高中数学解题方法谈:构造差函数 强化恒成立

合集下载

灵活运用构造函数法,提升证明不等式的效率

灵活运用构造函数法,提升证明不等式的效率
x1 + x 2
设 0 < x1 < x 2 ,
æx
ö
2 ç 1 - 1÷
x1 2 ( x1 - x 2 )
è x2
ø
=
③ 可变形为 ln <
④,
x2
x1
x1 + x 2
+1
x2
令 t=
x1
( 0 < t < 1 ),
x2
可得 h( t ) = ln t -
2
2 ( t - 1)

t+1
( t - 1)
即需证
数学篇
42
首先将要证明的不等式进行移项、作差,使所有
则函数 h( x) 单调递减且 h(1) = 0 ,
1 ·h( x) > 0
所以当 x ∈ ( 0,1) 时,h( x) > 0 ,

1 - x2
1 ·h( x) > 0
当 x ∈ (1, +∞) 时,h( x) < 0 ,

1 - x2
综上所述,当 x > 0 且 x ≠ 1 时,
所以当 x > 0 时, h′(x) < 0 , h(x) 单调递减,
1
1
1
1 ö,
因为 >
,所以 hæ ö < hæ
n n+1
è n ø è n + 1ø
1 ö > n ln æ1 + 1 ö
故 (n + 1)ln æ1 +
.

n + 1ø
è
è
运用函数最值法证明数列不等式时,同学们需依

恒成立问题常见类型及其解法

恒成立问题常见类型及其解法

设 f x x 3 x 7
可求得 f x 10
lg x 3 x 7 lg10 1
a 1
三. 变换主元法:
例5.对任意a [-1,1],不等式x 2 (a - 4) x 4 - 2a 0 恒成立,求 的取值范围 x . 解:原问题转化为对任 a [-1,1], 意
m - 2 0 0 (5) 4m ,解得1 m 2 2( m - 2) 0 f ( 0) 0 y
y
m - 2 0 (6) ,无解 f (0) 0
综上所述, a 3 1
O
x
x
4.已知函数f ( x) (m - 2) x 2 - 4mx 2m - 6的图像与 x轴的负半轴有交点,求 实数m的取值范围 .
不等式( x - 2)a x - 4 x 4 0恒成立
2
令f (a) ( x - 2)a x - 4 x 4
2
f (1) 0 解得x 1或x 3. f (-1) 0
x的取值范围为 ,1) (3,). (-
数形结合法 4.数形结合法
解:因为ax2 1 1,所以- 1 - x ax2 1 - x (1)当x 0时, 0 1恒成立. -1
1 1 a- 2 1 1 1 1 x x (2)当x (0,1]时, 2 - a 2 - , 即 在(0, ,1]上恒成立. x x x x a 1 - 1 x2 x 1 令t 1, x 1 1 1 1 - 2 - 化为关于t的函数u -t 2 - t -(t ) 2 ,u max -2 x x 2 4 1 1 1 2 1 2 - 化为关于t的函数v t - t (t - ) - ,vmin 0 2 x x 2 4 要是不等式恒成立,应 u max a vmin,故 - 1 a 0 有 综上所述,如果 [0,1]时, ( x) 1恒成立,则- 2 a 0 x f

高中数学恒成立问题的解题方法和思路

高中数学恒成立问题的解题方法和思路

课程篇随着高中数学知识点的难度不断增加,很多学生在恒成立问题的解题方法上都了解得不够透彻,其中恒成立问题所涉及的数学知识范围也比较广,例如:一次函数、二次函数。

因为高中数学知识涉及的内容和范围非常大,所以在恒成立问题解决方面所涉及的思路也非常多,这让很多学生遇到恒成立问题相关题型非常难解,从而影响了数学整体成绩。

一、掌握高中数学恒成立问题的解题方法和思路的意义在数学学习中恒成立的问题主要出现在函数知识点中,即在已知的条件下,无论在题型中变量如何变化,其结果和命题都能够成立,这就是恒成立。

恒成立问题在数学学习中主要考查的就是学生抽象思维能力、对问题的推理能力以及对相应数形结合思想的应用等,所以恒成立问题能够最大限度地提高学生的综合学习能力。

学生在数学学习的过程中主要是依靠学生的逻辑思维解答相应的题目,这就是数学与高中其他科目不同的地方,所以学生若是想要提高数学的成绩,就需要寻找有效的解题方式和思路,并在解答的过程中灵活运用相应的公式,这样就能解决恒成立的相关问题。

