直线和圆练习1(答案)
人教版高中数学选修一第二单元《直线和圆的方程》测试题(答案解析)(1)

一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A .5270x y -+=B .310x y +-=C .3240x y -+=D .230x y --= 5.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4± B .-4C .4D .2± 6.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 7.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( ) A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=08.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( )A .32B .32-C .32±D .12± 10.曲线214y x 与直线(2)4y k x =-+有两个相异交点,则k 的取值范围是( )A .50,12⎛⎫ ⎪⎝⎭B .13,34⎛⎤⎥⎝⎦ C .53,124 D .5,12⎛⎫+∞⎪⎝⎭ 11.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D 12.若圆()2220x y rr +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1 二、填空题13.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by c ax by cδ++=++,以下命题中正确的序号为__________. (1)存在实数δ,使得点N 在直线l 上;(2)若1δ=,则过M 、N 的直线与直线l 平行;(3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.已知直线l经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.16.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab≠0,则2211a b +的最小值为___________ 19.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.20.已知圆C :222x y +=,点P 为直线136x y +=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______. 三、解答题21.已知直线方程为()()221340m x m y m -++++=,其中m R ∈.(1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.22.已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=.(1)求证:对任意的m R ∈,直线l 与圆 C 恒有两个交点;(2)设l 与圆 C 相交于,A B 两点,求线段AB 的中点M 的轨迹方程.23.设函数()f z 对一切实数m ,n 都有()()(21)f m n f n m m n +-=++成立,且(1)0f =,(0)f c =,圆C 的方程是22(1)()9x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线220ax by -+=(0a >,0b >)被圆C 截得的弦长为6,求4a b ab +的最小值.24.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.25.根据所给条件求直线的方程:(1)直线过点()3,4-,且在两坐标轴上的截距之和为12;(2)直线m :3260x y --=关于直线l :2310x y -+=的对称直线m '的方程. 26.若过点P 的两直线1l ,2l 斜率之积为()0λλ≠,则称直线1l ,2l 是一组“P λ共轭线对”. (1)若直线1l ,2l 是一组“3O -共轭线对”,当两直线夹角最小时,求两直线倾斜角; (2)若点()0,1A ,()1,0B -,()1,0C 分别是直线PQ ,QR ,RP 上的点(A ,B ,C ,P ,Q ,R 均不重合),且直线PR ,PQ 是一组“1P 共轭线对”,直线QP ,QR 是一组“4Q 共轭线对”,直线RP ,RQ 是一组“9R 共轭线对”,求点P 的坐标;(3)若直线1l ,2l 是一组“2M -共轭线对”,其中点(1,M -,当两直线旋转时,求原点到两直线距离之积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率.【详解】 倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C.【点睛】 关于直线的倾斜角与直线斜率之间的关系需要注意:(1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.A解析:A【分析】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解.【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-.当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直;当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件,故选:A .【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.3.B解析:B【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解.【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+, 整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6. 故选:B.【点睛】 关键点睛:解决本题的关键是将题转化为直线31x y +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解. 4.A解析:A【分析】根据题意做出光线传播路径,求()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于x 轴的对称点()'1,6D ,进而得BC 所在直线的方程即为''A D 直线方程,再根据两点式求方程即可.【详解】解:根据题意,做出如图的光线路径,则点()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于y 轴的对称点()'1,6D ,则BC 所在直线的方程即为''A D 直线方程,由两点是方程得''A D 直线方程为:436413y x ++=++,整理得:5270x y -+= 故选:A.【点睛】本题解题的关键在于做出光线传播路径,将问题转化为求A 关于x 轴的对称点'A 与D 关于y 轴的对称点'D 所在直线''A D 的方程,考查运算求解能力,是中档题.5.B解析:B【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案.【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±.当4a =时,两直线重合,所以4a =舍去.当4a =-时,符合题意.所以4a =-.故选:B【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.C解析:C【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果.【详解】圆C :()()22232++-=x y ,圆心为()2,3C -, 由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -, 且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C.【点睛】关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心;(2)入(反)射光线关于反射面的对称直线即为反(入)射光线. 7.D解析:D当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程.