2+b2=10代入计算求出2ab的值,原式利用完全平方公式展开后,把各自的值代入计算即可求出值;(2)观察一系列等式,得到一般性规律,验证即可.【解答】解:(1)因为a+b=2,a2+b2=10,所以由(a+b)2=a2+b2+2ab,得ab=﹣3,(a﹣b)2=a2﹣b2﹣2ab=10﹣2×(﹣3)=16;(2)规律:(n+2)2﹣n2=4(n+1)(n为正整数).验证:(n+2)2﹣n2=[(n+2)+n][(n+2)﹣n]=2(2n+2)=4(n+1).【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.23.(10分)(2015春•泰兴市期末)求证:平行于同一条直线的两条直线平行.【考点】平行线的判定.【专题】证明题.【分析】先写出已知、求证,作直线AB交a于A点,交b于B点,交c于C点,根据平行线的性质由a∥c 得∠1=∠2,由b∥c得∠2=∠3,则∠1=∠3,然后根据平行线的判定得到a∥b.【解答】已知:a∥c,b∥c.求证:a∥b.证明:作直线AB交a于A点,交b于B点,交c于C点,如图,∵a∥c,∴∠1=∠2,∵b∥c,∴∠2=∠3,∴∠1=∠3,∴a∥b.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.也考查了平行线的性质.24.已知,关于x,y的方程组的解满足x>y>0.(1)求a的取值范围;(2)化简|a|﹣|2﹣a|.【考点】解一元一次不等式组;二元一次方程组的解.【分析】(1)首先解不等式组,利用a表示出x,y的值,然后根据x>y>0,列不等式组求得a的范围;(2)根据a的范围,以及绝对值的性质即可化简.【解答】解:(1)解不等式得:,∵x>y>0,∴,解得:a>2;(2)|a|﹣|2﹣a|=a﹣(a﹣2)=2.【点评】本题考查了不等式组的解法与二元一次方程组的解法,正确解方程组是关键.25.某商场用18万元购进A、B两种商品,其进价和售价如下表:(2)若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;(2)根据题意列出不等式组,解答即可.【解答】解:(1)设购进A种商品x件,B种商品y件.根据题意得化简得,解得,答:该商场购进A种商品100件,B种商品60件;(2)设购进A种商品x件,B种商品y件.根据题意得:解得:,,,,,故共有5种进货方案5件,B种商品174件.【点评】此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【考点】坐标与图形性质;垂线;三角形的面积.【分析】(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.【解答】解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.【点评】本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.。

人教版数学七年级下册第三次月考试卷含答案

人教版数学七年级下册第三次月考试卷含答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。

七年级下学期第三次月考数学试题含解析

七年级下学期第三次月考数学试题含解析

七年级下学期第三次月考数学试题含解析一、选择题1.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2B.2-C.1D.1-2.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.4 3.二元一次方程2x+3y=15的正整数解的个数是()A.1个B.2个C.3个D.4个4.若二元一次方程组,3x y ax y a-=⎧⎨+=⎩的解是二元一次方程3570x y--=的一个解,则a为()A.3 B.5 C.7 D.9 5.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种6.方程组22{?23x y mx y+=++=中,若未知数x、y满足x-y>0,则m的取值范围是( )A.m>1 B.m<1 C.m>-1 D.m<-17.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A .;B .;C .;D .9.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩10.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.若m=m =________.14.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.15.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.16.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)17.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.18.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)19.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x<y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.24.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.25.阅读下列材料,然后解答后面的问题.已知方程组372041027x y zx y z++=⎧⎨++=⎩,求x+y+z的值.解:将原方程组整理得2(3)()203(3)()27x y x y zx y x y z++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x yx y z+=⎧⎨--+=-⎩,试求x+2y–z的值.26.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a 元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a 元收费,超过的部分按c 元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:(1)求a 、c 的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=,解得1a =. 故选C. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1,故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.B解析:B 【详解】 解:2x+3y=15, 解得:x=3152y -+, 当y=1时,x=6;当y=3时,x=3, 则方程的正整数解有2对. 故选:B4.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】 解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=, 解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.5.C解析:C 【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论. 【详解】设可以兑换m 张5元的零钱,n 张2元的零钱, 依题意,得:5m+2n =50, ∴m =10﹣25n . ∵m ,n 均为非负整数, ∴当n =0时,m =10; 当n =5时,m =8;当n =10时,m =6; 当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.7.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= .故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.9.C解析:C【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:4.512y xyx-=⎧⎪⎨-=⎪⎩,故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.A解析:A【解析】试题解析:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.二、填空题11.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.13.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.15.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭,所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.16.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④. 【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.17.320【解析】【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x ,再根据a 和x 的取值范围确定a 和x 的值,从而得到植树的数量。