二、高中数学恒成立问题的解题方法和思路1.一次函数的恒成立下面将利用案例来解释一次函数的恒成立问题:问题:一次函数f(x)=(n-6)x+2n-4,在函数中对任意值x∈[-1,1],f(x)>0恒成立,就其实数n的取值范围。

解题分析:在f(x)=(n-6)x+2n-4的图象中可以得知,若对x∈[-1,1],f(x)>0恒成立,则f(-1)>0且f(1)>0,由此可以得出n>103,由此可以解得实数n的取值范围是[103,+∞]。

本次解题的主要思想就是利用一次函数f(x)=(n-6)x+2n-4的图象,这样在不等式中,就可以直接化解为一元一次不等式组的问题,从而也为学生提供了更加便捷的思路,让整个考题更加简单,思路更加清晰。

2.二次函数的恒成立在高中数学教学过程中,二次函数的知识点是非常重要的,在数学考试中也占有非常大的比例,所以教师在进行二次函数的恒成立解析过程中,需要更加细致地进行讲解。

高中数学解题方法系列:函数中“恒成立问题”的类型及策略

高中数学解题方法系列:函数中“恒成立问题”的类型及策略

高中数学解题方法系列:函数中“恒成立问题”的类型及策略一、恒成立问题地基本类型在数学问题研究中经常碰到在给定条件下某些结论.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立。

某函数地定义域为全体实数R 。

●某不等式地解为一切实数。

❍某表达式地值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数地性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生地综合解题能力,在培养思维地灵活性、创造性等方面起到了积极地作用.因此也成为历年高考地一个热点.恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数地奇偶性、周期性等性质;⑤直接根据函数地图象.二、恒成立问题解决地基本策略<一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min)]([)(x f m D x x f m≤⇔∈≤上恒成立在如何在区间D 上求函数f(x>地最大值或者最小值问题,我们可以通过习题地实际,采取合理有效地方法进行求解,通常可以考虑利用函数地单调性、函数地图像、二次函数地配方法、三角函数地有界性、均值定理、函数求导等等方法求函数f<x)地最值.这类问题在数学地学习涉及地知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现地试卷类型,希望同学们在日常学习中注意积累.(二>、赋值型——利用特殊值求解等式中地恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1>4+b 1(x+1>3+b 2(x+1>2+b 3(x+1>+b 4定义映射f:(a 1,a 2,a 3,a 4>→b 1+b 2+b 3+b 4,则f:(4,3,2,1>→(>A.10B.7C.-1D.0略解:取x=0,则a 4=1+b 1+b 2+b 3+b 4,又a 4=1,所以b 1+b 2+b 3+b 4=0,故选D例2.如果函数y=f(x>=sin2x+acos2x 地图象关于直线x=8π-对称,那么a=<).A .1B .-1C .2D .-2.略解:取x=0及x=4π-,则f(0>=f(4π->,即a=-1,故选B.此法体现了数学中从一般到特殊地转化思想.<三)分清基本类型,运用相关基本知识,把握基本地解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x>=ax+b(a≠0>,若y=f(x>在[m,n]内恒有f(x>>0,则根据函数地图象<直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x><0,则有)(0)(<<n f m f 例2.对于满足|a|≤2地所有实数a,求使不等式x 2+ax+1>2a+x 恒成立地x 地取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 地一次函数大于0恒成立地问题.解:原不等式转化为(x-1>a+x 2-2x+1>0在|a|≤2时恒成立,设f(a>=(x-1>a+x 2-2x+1,则f(a>在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.即x∈(-∞,-1>∪(3,+∞>此类题本质上是利用了一次函数在区间[m,n]上地图象是一线段,故只需保证该线段两端点均在x 轴上方<或下方)即可.2、二次函数型涉及到二次函数地问题是复习地重点,同学们要加强学习、归纳、总结,提炼出一些具体地方法,在今后地解题中自觉运用.<1)若二次函数y=ax 2+bx+c(a≠0>大于0恒成立,则有00<∆>且a <2)若是二次函数在指定区间上地恒成立问题,可以利用韦达定理以及根地分布知识求解.例3.若函数12)1()1()(22++-+-=a x a x a x f 地定义域为R,求实数a 地取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数地讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立,所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x>地定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 地取值范围.分析:()y f x =地函数图像都在X 轴及其上方,如右图所示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 地取值范围.分析:要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 地最小值0)(≥a g 即可.解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上地最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥73a ∴≤又4a> a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()(3024a a g a f a ==--+≥62a ∴-≤≤又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥7a ∴≥-又4a <- 74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 地取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号地左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0地问题.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:<运用根地分布)2—2⑴当-<-2,即a >4时,g (a )=f (-2)=7-3a ≥2∴a ≤2a ∉(4,+∞)∴a 不存53在.⑵当-2≤-≤22a,即-4≤a ≤4时,2g (a )=f (a 2)=--a +3≥24a ,2-22-2≤a ≤2-22-2∴-4≤a ≤2⑶当->2,即a <-4时,g (a )=f (2)=7+a ≥2,2a∴a ≥-5∴-5≤a <-4综上所述-5≤a ≤22-2.此题属于含参数二次函数,求最值时,轴变区间定地情形,对轴与区间地位置进行分类讨论;还有与其相反地,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法<如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上地最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量地范围已知,另一个变量地范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号地两边,则可将恒成立问题转化成函数地最值问题求解.运用不等式地相关知识不难推出如下结论:若对于x 取值范围内地任何一个数都有f(x>>g(a>恒成立,则g(a><f(x>min 。