【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=,∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =- .:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-= 故选:D【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.8.B解析:B【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解.【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-, ∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确; 若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B .本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.A解析:A【分析】先根据半径和周长计算弦长AB =即可.【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r ,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==, 故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A.【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C【分析】 曲线214y x 表示半圆,作出半圆,直线过定点(2,4),由直线与圆的位置关系,通过图形可得结论. 【详解】 曲线214y x 是半圆,圆心是(0,1)C ,圆半径为2,直线(2)4y k x =-+过定点(2,4)P ,作出半圆与过P 的点直线,如图,PD2=,解得512k =,即512PD k =, (2,1)A -,4132(2)4PA k -==--, ∴53,124k ⎛⎤∈ ⎥⎝⎦. 故选:C .【点睛】本题考查直线与圆的位置关系,数形结合思想是解题关键,由于题中曲线是半圆,因此作出图形,便于观察得出结论.11.B解析:B【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短.【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA b k a =-,AA '的中点为2,22a b +⎛⎫ ⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离,即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径,“将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =10y --= 【分析】分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可. 【详解】由已知可得直线y x =k =30, 因为直线l与y x =30,所以直线l 的倾斜角为0或60, 当倾斜角为60时,直线l为)12y x -=-10y -+-=; 当倾斜角为0︒时,直线l 为1y =, 故答案为:1y =10y -+-=. 【点睛】本题考查直线与直线的夹角,关键点是求出直线30x --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.16.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程. 【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值,过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时22(32)(30)10PC =-+-=,此时,213L PC =-=故答案为:3 【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.9【分析】圆C1C2只有一条公切线则两圆的位置关系为内切由此可以得到ab 的等量关系然后利用均值不等式求的最小值【详解】圆C1:x2+y2+4ax +4a2-4=0标准方程:圆C2:x2+y2-2by +【分析】圆C 1、C 2只有一条公切线,则两圆的位置关系为内切,由此可以得到a 、b 的等量关系,然后利用均值不等式求2211a b +的最小值 【详解】圆C 1:x 2+y 2+4ax +4a 2-4=0 标准方程:22x 2a y 4++=() 圆C 2:x 2+y 2-2by +b 2-1=0标准方程:22x y b 1+-=()因为圆C 1 、C 2内切,1=, 即224a b 1+=, (2211a b +)=2222114a b a b++()() =2222b 4a 59a b++≥()当且仅当224a b =时等号成立. 【点睛】本题考查了两圆的位置关系和均值不等式求最值;两圆位置关系有:内含、内切、相交、外切、外离,圆与圆的位置关系也决定了切线的条数,两圆相内切只有一条切线,圆心距和两圆半径的关系是解题的关键,利用该关系可以构造出均值不等式所需要的等式;均值不等式求最值要注意:一正二定三相等.19.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果. 【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1.设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆. 由题意得圆C 和点M 的轨迹有公共点, ∴13≤≤,解得03a ≤≤.∴实数a 的取值范围是[]0,3. 【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离5d ==,设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max ||,3OQ ==故答案为:53. 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)2132)4,240x y ++= 【分析】(1)求出动直线所过定点(1,2)P --,当m 变化时,PQ ⊥直线l 时,点()3,4Q 到直线l 的距离的最大.(2)直线l 的斜率k 存在且0k ≠,因此可设直线l 的方程为2(1)y k x +=+,求出直线在x 轴、y 轴的截距.可得AOB 的面积,利用基本不等式的性质即可得出结果. 【详解】(1)直线方程为(2) (21) 340m x m y m -++++=, 可化为(24)(23)0x y m x y +++-++=对任意m 都成立, 所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点(1,2)--.设定点为(1,2)P --,当m 变化时,PQ ⊥直线l 时,点(3,4)Q 到直线的距离最大,可知点Q 与定点(1,2)P --的连线的距离就是所求最大值, 22(31)(42)213+++=(2)由于直线l 经过定点(1,2)P --.直线l 的斜率k 存在且0k ≠, 因此可设直线方程为2(1)y k x +=+可得与x 轴、y 轴的负半轴交于21,0A k ⎛⎫- ⎪⎝⎭,(0,2)B k -两点 ∴20kk-<,20k -<,解得0k <. ∴121221|2|1(2)2224222AOBkS k k k k k -⎛⎫=--=--=++≥+= ⎪-⎝⎭当且仅当2k =-时取等号,面积的最小值为4此时直线l 的方程为:22(1)y x +=-+,化为:240x y ++=. 【点睛】关键点点睛:求三角形面积最小时,一般首先表示出三角形的面积,本题利用直线在坐标轴的截距表示可得222k S k -=++-,再根据均值不等式或利用函数求最值,确定最值取得的条件,求解即可.22.(1)证明见解析;(2)2211()(1)(1)24x y x -+-=≠.【分析】(1)确定直线过定点()1,1,计算定点在圆内,得到证明.(2)由已知得点M 在以CP 为直径的圆上,求得圆心和半径可得到答案. 【详解】(1)由已知可得直线 :(1)10l x m y --+=,所以直线l 恒过定点(1,1)P .又()2211115,+-=<所以点P 在圆内,所以对任意的m R ∈,直线l 与圆 C 恒有两个交点.(2)由(1)知,知直线l 恒过定点(1,1)P ,且直线l 的斜率存在. 