七年级下学期第三次月考数学试卷(附带答案)

七年级下学期第三次月考数学试卷(附带答案)

七年级下学期第三次月考数学试卷(附带答案) 一.单选题。

(每小题4分,共48分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.下列运算正确的是()A.x3•x2=x6B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x23.一个数是0.0 000 007,这个数用科学记数法表示为()A.7×10﹣7B.7×10﹣6C.0.7×10﹣6D.0.7×10﹣74.下列说法正确的是()A.两点之间,直线最短B.过一点有一条直线平行于已知直线C.和已知直线垂直的直线有且只有一条D.在平面内过一点有且只有一条直线垂直于已知直线5.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°6.如图,下列能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠2(第6题图)(第12题图)7.下列不能用平方差公式进行计算的是()A.(m-n)(m+n)B.(﹣x-y)(x+y)C.(2x+y)(y-2x)D.(a+b-c)(a-b+c)8.若(a m b n)2=a8b6,则m2-2n的值是()A.10B.52C.20D.329.下列计算中,正确的是()A.﹣a(3a2+1)=﹣3a3+aB.(a+b)2=a2+b2C.(2a -3)(﹣2a -3)=9-4a 2D.(2a -b )2=4a 2-2ab+b 2 10.若3x =15,3y =5,则3x -y =( )A.5B.3C.15D.1011.若4x 2+mx+1是一个完全平方式,则m 的值是( ) A.4 B.8 C.±4 D.±812.通过下图面积的计算,验证一个恒等式,此等式是( )A.a 2-b 2=(a+b )(a -b )B.(a -b )2+4ab=(a+b )2C.(a -b )2=a 2-2ab+b 2D.(a+b )2=a 2+2ab+b 2 二.填空题。

七年级数学下学期第三次月考试题 3

七年级数学下学期第三次月考试题 3

顾庄学区四校2021-2021学年七年级数学下学期第三次月考试题〔考试时间是是:120分钟,满分是:150分〕一.选择题〔每一小题3分,一共18分〕〔请将答案写在答题卷上〕 1.一个多边形内角和是1080°,那么这个多边形是 (▲)A .六边形B .七边形C .八边形D .九边形 2.以下语句中,属于命题的是 (▲)A.两点之间,线段最短吗?B.在同一平面内,不相交的两条直线叫做平行线P 、Q3.以下各式中,计算正确的选项是…〔 ▲ 〕 A .633x x x =+ B.21x xx =÷- C.3332x x x =⋅ D.325)()(x x x =-÷-4.方程36x y +=的正整数解有 (▲) A .1组 B .2组 C .4组 D .无数组 5.以下命题是真命题的是 ( ▲ )1a =,那么a =1 B.同位角互补,两直线平行C.π不是无理数D.六边形的内角和等于720° 6.假设关于x 的不等式组0122x a x x ->⎧⎨->-⎩,有三个负整数解,那么a 的取值范围是〔▲〕.A.-4<a<-3B.-3<a ≤-2C.-4≤≤a ≤-2二.填空题〔每一小题3分,一共30分〕〔请将答案写在答题卷上〕 7.用科学计数法表示0.000000001= ▲ 。

8.假如a m=10,b n =10,那么=+n m 210 ▲ 。

9.当x___▲_____时,代数式61523--+x x 的值是非负数。

10.假设229x mx -+是一个完全平方式,那么m 的值是 ▲ .11.21x y =⎧⎨=⎩是方程26x ay +=的解,那么a = ▲ . “两直线平行,内错角相等〞的逆命题是 ▲ .13.命题“对顶角相等〞的条件是: ▲ ,结论是: ▲ .14.不等式组⎪⎩⎪⎨⎧->--≥-311312x x 的整数解是 ▲ .15.如图,AD 、BE 为ΔABC 两角平分线,那么图中∠1、∠2、∠C 之间的数量关系为 ▲ 。

