四川省成都市七年级下学期数学第一次月考试卷
四川省成都市成华区2020~2021学年七年级下册5月月考模拟测试卷(一)及答案解析

四川省成都市成华区2020~2021学年七年级下册5月月考模拟测试卷(一)及答案解析一、选择题(每题3分,共30分)1.(3分)水分子的直径为0.0000000004米,这个数用科学记数法表示为()米A.0.4×10﹣4B.﹣0.4×109C.4×10﹣10D.﹣4×10102.(3分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,43.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2B.(6x3)÷(2x2)=3x(x≠0)C.(x3)2=x5D.﹣3x(2x﹣4)=﹣6x2﹣12x4.(3分)下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形5.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.7.(3分)有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其余两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?()A.小刚 B.小明 C.同样大 D.无法比较8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.B.(1)(2)(3)C.C.(2)(3)(4)D.D.(4)(6)(1)9.(3分)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB 的长是()A.2.5 B.10 C.5 D.以上都不对10.(3分)如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°二、填空题(每题4分,共20分)11.(4分)定义运算“⊕”,其法则为a⊕b=a2﹣b2,则方程5⊕x=24的解是x=.12.(4分)化简:﹣x2(6x2﹣2x+1)=.13.(4分)在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC= .14.(4分)如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C= .15.(4分)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.三、解答题(共50分)16.(10分)化简求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=25.17.(10分)如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=.18.(10分)从1名男生和2名女生中随机抽取参加“我爱我校”演讲赛的学生.(1)求抽取1名,恰好是男生的概率;(2)先画树状图或列表,再求抽取2名,恰好是1名女生和1名男生的概率.19.(10分)如图13,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠FCD的度数.20.(10分)在△ABC 中,∠ACB =90°,AC =BC ,直线经过顶点C ,过A ,B 两点分别作的垂线AE ,BF ,垂足分别为E ,F.(1)如图1当直线不与底边AB 相交时,求证:EF =AE +BF.(2)将直线绕点C 顺时针旋转,使与底边AB 相交于点D ,请你探究直线在如下位置时,EF 、AE 、BF 之间的关系,①AD >BD ;②AD =BD ;③AD <BD.l l l l l l图1四川省成都市成华区2020~2021学年七年级下册5月月考模拟测试卷(一)及答案解析一、选择题(每题3分,共30分)1.(3分)水分子的直径为0.0000000004米,这个数用科学记数法表示为()米A.0.4×10﹣4 B.﹣0.4×109 C.4×10﹣10 D.﹣4×1010【解答】解:0.0000000004=4×10﹣10,故选:C.2.(3分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.3.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2B.(6x3)÷(2x2)=3x(x≠0)C.(x3)2=x5D.﹣3x(2x﹣4)=﹣6x2﹣12x【考点】整式的除法;幂的乘方与积的乘方;单项式乘多项式.【分析】根据合并同类项的法则判断A;根据单项式除以单项式的法则判断B;根据幂的乘方的性质判断C;根据单项式乘多项式的法则判断D.【解答】解:A、3x3﹣5x3=﹣2x3,故本选项错误;B、(6x3)÷(2x2)=3x,故本选项正确;C、(x3)2=x6,故本选项错误;D、﹣3x(2x﹣4)=﹣6x2+12x,故本选项错误;故选B.【点评】本题考查了合并同类项,单项式除以单项式,幂的乘方,单项式乘多项式,都是基础知识,需熟练掌握.4.(3分)下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形【解答】解:任意买一张电影票,座位号是偶数是随机事件;打开电视机,正在播放动画片是随机事件;两角及一边对应相等的两个三角形全等是必然事件;三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件,故选:C.5.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm考点:函数关系式;常量与变量;函数值.分析:由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.解答:解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.