又M 是AB 的中点,CM MP ∴⊥,所以点M 在以CP 为直径的圆上.又()()0,1,1,1,C P 所以以CP 为直径的圆的方程为2211()(1)24x y -+-=,又直线l 的斜率存在,1x ∴≠,所以点M 的轨迹方程为2211()(1)(1)24x y x -+-=≠.【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.23.(1)2c =-;2()2f z z z =+-;(2)9. 【分析】(1)令1m =,0n =代入等式中可求得c .再令m n =-代入得()f z 的解析式;(2)由已知求得直线过圆心()12-,,有1a b +=.由均值不等式得4144()5a b a b a b ab a b b a +⎛⎫=++=++ ⎪⎝⎭,可求和4a bab +的最小值. 【详解】(1)令1m =,0n =代入等式中可得,(0)2f =-,即2c =-.再令m n =-得,(0)()(21)f f n n n n -=--++,2()2f n n n =+-, 所以2()2f z z z =+-.(2)因为直线被圆22(1)(2)9x y ++-=截得的弦长为6,所以直线过圆心()12-,,有1a b +=.于是由均值不等式得,414144()559a b a b a b ab a b a b b a +⎛⎫=+=++=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即13a =,23b =时等号成立.故4a b ab +的最小值是9.【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.24.(1)224x y +=;(2)k =;(3)(4,0). 【分析】(1)设出圆心(,0)C a ,根据直线与圆C 相切,得到圆心到直线的距离等于4,确定圆心坐标,即可得圆C 的方程.(2)根据垂径定理及勾股定理,由过点(1,1)P 的直线1l 被圆C 截得的弦长等于斜率存在与不存在两种情况讨论,即可求出直线1l 的方程.(3)当AB x ⊥轴时,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设出方程与圆的方程联立,结合AN BN k k =-,即可求出点N 的坐标. 【详解】(1)设圆心5(,0)2C a a ⎛⎫>-⎪⎝⎭,则|410|25a , 解得0a =或5a =-(舍). 故圆C 的方程为224x y +=.(2)由题意可知圆心C 到直线1l 的距离为2sin301.1,解得k =.(3)当直线AB x ⊥轴时,对x 轴正半轴上任意一点,N x 轴平分ANB ∠; 当直线AB 的斜率存在时,设直线AB 的方程为()()1122(1)(0),(,0),,,,y k x k N t A x y B x y =-≠, 由224,(1)x y y k x ⎧+=⎨=-⎩得()22221240k x k x k +-+-=, 2212122224,11k k x x x x k k -∴+==++ 若x 轴平分ANB ∠,则AN BN k k =-,即12120y yx t x t+=--, 即()()1212110k x k x x tx t--+=--,即()12122(1)20x x t x x t -+++=,即()2222242(1)2011k k t t k k -+-+=++,解得4t =. 综上,当点N 的坐标为(4,0)时,x 轴平分ANB ∠.【点睛】关键点点睛:本题第二问解题的关键是得到圆心到直线的距离为1,第三问解题的关键是由x 轴平分ANB ∠,得AN BN k k =-,进而利用坐标表示斜率求解. 25.(1)4160x y -+=或390x y +-=;(2)9461020x y -+= 【分析】(1)设出截距式方程,由条件列出式子即可求出;(2)在直线m 上取一点,如()2,0M ,求出()2,0M 关于直线l 的对称点M ',求出m 与l 的交点,即可求出直线方程. 【详解】(1)由已知得直线不过原点,设直线方程为1x y a b+=, 则可得34112a b a b -⎧+=⎪⎨⎪+=⎩,解得416a b =-⎧⎨=⎩或93a b =⎧⎨=⎩, 则直线方程为1416x y +=-或193x y +=, 整理可得4160x y -+=或390x y +-=; (2)在直线m 上取一点,如()2,0M ,则()2,0M 关于直线l 的对称点M '必在直线m '上,设(),M a b ',则2023102202123a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩,解得630,1313M '⎛⎫ ⎪⎝⎭, 设直线m 与l 的交点为N ,则联立方程32602310x y x y --=⎧⎨-+=⎩可解得()4,3N , 则m '的方程为34306341313y x --=--,即9461020x y -+=. 【点睛】方法点睛:关于轴对称问题:(1)点(),A a b 关于直线0Ax By C ++=的对称点(),A m n ',则有1022n b A m a B a m b n A B C ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪⋅+⋅+=⎪⎩;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.26.(1)2,33ππ;(2)()3,3或33,55⎛⎫ ⎪⎝⎭;(3)⎡⎣ 【分析】(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >,利用两角差的正切公式计算,利用基本不等式求得最值;(2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,可得122313149k k k k k k =⎧⎪=⎨⎪=⎩,可解出123,,k k k 的值,进一步求得直线RP 和直线PQ 的方程,联立得点P 的坐标;(3)设()()122:1,:1l y k x l y x k=++=-+,,设原点到两直线距离分别为12,d d ,求出12d d ,然后变形利用基本不等式求解.【详解】解:(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >, 则()()313tan tan 132k k k k γβα--⎛⎫=-==+≥ ⎪+-⎝⎭k = 此时3πα=,23πβ=, 即两直线倾斜角分别为2,33ππ; (2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,则122313149k k k k k k =⎧⎪=⎨⎪=⎩,解得12332,,623k k k ===或12332,,623k k k =-=-=-, 当12332,,623k k k ===时, 直线RP 的方程为()312y x =-,直线PQ 的方程为213y x =+, 联立得()3,3P , 当12332,,623k k k =-=-=-时, 直线RP 的方程为()312y x =--,直线PQ 的方程为213y x =-+, 联立得33,55P ⎛⎫⎪⎝⎭, 故所求为()3,3P 或33,55P ⎛⎫ ⎪⎝⎭;(3)设()()122:1,:1l y k x l y x k=++=-+, 设原点到两直线距离分别为12,d d ,则12d d =====,由于22459kk++≥,当且仅当22k=时等号成立,故[)22910,145kk-∈++,12d d⎡∈⎣,即原点到两直线距离之积的取值范围为⎡⎣.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。
直线和圆的位置关系习题课1

B
C
1、已知:AF切圆O于A,割线
FN∥ AC。
求证: (1)ΔEBD∽ ΔEFA
F
(2)ED .EF=EM .EN
2、ADB和AEC都是圆O的割线, AP∥ ED,PF切圆O于点F。 求证:PF=PA
C
A
.O
ME D
B
C N
A
E
.O
D
B
P
F
HD
3、已知:如图,圆O的内接四边 形ABCD中,对角线AC BD,垂足 A 2
1、圆内接四边形ABCD中,∠A: ∠B: ∠C: ∠D=
3:m:7:n,则m+n= 10
2、如图,AB是圆O的直径,DB、DE分别切圆O于点
。 B、C, ∠ACE=25 ,则∠D=
50。Biblioteka BADEC 3、等腰直角三角形的外接圆半径和内切圆半径的比值
为 2 +1 4、直角三角形斜边为10cm,内切圆半径为1cm,则这
个三角形的周长为 22cm
5、等边三角形内切圆半径与外接圆半径的比是 1:2
。 1、弦心距等于半径一半的弦所对的圆心角是 120 ,所对