高中数学恒成立问题

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。

一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x,不等式│x+1│+│x-2│>a恒成立,求实数a的取值范围.分析①:把左边看作x的函数关系,就可利用函数最值求解.解法1:设f(x)=│x+1│+│x-2│=-2x+1,(x≤1)3,(-1<x≤2)2x-1,(x>2)∴f(x)min=3.∴a<3.分析②:利用绝对值不等式│a│-│b│<│a±b│<│a│+│b│求解f(x)=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。

浅谈高中数学中恒成立问题的解题方法和技巧

浅谈高中数学中恒成立问题的解题方法和技巧

立问题进行解答$
本题所利用的变量分离法是最基本的解决不等式恒成立
方法"主要利用变量分离的原理将参变量与已知量进行分离"
从而构成含有已知量的函数来解决问题"即!
;(B& *' 对 *" O恒成立 7 ;(B<>_& *' " *" O ;&B& *' 对 *" O恒成立 7 ;&B</- & *' " *" O )&( 数形结合法
"槡(
))$'
$
注意!此类问题 首 先 需 要 对 题 型 进 行 分 析" 大 多 数 学 生 都
会将其定位为对 *的不等式进行解答"从而将问题复杂化%若
将自身思路转换"将所给定范围的 !作为变量"所求范围量 *
作为参量"并将不等式转化为 B& !' %& *) '$' !'&)*'$' "如
此可以将不等式问题转化为求一次函数 B& !' 在 !" ( ')"))
{B&)' %)& *) '$' '&)*'$' &% B& ')' %')& *) '$' '&)*'$' &%
{ 化简可得 )*) ')*'$ &% )*) ))*'( (%
{ 解不等式方程组得