七年级数学下册数学下期第三次月考试题试卷

七年级数学下册数学下期第三次月考试题试卷

2019-----2019 学 年 度 下 期 第 三 次 月 考 试 题七 年 级 数 学A 卷 (100分)一、选择题(每小题3分,共30分)362221.532nn x x m t t +=+=+=322下列计算中,正确的个数有()(1)2a-a=a ,(2),(3)3,(4)2x m tA.1个B.2个C.3个D.4个2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法( ) (A )带①去 (B )带②去 (C )带③去 (D )带①和②去57123512353.×/×.9?............6?..............6?............9?101010101010km s s A km B km C D km在天文学上,计算星球之间的距离通常用“光年”作单位,1光年即光在一年内通过的路程。

已知光的速度是3,一年约等于3,则一光年约等于()5.计算20052006.(0.125)(8)-- 的结果是( )A .8 B.-8 C.1D.-0.125学校班级 姓名考号密 封 线 内 请 勿 答 题7.若x为任意实数时,二次三项式26x cx-+的值都不小于0,则常数c满足的条件是( )A.c≥0B.c≥9C.c>0D.c>98.某年轻夫妇给他们1岁大的婴儿拼排3块分别写着”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或”北京2008”,则他们就给婴儿奖励,假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )A.12B. 13C. 14D.1610.把四位数先四舍五入到十位,所得的数y,再四舍五入到百位,所得的数z,再四舍五入到千位,恰好是2000,则x的最小值,最大值分别是( )A.1500,2400B.1450,2440C.1445,2444D.1444,2445二.填空题(每小题4分,共20分)11.有一个同学想给老师打电话,可他记不清号码的最后一位了,他随意拨了一个,恰好打通的概率是____________ 12.已知12(3)m m yx+-是关于x,y 的六次单项式,那么m 的值是_____________14.在比例尺为1:80000000的地图上,量得某地到北京的距离为6.4厘米,将实际距离用科学记数法表示为___________ 千米(保留2个有效数字)三、(每小题5分,共20分) 16.计算:0n n+1×÷().222n -为自然数17.计算03221×21(5)(3.2-)(1)30.132-----+---18.化简求值[(xy+2)(xy-2)-22x2y+4]÷(xy),其中x=39,y=-11319.已知m 、n 互为相反数,c 、d 互为倒数,m 的绝对值是3,若x=225m n ++3cd-m ,求2x -14(1-32x )-3x (2-2x )的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于都三中2017-2018学年度第二学期
七年级数学第三次月考试卷
(满分120分 完卷时间120分钟)
一、 细心选一选(每小题3分,共30分) 1.为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是( ) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台 2.下列命题为假命题的是( )
A .对顶角相等.
B .如果|x |=1,那么x =1.
C .若a b <,b c <,则a c <.
D .两直线平行,同位角相等. 3. 将3x ﹣2y =1变形,用含x 的代数式表示y ,正确的是( ) A .123y x +=
B .312x y -=
C .132x y -=
D .123
y
x -= 4. 如图,OB ⊥CD 于点O ,∠1=∠2,则∠2与∠3的关系是( )
A .∠2=∠3
B .∠2与∠3互补
C .∠2与∠3互余
D .不确定
5. 16的算术平方根是( )
A .4
B .4±
C .2
D .2± 6. 不等式5-2x ≥x -4的非负整数解有( )
A .1个
B .2个
C .3个
D .4个 7. 点P (m +3,m +1)在x 轴上,则点P 的坐标为( ) A .(2,0) B .(0,﹣2) C .(4,0) D .(0,﹣4)
8. 把不等式组10
10
x x +>⎧⎨
-≤⎩的解集表示在数轴上,下列选项正确的是( )
A .
B .
C.
D .
9. 已知实数a b <,则下列结论中,不正确的是( )