。。 的圆周角是 60 或120
2、AB是圆O的弦,点C是圆O上异于A、B的任意一点,若
。
。。
∠ AOB=112 ,则∠ ACB= 56 或124
3、圆O中,弦AB、CD相交于点P,AP=3,BP=8,
CP:DP=2:3,则CD= 10
。 4、三角形ABC中,∠ A=120 ,AB=AC=3,则此三角形
外接圆的半径是 3
D
E
C
5、圆O的割线经过圆心O,BD PC,
。 PC切圆O于C,∠ P=30 ,PB=6cm,
九年级数学竞赛培优专题及答案 20 直线与圆的位置关系1(含答案)

专题20 直线与圆的位置关系(1)阅读与思考圆心到直线的距离与圆的半径的大小量化确定直线与圆的相离、相切、相交三种位置关系.直线与圆相切是研究直线与圆的位置关系的重点.与切线相关的知识,包括弦切角、切线的性质和判断、切线长定理、切割线定理等.证明一直线是圆的切线是平面几何问题中一种常见的题型,证明的基本方法有: 1.利用定义,判断直线和圆只有一个公共点;2.当已知一条直线和圆有一个公共点时,就把圆心和这个公共点连接起来,再证明这条半径和直线垂直;3.当直线和圆的公共点没有确定时,就过圆心作直线的垂线,再证明圆心到直线的距离等于半径. 熟悉如下基本图形和以上基本结论.例题与求解【例1】如图,已知AB 为⊙O 的直径,CB 切⊙O 于点B ,CD 切⊙O 于点D ,交BA 的延长线于E .若AB =3,DE =2,则BC 的长为( ) (青岛市中考试题)A .2B .3C .3.5D .4例1题图 例2题图解题思路:本例包含了切线相关的丰富性质,从C 点看可应用切线长定理,从E 点看可应用切割线定理,又EC 为⊙O 的切线,可应用切线性质,故解题思路广阔.【例2】如图,⊙O 是△ABC 的外接圆,已知∠ACB =45°,∠ABC =120°,⊙O 的半径为1. (1) 求弦AC ,AB 的长;(2) 若P 为CB 的延长线上一点,试确定P 点的位置,使P A 与⊙O 相切,并证明你的结论.(哈尔滨市中考试题)解题思路:第(2)题是考查探索能力的开放性几何题,只要探求得PB 与BC ,或PC 与BC 的关系,或求得PB 或PC 的长,点P 的位置即可确定.E【例3】已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点.过点P 作BC 的平行线交BT 于点E ,交直线AC 于点F .(1) 当点P 在线段AB 上时(如图),求证:P A •PB =PE •PF ;(2) 当点P 为线段BA 的延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由. (北京市中考试题)解题思路:本例是“运动型”的开放性问题,要求点在运动变化中,判断原结论是否成立,通过观察、比较、归纳、分析等系列活动,逐步确定应有的结论.【例4】已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合(P 不与点D ,C 重合),MN 为折痕,点M ,N 分别在边BC ,AD 上.连接AP ,MP ,AM ,AP 与MN 相较于点F ,⊙O 过点M ,C ,P .(1) 请你在图1中作出⊙O (不写作法,保留作图痕迹);(2)AF AN 与APAD是否相等?请说明理由; (3) 随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H .设AB 为4,请你通过计算,画出这时的图形(图2、图3供参考).(宜昌市中考试题)解题思路:对于(3),只依靠AB 的长不能画出图形,需求出关键的量,因为∠C =90°,⊙O 过点M ,C ,P ,故将画出矩形的条件转化为求出CP (或MP )的长.当矩形确定后,依据线段CP 的长,就可确定P 点的位置.TTC MNNN【例5】如图,已知△ABC 内接于⊙O ,AD ,BD 为⊙O 的切线,作DE ∥BC ,交AC 于点E ,连接EO 并延长交BC 于点F .求证:BF =FC . (太原市竞赛试题)解题思路:要证明BF =FC ,只需证FO ⊥BC 即可,连接OA ,OB ,OD ,将问题转化为证明∠DAO =∠EFC .【例6】如图,在等腰△ABC 中,已知AB =AC ,∠C 的平分线与AB 交于点P ,M 是△ABC 的内切⊙I 与边BC 的切点,作MD ∥AC ,交⊙I 于点D ,求证:PD 是⊙I 的切线. (全国初中数学联赛试题)解题思路:设⊙I 切AB 于点S ,连接IM ,IS ,ID ,直接证明∠PDI =90°困难,不妨证明∠PDI =∠PSI ,即证明△PIS ≌△PID .能力训练A 级1. P A ,PB 切⊙O 于A ,B ,∠APB =78°,点C 是⊙O 上异于A ,B 的任意一点,则∠ACB =__________.2.如图,以△ABC 的边AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AC 于点E .要使DE ⊥AC ,则△ABC 的边必须满足的条件是__________. (武汉市中考试题)第2题图 第3题图3. 如图,P A 切⊙O 于点A ,C 是AB 上任意一点,∠P AB =62°,则∠C 的度数是__________.(荆门市中考试题)P4.直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD +BC <DC .若腰DC 上有一点P ,使AP ⊥BP ,则这样的点( )A .不存在B .只有一个C .只有两个D .有无数个5.如图,已知AB 是⊙O 的直径,CD ,CB 是⊙O 的切线,D ,B 为切点,OC 交⊙O 于点E ,AE 的延长线交BC 于点F ,连接AD ,BD ,给出以下四个结论:①AD ∥OC ;②E 为△CDB 的内心;③FC =FE .其中正确的结论是 ( )A .①②B .②③C .①③D .①②③6.如图,ABCD 为⊙O 的内接四边形,AC 平分∠BAD 并与BD 相交于E 点,CF 切⊙O 于点C 并与AD 的延长线相交于点F .图中的四个三角形①△CAF ,②△ABC ,③△ABD ,④△BEC ,其中一定相似的是( ) (连云港市中考试题)A .①②③B .②③④C .①③④D .①②④第5题图 第6题图 第7题图7.如图,△ABC 内接于⊙O ,AE 切⊙O 于点A ,BC ∥AE . (1) 求证:△ABC 是等腰三角形;(2) 设AB =10cm ,BC =8cm ,点P 是射线AE 上的点,若以A ,P ,C 为顶点的三角形与△ABC 相似,问这样的点有几个? (南昌市中考试题)8.如图,Rt △ABC 中,∠C =90°,以AC 为直径的⊙O 交斜边AB 于点E ,OD ∥AB . 求证:(1) ED 是⊙O 的切线;(2) 2DE 2=BE •OD .ACB9.如图,在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的边,且a ,b 是关于x 的一元二次方程x 2+4(c +2)=(c+4)x 的两个根. 点D 在AB 上,以BD 为直径的⊙O 切AC 于点E .(1) 求证:△ABC 是直角三角形;(2) 若tan A =34时,求AE 的长. (内蒙古中考试题)10.如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 中点,连接DE .(1) 求证:直线DE 是⊙O 的切线;(2) 连接OC 交DE 于点F ,若OF =CF ,求tan ∠ACO 的值. (武汉市中考试题)11.如图,⊙O 的半径r =25,四边形ABCD 内接于⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上一点,且∠PDA =∠ABD .(1) 试判断PD 与⊙O 的位置关系,并说明理由;(2) 若tan ∠ADB =34,P A =43-33AH ,求BD 的长;(3) 在(2)的条件下,求四边形ABCD 的面积. (成都市中考试题)ABC BECB 级1.如图,AB 是⊙O 的直径,CD 是弦,过点C 的切线与AD 的延长线交于点E .若∠DAB =56°, ∠ABC =64°,则∠CED =__________.2.如图,⊙O 与矩形ABCD 的边AD ,AB ,BC 分别相切于点E ,F ,G ,P 是EG 上的一点,则∠EPF =__________. (广州市中考试题)第1题图 第2题图 第3题图3.如图,直线AB ,AC 与⊙O 分别相切于点B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4cm ,6cm ,那么P 到BC 的距离为__________cm. (全国初中数学联赛试题)4.如图,在Rt △ABC 中,∠A =90°,⊙O 分别与AB ,AC 相切于点E ,F ,圆心O 在BC 上,若AB =a ,AC =b ,则⊙O 的半径等于( )A .abB .a +b 2C .aba +bD .a +b ab5.