点评:本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P (A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其余两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?()A.小刚 B.小明 C.同样大 D.无法比较【考点】平方差公式.【分析】可设三个木棒的长度分别为x﹣1、x、x+1,分别表示出两个图形的面积,再用作差法进行比较大小即可.【解答】解:设三个木棒的长度分别为x﹣1、x和x+1,则小明所摆正方形的面积为x2,小刚所摆长方形的面积为(x+1)(x﹣1),∵x2﹣(x+1)(x﹣1)=x2﹣(x2﹣1)=x2﹣x2+1=1>0,∴x2>(x+1)(x﹣1),∴小明所摆的正方形的面积大于小刚所摆长方形的面积,故选B.【点评】本题主要考查平方差公式的应用,掌握平方差公式是解题的关键,注意作差法比较大小的应用.8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()E.(1)(5)(2)F.B.(1)(2)(3)G.C.(2)(3)(4)H.D.(4)(6)(1)【考点】全等三角形的判定.【分析】根据三角形全等的判定方法对各选项分析判断利用排除法求解.【解答】解:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.故选C.【点评】本题考查了全等三角形的判定,熟记三角形全等的判定方法是解题的关键.9.(3分)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB 的长是()A.2.5 B.10 C.5 D.以上都不对【思路点拨】由AB、ED均垂直于BD,即可得出∠ABC=∠EDC=90°,结合CD=CB、∠ACB=∠ECD即可证出△ABC≌△EDC (ASA),由此即可得出AB=ED=5,此题得解.【答案】C.【解析】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定定理(ASA).解决该题型题目时,熟练掌握全等三角形的判定定理是关键.10.(3分)如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°【答案】C;解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.二、填空题(每题4分,共20分)11.(4分)定义运算“⊕”,其法则为a⊕b=a2﹣b2,则方程5⊕x=24的解是x=1或﹣1 .【解答】解:根据题意,得:52﹣x2=24,解得:x=1或x=﹣1,故答案为:1或﹣1.12.(4分)化简:﹣x2(6x2﹣2x+1)=﹣2x4+x3﹣x2.【解答】解:原式=﹣2x4+x3﹣x2,故答案为:﹣2x4+x3﹣x2.13.(4分)在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC= 45°或135°.【考点】直角三角形的性质;三角形内角和定理.【专题】计算题.【分析】根据高的可能位置,有2种情况,如图(1),(2),通过证明△HBD≌△CAD得AD=BD后求解.【解答】解:有2种情况,如图(1),(2),∵∠BHD=∠AHE,又∠AEH=∠ADC=90°,∴∠DAC+∠C=90°,∠HAE+∠AHE=90°,∴∠AHE=∠C,∴∠C=∠BHD,∵BH=AC,∠HBD=∠DAC,∠C=∠BHD,∴△HBD≌△CAD,∴AD=BD.如图(1)时∠ABC=45°;如图(2)时∠ABC=135°.∵AD=BD,AD⊥BD,∴△ADB是等腰直角三角形,∴∠ABD=45°,∴∠ABC=180°﹣45°=135°,故答案为:45°或135°.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.做题时要考虑全面,相等两种情况.14.(4分)如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=56°.考点:平行线的性质.分析:根据内错角相等,两直线平行可得∠1=∠3=3∠2,再根据内角与外角的关系可得∠C=2∠2,然后可得答案.解答:解:∵AE∥DB,∴∠1=∠3=3∠2,∵∠2+∠C=∠3,∴∠2+∠C=3∠2,∴∠C=2∠2,∵∠2=28°.∴∠C=56°,故答案为:56°.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.15.(4分)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.【答案】8.解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8.三、解答题(共50分)16.(10分)化简求值:x(x+2y)﹣(x+1)2+2x,其中x=,y=25.【解答】解:原式=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1,当x=,y=25时,原式=2××25﹣1=2﹣1=1.17.(10分)如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC= 5 .【解答】解:(1)四边形AB′CD′如图所示;(2)S四边形ABCD=×6×3=9.(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.18.(10分)从1名男生和2名女生中随机抽取参加“我爱我校”演讲赛的学生.(1)求抽取1名,恰好是男生的概率;(2)先画树状图或列表,再求抽取2名,恰好是1名女生和1名男生的概率.【考点】列表法与树状图法.【分析】(1)由从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,故利用概率公式即可求得抽取1名,恰好是男生的概率;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取2名,恰好是1名女生和1名男生的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵有1名男生和2名女生,∴抽取1名,恰好是男生的概率为:;(2)画树状图得:∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况,∴抽取2名,恰好是1名女生和1名男生概率为:=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.19.