浅析高中数学恒成立问题的求解策略

浅析高中数学恒成立问题的求解策略

高中浅析高中数学恒成立问题的求解策略山东省烟台第二中学 彭凤娇 解决恒成立问题的过程中,往往会涉及函数、方程、不等式等高中数学核心知识,以及转化化归、分类讨论、数形结合等重要数学思想,其综合性和灵活性注定使恒成立问题成为高考试题中的“香饽饽”.在对恒成立问题进行研究之后,整理了几类典型的题型,下面就从高考中出现的两道典型恒成立问题说起.引例1 (2007年山东文)当狓∈(1,2)时,狓2+犿狓+4<0恒成立,则犿的取值范围是.引例2 (2018年天津)已知犪∈犚,函数犳(狓)=狓2+2狓+犪-2,狓≤0,-狓2+2狓-2犪,狓>0.{若 狓∈[-3,+∞),犳(狓)≤狓恒成立,则犪的取值范围是.从上面两道高考恒成立问题中不难发现,解决恒成立问题的方法大致可分为两种:分离参数与函数思想(即不分离参数).在解答恒成立问题时需要具体题目具体分析.一、单变量恒成立问题(一)分离参数利用分离参数法来确定不等式犳(狓,犪)≥0(狓∈犇,犪为参数)恒成立时,参数犪的取值范围的一般思路:将题目中的参数与变量分离,化为犵(犪)≤犳(狓)(或犵(犪)≥犳(狓))恒成立的形式.接下来求解出函数犳(狓)的最小(或最大)值.最后解不等式犵(犪)≤犳(狓)min(或犵(犪)≥犳(狓)max),进而求得犪的取值范围.该思路一般适用于参数与变量易分离且最值易求得的题型.如高考引例1中,注意到狓的取值范围,可以采用分离参数的方法.解:由狓∈(1,2),狓2+犿狓+4<0恒成立,对不等式分离参数,得犿<-狓2+4狓.令犳(狓)=狓2+4狓=狓+4狓,易知犳(狓)在(1,2)上是减函数,所以狓∈(1,2)时,4<犳(狓)<5,则-狓2+4狓()min>-5,所以犿≤-5.又如高考引例2,也可以采用分离参数的方法,只不过要分段讨论,最终结果取“交集”.解: 狓∈[-3,+∞),犳(狓)≤狓恒成立狓∈[-3,0],狓2+2狓+犪-2≤-狓且 狓∈(0,+∞),-狓2+2狓-2犪≤狓 犪≤(-狓2-3狓+2)min=2且犪≥-狓2+狓2()max=18犪∈18,2[].例1 已知狓∈犚时,不等式犪+cos2狓<5-4sin狓+5犪-槡4恒成立,求实数犪的取值范围.解:将参数进行分离,得5犪-槡4-犪+5>cos2狓+4sin狓,即5犪-槡4-犪+5>1+4sin狓-2sin2狓,只需要5犪-槡4-犪+5>(1+4sin狓-2sin2狓)max.令sin狓=狋(狋∈[-1,1]),则犵(狋)=1+4狋-2狋2(狋∈[-1,1]),易得犵(狋)max=3.所以5犪-槡4-犪+5>3,即5犪-槡4>犪-2 犪-2≥0,5犪-4≥0,5犪-4>(犪-2)2烅烄烆或犪-2<0,5犪-4≥0,{解得45≤犪<8.(二)函数思想一般思路:首先分清楚题目中的变量与参数.一般来说,题目给出取值范围的元为变量,最终求解范围的元为参数.通过构造变量的函数,借助所构造的函数的取值特征进行求解.若在客观题中涉及不同类型函数恒成立问题,可通过画函数图像的方法,排除选项,提高解题速度.如高考引例1也可以用函数思想(二次函数根的分布)来解答,也比较简便.解:设犳(狓)=狓2+犿狓+4,易知二次函数的图像“开口向上”,则要使当狓∈(1,2)时,狓2+犿狓+4<0恒成立,只需满足犳(1)≤0,犳(2)≤0,{即5+犿≤0,8+2犿≤0,{解得犿≤-5.总结:设犳(狓)=犪狓2+犫狓+犮(犪≠0)且犪>0,犳(狓)<0在狓∈[α,β]上恒成立 犳(α)<0,犳(β)<0.{04教学参谋解法探究2020年3月Copyright ©博看网. All Rights Reserved.高中犳(狓)<0在狓∈(α,β)上恒成立 犳(α)≤0,犳(β)≤0.{例2 已知犵(狓)=log犪狓,犳(狓)=(狓-1)2,若狓∈(1,2)时,犵(狓)>犳(狓)恒成立,求犪的取值范围.