如图,在⊙O 的内接△ABC 中,∠ABC =30°,AC 的延长线与过点B 的⊙O 的切线相交于点D .若⊙O 的半径OC =1,BD ∥OC ,则CD 的长为( )A .1+33 B .233 C .33D . 2第4题图 第5题图 第6题图6.如图,⊙O 的内接△ABC 的外角∠ACE 的平分线交⊙O 于点D .DF ⊥AC ,垂足为F ,DE ⊥BC ,垂足为E .给出以下四个结论:①CE =CF ;②∠ACB =∠EDF ;③DE 是⊙O 的切线;④AD =BD .其中正确的结论是( ) (苏州市中考试题)A .①②③B .②③④C .①③④D .①②④7.如图,已知AC 切⊙O 于点C ,CP 为⊙O 的直径,AB 切⊙O 于点D ,与CP 的延长线交于点B .若AC =PC .求证:(1) BD =2BP ;(2) PC =3BP . (天津市中考试题)8.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12cm ,AD =8cm ,BC =22cm ,AB 为⊙O 的直径.动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动. P ,Q 分别从点A ,C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止.设运动时间为t (s).(1) 当t 为何值时,四边形PQCD 为平行四边形?(2) 当t 为何值时,PQ 与⊙O 相切? (呼和浩特市中考试题)9.如图,已知在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,OB 为半径的半圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1.求证:S △AOD ,S △BCD 是方程10x 2-51x +54=0的两个根. (河南省中考试题)10.如图,点O 在∠APB 的平分线上,⊙O 与P A 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC =4,求弦CE 的长.(武汉市中考试题)CCABDE11.如图,直线y =43x +4交x 轴于点B ,交y 轴于点A ,⊙O ′过A ,O 两点.(1) 如图1,若⊙O ′交AB 于点C ,当O ′在OA 上时,求弦AC 的长; (2) 如图2,当⊙O ′与直线l 相切于点A 时,求圆心O ′的坐标;(3) 当O ′A 平分△AOB 的外角时,请画出图形,并求⊙O ′的半径的长.12.如图,AB 是⊙O 的直径,AB =d ,过点A 作⊙O 的切线并在其上取一点C ,使AC =AB ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E . 求AE 的长. (四川省竞赛试题)C专题20 直线与圆的位置关系(1)例1、B 提示:连接OD ,则~ODE CBE ∆∆例2、(1)AC =AB = (2)提示:若PA 是⊙O 的切线,则PA ⊥AO ,又BO ⊥AO ,得PA ∥BD ,PB ADBC DC∴=,9030AOD OAC ∠=︒∠=︒,, 120AOC ∠=︒,22AD OD DC ∴==,2PB BC ∴=,即当2PB BC =时,PA 是 ⊙O 的切线例3、 提示(1)证明~PFA PBE ∆∆ (2)当P 为BA 延长线上一点时,第(1)题的结论仍成立例4、(1)略 (2)AF AP AN AD ≠,理由如下:假设AF APAN AD≠,则MN ∥CD 。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
直线与圆知识点及经典例题(含答案)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载直线与圆知识点及经典例题(含答案)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容圆的方程、直线和圆的位置关系【知识要点】一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆(一)圆的标准方程这个方程叫做圆的标准方程。
说明:1、若圆心在坐标原点上,这时,则圆的方程就是。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要三个量确定了且>0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。
(二)圆的一般方程将圆的标准方程,展开可得。
可见,任何一个圆的方程都可以写成 :问题:形如的方程的曲线是不是圆?将方程左边配方得:(1)当>0时,方程(1)与标准方程比较,方程表示以为圆心,以为半径的圆。
,(3)当<0时,方程没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当>0时,方程称为圆的一般方程.圆的一般方程的特点:(1)和的系数相同,不等于零;(2)没有xy这样的二次项。
(三)直线与圆的位置关系1、直线与圆位置关系的种类(1)相离---求距离; (2)相切---求切线;(3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径(2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交。
代数方法主要步骤:(1)把直线方程与圆的方程联立成方程组(2)利用消元法,得到关于另一个元的一元二次方程(3)求出其Δ的值,比较Δ与0的大小:(4)当Δ<0时,直线与圆相离;当Δ=0时,直线与圆相切;当Δ>0时,直线与圆相交。
新人教版高中数学选修一第二单元《直线和圆的方程》测试题(含答案解析)

一、选择题1.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,22.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( ) A .3,44ππ⎡⎤⎢⎥⎣⎦ B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.已知圆M :22(1)(2)5x y -+-=和点(3,5)P ,过点P 做圆M 的切线,切点分别为A 、B ,则下列命题:①4PA PB k k ⋅=-;②PA =;③AB 所在直线方程为:23130x y +-=;④PAB △外接圆的方程为2247130x y x y +--+=.其中真命题的个数为( ) A .1B .2C .3D .45.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .米C .米D .6.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是( ) A .3m ≥ B .3m 7≤≤ C .27m -<≤D .46m ≤≤7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条10.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.已知三条直线的方程分别为0y=0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.15.若实数x ,y 满足关系10x y ++=,则式子S =______.16.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.17.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.18.已知点A (0,2),O (0,0),若圆()()22:21C x a y a -+-+=上存在点M ,使3MA MO ⋅=,则圆心C 的横坐标a 的取值范围为________________.19.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程. 22.在平面直角坐标系中,已知射线OA :0(0)x y x -=≥,OB :20(0)x y x +=≥.过点(1,0)P 作直线分别交射线,OA OB 于点A ,B .(1)当AB 的中点在直线20x y -=上时,求直线AB 的方程; (2)当AOB 的面积取最小值时,求直线AB 的方程; (3)当||||PA PB ⋅取最小值时,求直线AB 的方程.23.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.24.