(10分)如图13,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠FCD的度数.【思路点拨】由图可知∠CDF是Rt△CDF的一个内角,求∠CDF可先求出∠FCD,△CDB为直角三角形,所以可以求出∠BCD,而∠FCD=∠BCE-∠BCD.【答案与解析】在△ABC中,∠A = 40°,∠B = 72°,由三角形的内角和定理得:∠BCA=180°-72°-40°=68°又CE平分∠ACB,∴∠BCE=∠BCA=34°,在中,CD⊥AB于D,∠B = 72°∴∠BCD= 90°- 72°= 18°∴∠FCD=∠BCE-∠BCD=34°-18°=16°.即∠FCD =16°.【总结升华】这是三角形内角和定理在直角三角形中的应用,直角三角形两个锐角互余,所以在直角三角形中,已知一个锐角的大小,就可以求出另一个锐角的度数.20.(10分)在△ABC 中,∠ACB =90°,AC =BC ,直线经过顶点C ,过A ,B 两点分别作的垂线AE ,BF ,垂足分别为E ,F.(1)如图1当直线不与底边AB 相交时,求证:EF =AE +BF.(2)将直线绕点C 顺时针旋转,使与底边AB 相交于点D ,请你探究直线在如下位置时,EF 、AE 、BF 之间的关系,①AD >BD ;②AD =BD ;③AD <BD.【答案与解析】证明:(1)∵AE ⊥,BF ⊥,∴∠AEC =∠CFB =90°,∠1+∠2=90°∵∠ACB =90°,∴∠2+∠3=90°∴∠1=∠3。
七年级数学第一次月考数学试卷

七年级第一学期第一次月考数学试卷班级_______ 姓名___________一.选择题1. 31-的倒数是( )A. 31B. 3C. 31- D. -32.下列四个判断中错误的是( ) A 、21与5.0-互为相反数 B 、1+21与121-互为相反数C 、5+-与+5-互为相反数D 、0与0互为相反数 3.下列判断中,错误的是( )A 、2-是整数B 、0.14是分数C 、正数和负数统称有理数D 、223-是有理数 4.数轴上与原点距离小于4的整数点有A.3个B.4个C.6个D.7个5.一种面粉的质量标识为“2525.0±千克”,则下列面粉中合格的是( ) A 、24.70千克 B 、25.30千克 C 、25.51千克 D 、24.80千克6. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A.28 B.33 C.45 D.577.下列几种说法中,正确的是( )A.0是最小的数B.最大的负有理数是-1C.任何有理数的绝对值都是正数D.0没有倒数 8. 若两个有理数的和为负数,积为正数,则这两个有理数.A.都是正数B.一正一负C.都是负数D.不能确定 9. 下列说法中,正确的是()A. 在数轴上表示- a 的点一定在原点的左边B.一个数的相反数一定小于或等于这个数C. 有理数a 的倒数是21D.如果一个数的绝对值等于这个数的相反数,那么这个数是负数或010.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高( )A. 5mB. 10mC. 25mD. 35m 11.下列计算结果为1的是A .(+1)+(-2)B . (-1)-(-2)C .(+1)×(-1)D .(-2)÷(+2) 12.两个非零有理数的和为零,则它们的商是( ) A. 0 B. -1 C.+1 D.不能确定 二.填空题13.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为 .⒕用“>”、“<”填空:①-3.14_____-π; ②)3(___3----15.绝对值小于4的整数有 个,它们是 .16.绝对值等于它本身的数是 。
七年级下学期第一次月考数学试卷(含答案)

七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
七年级(下)第一次月考数学试卷

七年级(下)第一次月考数学试卷七年级(下)第一次月考数学试卷数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。
下面是店铺为大家搜索整理的七年级(下)第一次月考数学试卷,仅供大家学习参考。
七年级(下)第一次月考数学试卷篇1一、选择题(每题3分,共30分)1.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是( )A.①②B.①②③C.①②④D.①2.以为解的二元一次方程组是( )A. B. C. D.4.已知是方程kx﹣y=3的一个解,那么k的值是( )A.2B.﹣2C.1D.﹣15.方程组的解是( )A. B. C. D.6.“六一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装的x套,B型童装y套,依题意列方程组正确的是( )A. B.C. D.7.若方程mx+ny=6的两个解是,,则m,n的值为( )A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣48.已知,则a+b等于( )A.3B.C.2D.19.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.10.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )A.20B.15C.10D.5二、填空题(每题4分,共32分)11.如果x=﹣1,y=2是关于x、y的二元一次方程mx﹣y=4的一个解,则m= .12.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:.13.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.14.