分析:对于犵(狓)>犳(狓)恒成立的问题,有时候将不等式进行合理变形之后,能够非常容易地画出不等号两边的函数图像,最后通过图像直接判断出结果.特别是客观题,采用这种数形结合的方式能够简化解题步骤.根据函数犵(狓),犳(狓)的特征画出函数图像,可直观展示两函数关系.解:由图像分析易知,要使得当狓∈(1,2)时,犵(狓)>犳(狓)成立,则需犪>1,同时当狓∈(1,2)时,犵(狓)的图像在犳(狓)的图像上方,即犵(2)≥犳(2),解得犪∈(1,2].总结:解题时既能落实数形结合思想,又能兼顾对数函数的特征,可使解题过程更加顺畅.二、双变量恒成立问题例3 设函数犳(狓)=狓-2sin狓, 狓1,狓2∈[0,π],恒有犳(狓1)-犳(狓2)≤犕,求犕的最小值.分析:由题易知,要使得犳(狓1)-犳(狓2)≤犕, 狓1,狓2∈[0,π]恒成立,只需求犳(狓1)-犳(狓2)max,即犳(狓)max-犳(狓)min的值.解:由犳(狓)=狓-2sin狓,得犳′(狓)=1-2cos狓,易知狓∈0,π3[]时,犳′(狓)<0,犳(狓)单调递减;狓∈π3,π[]时,犳′(狓)>0,犳(狓)单调递增.所以当狓=π3时,犳(狓)有极小值,即最小值,且犳(狓)min=犳π3()=π3-槡3.又犳(0)=0,犳(π)=π,所以犳(狓)max=π.所以犕≥犳(狓1)-犳(狓2)max=犳(狓)max-犳(狓)min=2π3+槡3.常见的双变量恒成立问题有如下两种:(一)题型一:狓1,狓2∈犇,都有犳(狓1)≤犵(狓2) 犳(狓)max≤犵(狓)min(这里假设犳(狓)max,犵(狓)min都存在)例4 已知函数犳(狓)=狓2-2狓+2,犵(狓)=2狓+犿, 狓1,狓2∈[1,3],都有犳(狓1)≤犵(狓2)恒成立,求实数犿的取值范围.解:犳(狓)=狓2-2狓+2=(狓-1)2+1,当狓∈[1,3]时,犳(狓)max=犳(3)=5,犵(狓)min=犵(1)=2+犿,则犳(狓)max≤犵(狓)min,即5≤2+犿,解得犿≥3.推广:狓1,狓2∈犇,都有犳(狓1)≥犵(狓2)·犳(狓)min≥犵(狓)max(这里假设犳(狓)min,犵(狓)max都存在).(二)题型二: 狓1∈犇1,狓2∈犇2,都有犳(狓1)≥犵(狓2) 犳(狓)min≥犵(狓)min(这里假设犳(狓)min,犵(狓)min都存在).例5 已知犳(狓)=ln(狓2+1),犵(狓)=12()狓-犿,若 狓1∈[0,3], 狓2∈[1,2],使得犳(狓1)≥犵(狓2),求实数犿的取值范围.解:当狓∈[0,3]时,由复合函数“同增异减”原理可得,犳(狓)在狓∈[0,3]上单调递增,则犳(狓)min=犳(0)=0,当狓∈[1,2]时,犵(狓)单调递减,则犵(狓)min=犵(2)=14-犿,由犳(狓)min≥犵(狓)min得0≥14-犿,所以犿≥14.推广: 狓1∈犇1,狓2∈犇2,都有犳(狓1)≥犵(狓2) 犳(狓)max≥犵(狓)max(这里假设犳(狓)max,犵(狓)max都存在).三、结束语在高中数学的学习中,不仅要熟知高考必考的数学知识,还须熟练掌握重要题型的解题思路和解题技巧,结合典型的数学思想去解决问题,注意勤于练习,学会举一反三,这样才能够爱学数学,学好数学.参考文献:[1]黄锦龙.树立五种意识 破解恒成立问题[J].中学数学研究(华南师范大学版),2019(21).[2]蔡海涛.探寻必要条件 巧解恒成立问题———从一道2019年高考函数导数题谈起[J].高中数学教与学,2019(21).[3]洪小银.高中数学恒成立问题方法解析[J].中学数学,2019(9).[4]周坤.一类恒成立问题的转化教学设计及反思[J].中学数学,2019(9).[5]孙成田,刘本玲.细解高考中的热点难点———不等式恒成立问题[J].数学之友,2019(4).[6]孔祥士.例谈“含参数的单变量不等式恒成立问题”的解题策略[J].中学数学,2019(8).犉142020年3月 解法探究教学参谋Copyright ©博看网. All Rights Reserved.。