(1)已知点(,)a b 在直线3210x y ++=上,则直线20ax by ++=必过定点M ,求定点M 的坐标.(2)已知直线1l 过(1)中的定点M ,且与直线2:4l y x =相交于第一象限内的点A ,与x 正半轴交于点B ,求使△OAB 面积最小时的直线1l 的方程.25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程.26.在①经过直线1:20l x y -=与直线2:210l x y +-=的交点.②圆心在直线20x y -=上.③被y 轴截得弦长AB =;从上面这三个条件中任选一个,补充下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问题:是否存在圆Q ,且点()2,1A --,()1,1B -均在圆上?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a-≤≤-解得3a ≤-或2a ≥.【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C. 【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.D解析:D 【分析】设出斜率k ,得出切线方程,利用相切可得2+2440k k -=,即可得出4PA PB k k ⋅=-,判断①;由22PA PM MA =-②;可得,,,P A B M 四点共圆,圆心为PM 中点,即72,2⎛⎫ ⎪⎝⎭,半径为1322PM =,写出圆的方程可判断④;两圆相减可得直线AB 方【详解】可知切线的斜率存在,设斜率为k ,则切线方程为53y k x ,即350kx y k ,=2+2440k k -=,可得,PA PB k k 是该方程的两个根,故4PA PB k k ⋅=-,故①正确; 又PM ==PA MA ⊥,PA ∴==故②正确;,PA MA PB MB ⊥⊥,,,,P A B M ∴四点共圆,且圆心为PM 中点,即72,2⎛⎫⎪⎝⎭,半径为22PM =, 故PAB △外接圆的方程为22713(2)()24x y -+-=,即2247130x y x y +--+=,故④正确;将两圆方程相减可得23130x y +-=,即直线AB 方程,故③正确. 故选:D. 【点睛】本题考查过圆外一点作圆的切线问题,解题的关键是利用相切关系得出圆心到直线的距离为半径,且,,,P A B M 四点共圆.5.C解析:C 【分析】根据题意,建立圆拱桥模型,设圆O 半径为R , 当水面跨度是20米,拱顶离水面4米,分析可得22100(4)R R =--,求出R ,当水面上涨2米后,可得跨度2CD CN =,计算可得解. 【详解】根据题意,建立圆拱桥模型,如图所示:设圆O 半径为R ,当水面跨度是20米,拱顶离水面4米,此时水面为AB ,M 为AB 中点,即20AB =,4OM R =-,利用勾股定理可知,22222AB AM OA OB ==-,即22100(4)R R =--,解得292R =,当水面上涨2米后,即水面到达CD ,N 为CD 中点,此时2ON R =-, 由勾股定理得2222(2)66CD CN R R ==--=.故选:C 【点睛】关键点睛:本题考查圆的弦长,解题的关键是利用已知条件建立模型,利用数形结合求解,考查学生的转化能力与运算求解能力,属于基础题.6.B解析:B 【分析】根据题意,分析圆C 的圆心坐标以及半径,设AB 的中点为M ,由AB 的坐标分析M 的坐标以及|AB |的值,可得以AB 为直径的圆;进而分析,原问题可以转化为圆C 与圆M 有公共点,结合圆与圆的位置关系,分析可得答案. 【详解】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =, 设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =, 以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得PA ⊥PB ,则圆C 与圆M 有公共点,又由22(14)(04)5MC =-+-=, 即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤,故选:B. 【点睛】本题考查直线与圆的位置关系,注意将圆问题转化为圆与圆的位置关系,属于基础题.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误.故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,3)30,33)(3)- 【分析】先画出图形,求出3),(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得3),(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与 解析:(,12)(221,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.15.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min 2S d ==故答案为:2. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.16.【分析】先求得直线过定点分析可知当直线与CM 垂直时直线被圆截得的弦长最短进而利用斜率的关系即可求得m 的值【详解】直线的方程可化为所以直线会经过定点解得定点坐标为圆C 圆心坐标为当直线与CM 垂直时直线被解析:34-【分析】先求得直线过定点()3,1M ,分析可知当直线l 与CM 垂直时,直线被圆截得的弦长最短 ,进而利用斜率的关系即可求得m 的值. 【详解】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =-【点睛】本题考查了直线与圆的位置关系,根据斜率关系求得参数的值,属于基础题.17.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = . 当定点A 为()2,1时,22111m d m +===+ ,符合题意; 当定点A 为()2,3 时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.18.【解析】【分析】设利用可得的轨迹方程以为圆心2为半径的圆利用圆上存在点可得两圆相交或相切建立不等式即可求出实数的取值范围【详解】解:设因为A(02)O(00)所以因为所以化简得:所以点的轨迹是以为圆 解析:[0,3]【解析】 【分析】设(),M x y ,利用 3MA MO ⋅= ,可得M 的轨迹方程以()0,1 为圆心,2为半径的圆,利用圆C 上存在点M ,可得两圆相交或相切,建立不等式,即可求出实数a 的取值范围. 【详解】解:设(),M x y ,因为 A (0,2),O (0,0), 所以(,2)MA x y =-- ,(,)MO x y =-- . 因为3MA MO ⋅= ,所以()()()()23x x y y --+--= ,化简得:22(1)4x y +-= ,所以M 点的轨迹是以()0,1 为圆心,2为半径的圆. 因为M 在()()22:21C x a y a -+-+= 上, 所以两圆必须相交或相切.所以13≤≤ ,解得03a ≤≤.所以圆心C 的横坐标a 的取值范围为: [0,3]. 故答案为:[0,3]. 【点睛】本题主要考查求轨迹方程,考查圆与圆的位置关系,确定M 的轨迹方程是解题的关键,属于中档题.19.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.20.【分析】根据AOB 是直角三角形解得圆心O 到直线ax +by =1距离即得ab 关系式再根据两点间距离公式代入消去根据二次函数性质以及的范围求最值【详解】因为是直角三角形且所以O 到直线ax +by =1距离为因1【分析】根据AOB 是直角三角形,解得圆心O ax +by =1距离,即得a ,b 关系式,再根据两点间距离公式,代入消去a ,根据二次函数性质以及b 的范围求最值 【详解】因为AOB 是直角三角形,且||||1AO OB ==,所以O ax +by =1,因此22222a b =+= 设点P (a ,b )与点(0,1)之间的距离为d ,d ====因为22,b b ≤≤≤b =d 取最大值为1=+1 【点睛】本题考查直线与圆位置关系、利用二次函数性质求最值,考查综合分析求解能力,属中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭ 【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)7470x y --=(2)440x y --=(3)3)10x y --= 【分析】(1)设11(,)A x x ,22(,2)B x x -,根据AB 的中点在直线20x y -=上求出125x x =,利用斜率公式求出直线AB 的斜率,再由点斜式可求出直线AB 的方程; (2)设直线AB 的方程为1x my =+,求出,A B 的坐标,利用AOBAOPBOPSSS=+求出面积关于m 的解析式,再根据基本不等式求最值可得m 和直线AB 的方程;(3)利用(2)中,A B 的坐标求出||PA 、||PB ,得到||||PA PB 关于m 的函数关系式,再换元利用基本不等式求出||||PA PB 取最小值时的m ,从而可得直线AB 的方程. 