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的 .两根铁棒长度之和为55cm,此时木桶中水的深度是cm.15.方程组的解是.16.设实数x、y满足方程组,则x+y= .17.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.三、解答题19.解方程组:(1) ;20.已知方程组和有相同的解,求a、b的值.21.关于x,y方程组满足x、y和等于2,求m2﹣2m+1的值.22.浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?23.在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率= ×100%,全校优分率= ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.七年级(下)第一次月考数学试卷篇2一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一个是正确的,请将正确答案的代号填人答题卷中对应的表格内.1.(4分)在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个【解答】解:①时针运行是旋转,故此选项错误;②电梯上升,是平移现象;③火车直线行驶,是平移现象;④地球自转,是旋转现象;⑤电视机在传送带上运动,是平移现象.故属于平移变换的个数有3个.故选:C.2.(4分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A 错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.3.(4分)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个【解答】解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选:B.4.(4分)已知点P到x轴的距离为3,到y轴的距离为2,且在第二象限,则点P的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,2)【解答】解:∵点P到x轴的距离为3,到y轴的距离为2,且在第二象限,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.(4分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°【解答】解:如图所示(实线为行驶路线)A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.6.(4分)三条直线两两相交于同一点时,对顶角有m对;交于不同三点时,对顶角有n对,则m与n的关系是()A.m=n B.m>n C.m<n D.m+n=10【解答】解:因为三条直线两两相交与是否交于同一点无关,所以m=n,故选A.7.(4分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.8.(4分)下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个【解答】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C 错误,D、立方根是这个数本身的数共有三个,0,1,﹣1,故D正确.故选:D.9.(4分)下列运算中,错误的是()①=1,②=±4,③=﹣④=+=.A.1个B.2个C.3个D.4个【解答】解:①==,原来的计算错误;②=4,原来的计算错误;③=﹣=﹣1,原来的计算正确;④==,原来的计算错误.故选:C.10.(4分)请你观察、思考下列计算过程:因为11 2 =121,所以=11;因为111 2 =12321,所以=111;…,由此猜想=()【解答】解:∵=11,=111…,…,∴═111 111 111.故选:D.11.(4分)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.12.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠A DC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选:C.二、填空题(每题4分,共24分)请将答案直接写到对应的横线上.13.(4分)比较大小:﹣3<﹣2,>(填“>”或“<”或“=”)【解答】解:∵﹣<﹣,∴﹣3<﹣2.∵:∵2<<3,∴1<﹣1<2,∴<<1.故答案是:<;>.14.(4分)若点P(a+5,a﹣2)在x轴上,则a=2,点M(﹣6,9)到y轴的距离是6.【解答】解:根据题意得a﹣2=0,则a=2,点M(﹣6,9)到y轴的距离是|﹣6|=6,故答案为:2、6.15.(4分)大于﹣,小于的`整数有5个.【解答】解:∵1<2,3<4,∴﹣2<﹣<﹣1,∴大于﹣,小于的整数有﹣1,0,1,2,3,共5个,故答案为:5.16.(4分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.【解答】解:设其中一个角是x,则另一个角是180﹣x,根据题意,得x=(180﹣x)解得x=72,∴180﹣x=108;故答案为:72、108.17.(4分)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF 折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是120°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°﹣2∠EFG=140°,在图(3)中∠CFE=∠GFC﹣∠EFG=120°,故答案为:120°.18.