数学高考复习中恒成立问题及解题策略

数学高考复习中恒成立问题及解题策略

数学高考复习中恒成立问题及解题策略
数学高考复习中常见的恒成立问题包括:三角函数、平面几何、立体几何、数列等方面的常见恒等式是否成立。

解决这些问题需要
我们掌握以下策略:
1. 掌握基本定义。

了解三角函数、平面几何、立体几何、数列
等基本定义,理解它们的概念和性质,这是解决恒成立问题的前提。

2. 理解证明步骤。

对于一些基本的恒等式,如三角函数的基本
恒等式、半角公式等,需要深入理解其证明步骤,这样能解决很多
基本的恒成立问题。

3. 对比特殊情况。

对于一些复杂的恒等式,可以考虑先验证一
些特殊情况,如取特殊的几个值来代入验证,这样可以对恒等式是
否成立有一个大致的判断。

4. 利用常见定理。

多运用常见的几何定理或性质的结论,如勾
股定理、中线定理、垂直平分线定理等,也可以用对等三角形、相
似比、余弦、正弦等基本知识来解决。

5. 探索新的思路。

对于一些比较难的恒等式,可以多思考,开
拓思路,寻找新的解题方法,这样可以解决不同的问题,丰富解题
经验。

总之,解决恒成立问题需要我们理解基本定义和证明步骤,利
用特殊情况和常见定理,同时具有创新和探索的精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造差函数 强化恒成立
函数中常会碰到两个函数在某个区间(或整个定义域)内一个函数值恒大于或小于另一个函数值问题,即对于区间()a b ,上的函数()f x ,()g x ,对于任意()x a b ∈,,()()f x g x ≥恒成立.现结合具体例题为同学们介绍构造差函数的方法.
例1 设函数()f x ,()g x 在区间[]a b ,上可导,且()()f x g x ''>,则当a x b <<时,有( ). A.()()f x g x > B.()()f x g x <
C.()()()()f x g a g x f a +>+ D.()()()()f x g b g x f b +>+
解析:因为函数()f x ,()g x 在区间[]a b ,上可导,则函数()()()F x f x g x =-在区间[]a b ,上可导,
且由于()()f x g
x ''>,则()()()0F x f x g x '''=->在区间[]a b ,上恒成立,即在[]a b ,上函数()()()F x f x g x =-是增函数,对于任意a x b <<有()()F a F x <(同时()()F x F b <),故()()()()f a g a f x g x -<-,所以()()()()f x g a g x f a +>+,选(C ).
同理可得()()()()f x g b g x f b +<+.
点评:本题并没有过多地考虑()f x ,()g x 在某具体点处的函数值的大小问题,而是从构造差函数入手,研究新函数的单调性,利用差函数的导数,简捷得到相应的结论.
例2 已知函数21()ln 2f x x x =
+.求证:在区间(1)+∞,上,函数()f x 的图象在函数32()3
g x x =图象的下方. 解析:构造函数()()()F x f x g x =-,即2312()ln 23F x x x x =+-,则2(1)(12)()x x x F x x
-++'=. 因为(1)x ∈+∞,,所以()0F x '<,故函数()F x 在区间(1)+∞,上是减函数,注意到1(1)06
F =-<,所以在区间(1
)+∞,上()0F x <恒成立(()()f x g x <恒成立),故函数()f x 的图象总在函数()g x 图象的下方.
请用上述思想,试解下列三道习题:
1.设αβ,是锐角三角形的两个内角,求证sin cos αβαβπ+>-+
2. 提示:可证sin sin ααββππ⎛⎫⎛⎫
->--- ⎪ ⎪22⎝⎭⎝⎭
,由()sin f x x x =-的单调性(求导数),只需证2αβπ>-,即αβπ+>2
即可,这由题设三角形为锐角三角形易知.
2.当0x π⎛
⎫∈ ⎪2⎝⎭
,时,证明:sin tan x x x <<. 提示:利用导数,()sin f x x x =-,则()1cos f x x '=-,0x π⎛⎫∈ ⎪2⎝⎭
,,()0f x '>,()f x 是增函数;同理,构造函数()tan g x x x =-,2()1tan 1g x x '=+-,由()0g x '>得()g x 是增函数;而0x =时, ()()0f x g x ==,由单调性知02x π⎛⎫∈ ⎪⎝⎭
,,时,sin tan x x x <<. 3.已知函数32()24f x x x x =++-,2()8g x ax x =+-,若对任意的[0)x ∈+∞,都有()()f x g x ≥,求实数a 的取值范围.
提示:构造函数()()()F x f x g x =-,即32()(2)4F x x a x =+-+,对任意的[0
)x ∈+∞,都有()()f x g x ≥,则()F x 0≥在[0)+∞,上恒成立,只要min ()F x 0≥在[0)+∞,上恒成立,2()3(42)F x x a x '=+-.
由()0F x '=,解得0x =或243
a x -=, 若20a -≥显然()0F x '≥,min ()(0)4F x F ==.
若20a -<,min
24()3a F x F -⎛⎫=0 ⎪⎝⎭≥,即32
2424(2)4033a a a --⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭≥,解得5a ≤,则2a <5≤.
特别地,当0x =时,()4F x =也满足题意. 综上,实数a 的取值范围是(5]-∞,
.。

相关文档
最新文档