【详解】(1)设11(,)A x x ,22(,2)B x x -,则AB 的中点为12122(,)22x x x x +-, 因为AB 的中点在直线20x y -=上,所以121222022x x x x +--⨯=,即125x x =, 所以直线AB 的斜率12212227744x x x k x x x +===-, 所以直线AB 的方程为7(1)4y x =-,即7470x y --=. (2)设直线AB 的方程为1x my =+,联立10x my x y =+⎧⎨-=⎩,得11x y m ==-,所以11(,)11A m m --(1)m <, 联立120x my x y =+⎧⎨+=⎩,得121x m =+,221y m =-+1()2m >-,所以12(,)2121B m m -++, 所以AOB AOP BOP S S S =+112||()2121OP m m =+-+112221m m =+-+,因为220,210m m ->+>,所以112221m m +-+112221()22213m m m m -++=+⨯-+ 12122(11)32221m m m m +-=+++-+14(233≥+=, 当且仅当14m =时,等号成立, 所以AOB S的最小值为43,此时14m =,直线AB 的方程为114x y =+,即440x y --=.(3)由(2)知,||PA ==||PB =21m =+, 所以||||PA PB ⋅=222212121m m m m m +=-+-++222(1)2(1)3m m m +=-+++ 22321m m =+-++, 令53(,4)2m t +=∈,则2231(3)1m t m t +=+-+21106106t t t t t ==-++-≤=,当且仅当=t3m =时,231m m ++取得最大值,||||PA PB ⋅取得最小值,此时直线AB的方程为3)1x y =+,即3)10x y --=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 23.(1)圆心(3,6)C -,半径5R =(2)证明见解析(3)16m =-时,直线l 被圆C 截得的弦最短,弦长为【分析】(1)利用6,12,20D E F =-==可求得结果; (2)利用直线l 经过的定点在圆C 内可证结论成立;(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,根据弦长公式可知d 最大即CM l ⊥时,弦长最短,由此可求得结果. 【详解】(1)因为6,12,20D E F =-==所以6322D --=-=,12622E -=-=-,所以(3,6)C -,所以半径5R ===. (2)由2830mx y m ---=得(28)(3)0x m y --+=,由28030x y -=⎧⎨+=⎩得4,3x y ==-,所以直线l 经过定点M (4,3)-,5=<,所以定点M (4,3)-在圆C 内, 所以无论m 为何值,直线l 总与圆C 有交点.(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,则||AB =d 最大值时,弦长||AB 最小,因为||d CM ≤==,当且仅当CM l ⊥时,d ,||AB取最小值=111236343CMm k =-=-=--+-,所以16m =-.所以16m =-时,直线l 被圆C 截得的弦最短,弦长为 【点睛】关键点点睛:第(2)问的关键是证明直线经过的定点在圆内,第(3)问的关键是推出CM l ⊥时,弦长最短.24.(1)(6,4);(2)10x y +=.【分析】(1)点(,)a b 在直线3210x y ++=上,所以213b a +=-,代入直线20ax by ++=得6(32)0x b y x -+-=可得答案;(2)讨论直线的斜率存在和不存在情况,分别求出三角形的面积比较,并求较小时直线的【详解】(1)因为点(,)a b 在直线3210x y ++=上,所有3210a b ++=,即213b a +=-, 代入直线20ax by ++=得21203b x by +-++=,整理得6(32)0x b y x -+-=, 所以60320x y x -=⎧⎨-=⎩解得64x y =⎧⎨=⎩,定点(6,4)M . (2)设(,)A m n (0,0)m n >>,(,0)(0)B c c >,所以M 、A 、B 三点共线, 当1l 与x 轴垂直时,(4,24)A ,(4,0)B ,112444822OAB SOB AB =⨯⨯=⨯⨯=, 当1l 与x 轴不垂直时,所以AM BM k k =,即44066n m c --=--,644n m c n -=-, 因为在直线2:4l y x =上,所以4n m =,所以64541n m m c n m -==--, 因为0,0m c >>,所以501m c m =>-,所以1m , 2115101101222111OAB A m m S y OB n m m m m ⎛⎫=⨯⨯=⨯⨯==-++ ⎪---⎝⎭()102240≥⨯+=,当且仅当111m m -=-即2m =时等号成立,此时48n m ==,所以(2,8)A ,因为48>40,所以△OAB 面积最小时直线1l 与x 轴不垂直,且1l 的斜率为84126AM k -==--,所以直线1l 的方程为8(2)y x -=--,即为100x y +-=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.25.(1)142x y +=;(2)280x y -+=. 【分析】(1)设出直线的截距式方程1x y a b+=,代入点的坐标,求解出参数的值,从而截距式方程可求;(2)先求解出A 关于直线y x =的对称点A ',然后根据A '在BC 上求解出C 点坐标,再根据高所在直线的斜率与AB 斜率的关系,从而可求解出AB 的高所在直线的一般式方程.(1)设AB 的方程为1x y a b +=,代入点()51,,4,02A B ⎛⎫- ⎪⎝⎭, 所以1512401a b a b-⎧+=⎪⎪⎨⎪+=⎪⎩,所以42a b =⎧⎨=⎩,所以AB 的截距式方程为:142x y +=; (2)设A 关于y x =的对称点为A ',所以5,12A ⎛⎫'- ⎪⎝⎭且A '在直线BC 上, 又因为()4,0B ,所以()()01:04542A B l y x '---=--,即2833y x =-, 又因为C 在y x =上,也在2833y x =-上,所以2833y x y x =⎧⎪⎨=-⎪⎩,所以88x y =-⎧⎨=-⎩,所以()8,8C --, 又因为5012142AB k -==---,设AB 的高所在直线的一般式方程为20x y m -+=,代入点()8,8C --,所以1680m -++=,所以8m =,所以AB 的高所在直线的一般式方程为280x y -+=.【点睛】思路点睛:点关于直线l 的对称点坐标的求解步骤(直线的斜率存在且不为零,已知点()11,A x y ,直线l 的斜率k ):(1)设出对称点的坐标(),A a b ';(2)AA '的中点11,22x a y b ++⎛⎫ ⎪⎝⎭必在l 上,由此得到第一个方程; (3)根据1AA k k '=-得到第二个方程;(4)两个方程联立可求解出(),A a b '.26.答案见解析【分析】由点()2,1A --,()1,1B -均在圆上,可知圆心在直线AB :1y =-的垂直平分线上,即12x =-,设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭,半径为r ,若选①,求出直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选②,由已知得圆心1,12⎛⎫-- ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选③,由弦长AB =,可得半径及圆心,即可求出圆的方程.