(4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:2 3,3 3和4 3分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即2 3 =3+5;3 3 =7+9+11;4 3 =13+15+17+19;…;若6 3也按照此规律来进行“分裂”,则6 3 “分裂”出的奇数中,最大的奇数是41.【解答】解:由2 3 =3+5,分裂中的第一个数是:3=2×1+1,3 3 =7+9+11,分裂中的第一个数是:7=3×2+1,4 3 =13+15+17+19,分裂中的第一个数是:13=4×3+1,5 3 =21+23+25+27+29,分裂中的第一个数是:21=5×4+1,6 3 =31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以6 3 “分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.三、计算(总共22分)请将每小题答案做到答题卡对应的区域.19.(16分)计算:(1)利用平方根解下列方程.①(3x+1)2﹣1=0;②27(x﹣3)3=﹣64(2)先化简,再求值:3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy],其中x=3,y=﹣.【解答】解:(1)①(3x+1)2﹣1=0∴(3x+1)2=1∴3x+1=1或3x+1=﹣1解得x=0或x=﹣;②27(x﹣3)3=﹣64∴(x﹣3)3=﹣[来源:学|科|网]∴x﹣3=﹣∴x=;(2)3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy]=3x 2 y﹣(2xy﹣2xy+3x 2 y+xy)=3x 2 y﹣2xy+2xy﹣3x 2 y﹣xy=﹣xy当x=3,y=﹣时,原式=﹣3×(﹣)=1.20.(6分)已知5+的小数部分是a,5﹣的小数部分是b,求:(1)a+b的值;(2)a﹣b的值.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴a=5+﹣8=﹣3,b=5﹣﹣1=4﹣,∴a+b=(﹣3)+(4﹣)=1;a﹣b=(﹣3)﹣(4﹣)=2﹣7.四、解答题(56分)请将每小题的答案做到答题卡中对应的区域内.21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.[来源:Z*xx*]22.(8分)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.23.(8分)如果A=是a+3b的算术平方根,B=的1﹣a 2的立方根.试求:A﹣B的平方根.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.24.(8分)已知:如图,AB∥CD,∠1=∠2.求证:∠E=∠F.【解答】证明:分别过E、F点作CD的平行线EM、FN,如图∵AB∥CD,∴CD∥FN∥EM∥AB,∴∠3=∠2,∠4=∠5,∠1=∠6,而∠1=∠2,∴∠3+∠4=∠5+∠6,即∠E=∠F.25.(12分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?【解答】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.F的边长为(x﹣1)米,C的边长为,E的边长为(x﹣1﹣1);(2)∵MQ=PN,∴x﹣1+x﹣2=x+,x=7,x的值为7;(3)设余下的工程由乙队单独施工,还要x天完成.(+)×2+x=1,x=10(天).答:余下的工程由乙队单独施工,还要10天完成.26.(12分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)【解答】(1)证明:如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠C FP)]=×(360°﹣∠P),∴∠P+3∠Q=360°.(4)由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+n∠Q=360°.故答案为:∠P+n∠Q=360°.七年级(下)第一次月考数学试卷篇3一、填空题的倒数是____;的相反数是____;-0.3的绝对值是______。
七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
华师版七年级下学期第一次月考数学试卷,初一数学下册测试题(含答案与解析)

D.20 道
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
二.填空题(每题 3 分,共 24 分)
9.(3 分)若代数式 m2n3x﹣5 与 n4x﹣3m2 的和为 m2n3x﹣5,则 x=
.
第 1页(共 11页)
10.(3 分)在方程 2x+4y=7,用含 x 的代数式表示 y,则可以表示为
就会迟到 5 分钟.问他家到学校的路程是多少 km?设他家到学校的路程是 xkm,则据题
意列出的方程是( )
A.
B.
C.
D.
7.(3 分)一份数学试卷,只有 25 个选择题,做对一题得 4 分,做错一题倒扣 1 分,某同
学做了全部试卷,得了 70 分,他一共做对了( )
A.17 道
B.18 道
C.19 道
∴某同学共做对了 25﹣6=19 道,
故选:C.
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
【解答】解:根据题意(3*x)+(x*3)=14,
可化为:(3x+6)+(3x+2x)=14,
解得 x=1.
故选:B.
二.填空题(每题 3 分,共 24 分)
19.(10 分)把 2005 个正整数 1,2,3,4,…,2005 按如图方式排列成一个表: (1)如图,用一正方形框在表中任意框住 4 个数,记左上角的一个数为 x,则另三个数 用含 x 的式子表示出来,从小到大依次是 x+1 , x+7 , x+8 ; (2)当(1)中被框住的 4 个数之和等于 416 时,x 的值为多少? (3)(1)中能否框住这样的 4 个数,它们的和等于 324?若能,则求出 x 的值;若不能, 则说明理由.