A . 44a b < B.35a b +<+ C.22a b -<- D.32a b -<- 10. 如图,已知AM ∥BN ,∠A =60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别
平分∠ABP 和∠NBP ,分别交射线AM 于点C ,D .则下列结论:
①∠CBD =60°
②∠PDB =∠PBD ③∠APB =2∠ADB ④ △BCD 的面积始终不变. 其中正确的结论的个数为( )
A .1个
B .2个
C .3个
D .4个
二、耐心填一填(每小题3分,共18分)
11. 若x 、y 为实数,且380x y -+
+=,则x y 的值为_________.
12. 若方程25x y +=的解也是方程24x y +=的解,则x y +=________.
13. 已知A 、B 两种型号的水笔单价分别为4元、6元,小明花费60元钱购买这两种水笔,共有 种不同的购买方案(每种型号水笔至少1支).
14. 如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,
余下部分绿化,道路的宽为2米,则绿化的面积为 m 2.
15.在平面直角坐标系内有点A (1,2),将点A 绕点P (4,3)旋转90°得到点B ,则点B 的坐标
为 ____ ___.
16. 现定义运算“&”,对于任意有理数a ,b ,满足2()
&2()a b a b a b a b a b -≥⎧=⎨-<⎩
,如5&3=2×5﹣3=7;
1&2 =1﹣2×2=﹣3.计算:2&(﹣1)= ;若x &3=5,则有理数x 的值为 . 三、用心做一做(本大题共5题,每小题6分,共30分)
17.计算(本题共2小题,每小题3分,计6分)
(1)已知2
(1)4x -=,求x 的值; (2)2
313(2)27-+---.
18. 解方程组12
43231
y x x y ++⎧=⎪
⎨⎪-=⎩ 19.解不等式组3312
183(1)x x x x -⎧+≥+⎪⎨⎪+<+-⎩ 20. 读句画图.
已知:线段AB 和∠MON ,按要求画图并标出相应字母. (1)用圆规在射线OM 上截取线段OP ,使OP=AB ;
(2)用量角器过点P 画射线OM 的垂线交射线ON 于点Q ;
(3)过点Q 画OM 的平行线QC ,若∠MON=40°,则∠OQC= °
.
(21题图)
21. 如图,∠1+∠2=180°,∠B =∠3,判断DE 与BC 的位置关系,并说明理由.
四、用心做一做(本大题共4题,每小题8分,计32分) 22. 已知:A (0,1),B (2,0),C (4,3)
(1)在坐标系中描出各点,并画出△ABC . (2)求△ABC 的面积;
(3)若点D 与点A 、B 、C 构成的四边形恰好为平行 四边形,直接写出符合条件的点D 的坐标.
23. 已知:如图,∠1=∠2,∠3=∠E ,∠ADC =∠E +20°. (1)求证:AD ∥BE ; (2)求∠2的度数.
24. 甲、乙二人分别制作28个蝴蝶结,已知乙单独制作7天不能完成,而甲单独制作不到7天
就已完成,且甲平均每天比乙多做2个.
(1)甲、乙平均每天各做多少个蝴蝶结?(答案取整数)
(2)在(1)的条件下,若乙先工作2天,甲才开始工作,那么甲工作几天,两人所做蝴蝶结数量相同?
25. 梓山某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植
的两类蔬菜的种植面积与总收入如下表: 种植户 种植A 类蔬菜面积(单位:亩) 种植B 类蔬菜面积(单位:亩) 总收入(单位:元)
甲 3 1 12500 乙
2
3
16500
说明:不同种植户种植的同类蔬菜每亩平均收入相等. (1)求A 、B 两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A 、B 两类蔬菜,为了使总收入不低于63000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
五、用心做一做(本大题共1题,计10分)
26.在平面直角坐标系中,O 为坐标原点,点A 坐标为(a ,2a —1),过点A 向x 轴作垂线,垂足
为点B ,连接OA .
(1)如图1,当a =4时,求△AOB 的面积;
(2)若点A 到两坐标轴的距离相等,试求点A 的坐标;
(3)在(1)的条件下,点M 从O 出发,沿y 轴的正半轴以每秒3.5个单位长度的速度运动,点N 从点B 出发以每秒2个单位长度的速度向x 轴负方向运动,点M 与点N 同时出发,设它们运动时间为t 秒.试判断以A 、M 、O 、N 为顶点的四边形的面积是否变化?若不变化,请求出其值;若变化,试说明理由;
x
y
–1–2–3–4–5–6123456
–1–2–3–4–5–6
123456
O x
y
O
A
B。

相关文档
最新文档