七年级数学下册第一次月考试卷(附答案)

七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
2021-2022学年人教版七年级(下)第一次月考数学试卷(含答案)

七年级(下)第一次月考数学试卷一、选择题1.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各式中,正确的是()A.=±3B.=﹣0.4C.=﹣3D.=﹣3.(3分)下列4对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.(3分)在平面直角坐标系中,将三角形各顶点的纵坐标都减去5,横坐标保持不变,所得图形与原图形相比()A.向上平移了5个单位B.向下平移了5个单位C.向左平移了5个单位D.向右平移了5个单位5.(3分)点A(﹣3,0),以A为圆心,5为半径画圆交x轴负半轴的坐标是()A.(8,0)B.(0,﹣8)C.(0,8)D.(﹣8,0)6.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.(3分)已知y=1,则2x+3y的平方根为()A.2B.﹣2C.±2D.8.(3分)已知点O(0,0),点A(1,2),点B在x轴上,三角形OAB的面积为2,则点B的坐标为()A.(﹣2,0)或(2,0)B.(﹣1,0)或(2,0)C.(﹣2,0)D.(2,0)9.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣10.(3分)小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=5二、填空题11.(3分)剧院里5排2号可以用(5,2)表示,那么3排7号可以用表示.12.(3分)在实数3.1415927,,2﹣,,中,无理数的个数是个.13.(3分)由方程3x﹣2y﹣12=0可得到用x表示y的式子是.14.(3分)已知方程(a﹣3)x|a﹣2|+3y=1是关于x、y的二元一次方程,则a=.15.(3分)如果=2.872,=0.2872,则x=.16.(3分)已知线段MN=5,MN∥y轴,若点M坐标为(﹣1,2),则点N的坐标为.17.(3分)用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x块,单色地砖y块,则根据题意可列方程组为.18.(3分)甲、乙、丙三种物品,若购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,则甲、乙、丙各买3个共需元.三、解答题19.计算:(1)|﹣2|(2)已知(x﹣1)2﹣1=63,求x的值.20.解方程组:(1)(2)21.三角形ABC(记作△ABC)在方格中,顶点都在格点,位置如图所示,已知A(﹣3,2)、B(﹣4,﹣1).(1)请你在方格中建立直角坐标系,点C的坐标是;(2)把△ABC向上平移1个单位长度,再向左平移2个单位长度,请你画出平移后的三角形.22.若方程组中的x与3y互为相反数,求k的值.23.2017年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费7300元,从2018年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2018年处理的这两种垃圾数量与2017年相比没有变化,但要支付垃圾处理费19000元,求该企业2017年处理的餐厨垃圾和建筑垃圾各多少吨?24.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.25.据统计资料,甲乙两种作物的单位面积产量的比是1:2,现要把一块长200m,宽100m 的长方形土地分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?26.已知点P(a+2,b)到两个坐标轴的距离相等,将点P向左平移b+1个单位后得到的点到两个坐标轴的距离仍相等,求点P的坐标.27.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+=0(1)求a、b的值;(2)在x轴的正半轴上存在一点N,使△CBN的面积=△ABC的面积,求出点N的坐标;(3)作直线CM∥AB交y轴于M,点P从点B出发以每秒2个单位的速度向左运动,点Q从点C出发以毎秒1个单位的速度向右运动,P、Q两点同时开始运动且运动时间为t,当以P、Q、M、A为顶点的四边形面积等于4时,求t的值.七年级(下)第一次月考数学试卷参考答案一、选择题1.B;2.D;3.B;4.B;5.D;6.D;7.C;8.A;9.D;10.D;二、填空题11.(3,7);12.2;13.y=x﹣6;14.1;15.0.0237;16.(﹣1,﹣3)或(﹣1,7);17.;18.22.5;三、解答题21.(0,﹣1);24.(2,﹣2);3;3;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市七年级下学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2017·钦州模拟) 如图所示,直线a、b被直线c所截,∠1与∠2是()
A . 内错角
B . 同位角
C . 同旁内角
D . 邻补角
2. (2分)实数—2、0.3、、、-π中,无理数的个数是()
A . 2
B . 3
C . 4
D . 5
3. (2分)(2017·磴口模拟) 2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()
A . 0.042×107
B . 0.42×108
C . 4.2×109
D . 42×1010
4. (2分) (2019七下·谢家集期中) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是()
A . (5,﹣4)
B . (﹣1,﹣6)
C . (﹣3,10)
D . (7,3)
5. (2分)(-7)2的算术平方根是()
A . -
B .
C . 7
D . -7
6. (2分) (2018七下·深圳期中) 如图,已知 = ,那么()
A . AB//CD,理由是内错角相等,两直线平行.
B . AD//BC,理由是内错角相等,两直线平行.
C . AB//CD,理由是两直线平行,内错角相等.
D . AD//BC,理由是两直线平行,内错角相等.
7. (2分)如图所示,下列说法正确的是()
A . 若AB∥CD,则∠1=∠2
B . 若AD∥BC,则∠3=∠4
C . 若∠1=∠2,则AB∥CD
D . 若∠1=∠2,则AD∥BC
8. (2分) (2016八上·锡山期末) 已知0<a<2,则点P(a,a-2)在哪个象限()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
9. (2分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG 的面积之比为()
A . 9:4
B . 3:2
C . 4:3
D . 16:9
10. (2分)在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。
最近一次台风的中心位置是P(-1,0),其影响范围的半径是4万米,则下列四个位置中受到了台风影响的是()
A . (4,0)
B . (-4,0)
C . (2,4)
D . (0,4)
二、填空题 (共8题;共12分)
11. (1分) (2016八下·凉州期中) (﹣4)2的算术平方根是________,的平方根是________.
12. (1分) (2019七下·景县期末) 在体育课上某同学立定跳远的情况如图10所示,直线l表示起跳线在测量该同学的实际立定跳远成绩时,应测量图中线段 ________的长,理由是________ 。
13. (5分) (2018七下·惠城期末) 在实数﹣2、0、﹣1、2、中,最小的是________.
14. (1分) (2019七下·江门月考) 命题“如果a2=b2 ,那么a=b”是________(填写“真命题”或“假命题”).
15. (1分) (2019九上·镇江期末) 在平面直角坐标系中,点A、B、C的坐标分别为、、,点E是的外接圆上一点,BE交线段AC于点D,若,则点D的坐标为________.
16. (1分) (2017八下·丰台期中) 在平面直角坐标系中,点在第四象限,则实数的取值范围是________.
17. (1分)(2018·南京) 如图,五边形是正五边形,若,则 ________.
18. (1分) (2019七下·浦城期中) 如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于________cm.
三、解答题 (共6题;共38分)
19. (10分)(2014·嘉兴) 计算下列各题
(1)计算: +()﹣2﹣4co s45°;
(2)化简:(x+2)2﹣x(x﹣3)
20. (10分) (2016八上·锡山期末) 计算题
(1)计算:
(2)求(x-2)3=27中x的值.
21. (6分) (2019九上·锦州期末) 如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.
(1)点A的坐标是________;点C的坐标是________;
(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;
(3)△A1B1C1的面积为________.
22. (1分) (2020八上·辽阳期末) 如图,直线m∥n,将含有45°角的三角板ABC的直角顶点(放B直线n 上),则∠1+∠2=________
23. (6分) (2019七下·遵义期中) 阅读下面文字,然后回答问题.
大家知道是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于
的整数部分是1,将减去它的整数部分,差就是它的小数部分,因此的小数部分可用﹣1表示.
由此我们得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.
请解答下列问题:
(1)如果=a+b,其中a是整数,且0<b<1,那么a=________,b=________;
(2)如果﹣=c+d,其中c是整数,且0<d<1,那么c=________,d=________;
(3)已知2+ =m+n,其中m是整數,且0<n<1,求|m﹣n|的值.
24. (5分) (2018八上·青山期末) 如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)求证:AD∥BC;
(2)求∠DBE的度数;
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共12分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共6题;共38分)
19-1、
19-2、20-1、
20-2、21-1、
21-2、21-3、22-1、23-1、23-2、
23-3、
24-1、24-2、
24-3、。