【详解】因为点()2,1A --,()1,1B -均在圆上,所以圆心在直线AB 的垂直平分线上, 又直线AB 的方程为1y =-,直线AB 垂直平分线所在直线方程为:21122x -+==-,则可设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭;设圆的半径为r , 若选①,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上.由20210x y x y -=⎧⎨+-=⎩解得2515x y ⎧=⎪⎪⎨⎪=⎪⎩,即直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,则圆过点21,55⎛⎫ ⎪⎝⎭, 所以()222221211112552r b b ⎛⎫⎛⎫⎛⎫=--+-=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得1b =-,则294r =, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选②,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 由圆心在直线20x y -=上可得1202b ⎛⎫⨯--= ⎪⎝⎭,则1b =-, 所以()2221911124r ⎛⎫=--+-+= ⎪⎝⎭, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选③,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 若圆被y轴截得弦长AB =,根据圆的性质可得,22219224AB r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 由()222191124r b ⎛⎫=--++= ⎪⎝⎭,解得1b =-, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭;综上,存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭ 【点睛】方法点睛:本题考查求圆的标准方程,常用的方法有:(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;。
人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (1)(含答案解析)

选修一第二章《直线和圆的方程》提高训练题 (1)一、单选题1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱1CC 的中点,P 、Q 分别为面1111D C B A 和线段1B C 上的动点,则EPQ △周长的最小值为( )A .BC .D .2.已知直线l 过定点()0,1,则“直线l 与圆()2224x y -+=相切”是“直线l 的斜率为34”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.一束光线,从点A (-2,2)出发,经x 轴反射到圆C :()()22331x y -+-=上的最短路径的长度是( )A .1B .1C .1D .14.已知圆224x y +=和圆224440x y x y ++-+=关于直线l 对称,则直线方程为( ) A .1y x =-+ B .1y x =+ C .2y x =-+ D .2y x =+5.已知点集()()(){}2222,cos sin 1,S x y x y R ααα=-+-≤∈,当α取遍任何实数时,S 所扫过的平面区域面积是( )A .πB .2π+C .1π+D .4π+6.已知点(7,3)P ,Q 为圆22:210250M x y x y +--+=上一点,点S 在x 轴上,则||||SP SQ +的最小值为( ) A .7B .8C .9D .107.已知直线()10,0ax by c b c ++-=>经过圆22250x y y +--=的圆心,则41b c+的最小值是( ). A .9 B .8 C .4 D .28.在[2-,2]上随机取一个数k ,则事件“直线y kx =与圆(224x y -+=有公共点”发生的概率为( ) A .14B .12C .23D .349.在平面直角坐标系xOy 中,已知圆()22:29C x y -+=,,E F 是直线:2l y x =+上的两点,若对线段EF 上任意一点P ,圆C 上均存在两点,A B ,使得cos 0APB ∠≤,则线段EF 长度的最大值为( )A .2BC .D .4二、多选题10.定义点()00,P x y 到直线l :()2200ax by c a b ++=+≠的有向距离为=d 已知点12,P P 到直线l 的有向距离分别是12,d d .以下命题不正确的是( ) A .若121d d ==,则直线12PP 与直线l 平行 B .若11d =,21d =-,则直线12PP 与直线l 垂直 C .若120d d +=,则直线12PP 与直线l 垂直 D .若120d d ⋅≤,则直线12PP 与直线l 相交11.已知直线l :20ax y +-=与C :()()2214x y a -+-=相交于,A B 两点,若△ABC 为钝角三角形,则满足条件的实数a 的值可能是( ) A .12B .1C .2D .412.已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( ) A .不论a 为何值时,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值时,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |13.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现;平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,()4,0B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA =D .C 上的点到直线34130x y --=的最小距离为114.已知点P 在圆C :()()22455x y -+-=上,点()4,0A ,()0,2B ,则下列说法中正确的是( )A .点P 到直线AB 的距离小于6 B .点P 到直线AB 的距离大于2C .cos APB ∠的最大值为45D .APB ∠的最大值为2π 15.(多选题)下列说法正确的是( )A .直线20x y -+=与两坐标轴围成三角形的面积是2B .过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x --=-- C .点(1,1)关于直线10x y -+=的对称点为(0,2)D .经过点(3,4)P ,且在两坐标轴上的截距都是非负整数的直线条数共有6条三、填空题16.如图,射线OA ,OB 分别与x 轴正半轴成45和30角,过点()1,0P 作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线12y x =上时,则直线AB 的方程是______.17.已知点Q 是直线l :40x y --=上的动点,过点Q 作圆O :224x y +=的切线,切点分别为A ,18.已知直线:l y x b =+,曲线:C y b 的取值范围是______. 19.已知()3,1A -,()5,2B -,点P 在直线0x y +=上,若使PA PB +取最小值,则点P 的坐标是___________.20.已知圆心为()()1,0m m <的圆与x 轴相切,且与直线20x y -=相交于,A B 两点,若AB 4=,则实数m =___________.21.已知直线l 经过点()4,3P ,且在两坐标轴上的截距相等,则直线l 的方程______. 22.已知(),P x y 为圆221x y +=上的动点,则3410x y ++的最大值为________.23.设点P (x ,y )是圆C :x 2+(y -2)2=1上的动点,定点A (1,0),B (-1,0),则PA PB ⋅的最大值为_____24.已知(),0C m ,若以C 为圆心的圆C 与直线310x y +-=相切于点()1,T n ,则圆C 的标准方程是______.25.点P 在曲线21y x =+上,当点P 到直线25y x =-的距离最小时,P 的坐标是______. 26.已知直线:(1)(1)(3)0l m x m y m ++-+-=,则原点到直线l 的距离的最大值等于___________. 27.已知复数z 满足1i z z -=-(其中i 为虚数单位),则2i z +-的最小值为________. 28.设直线:(1)(21)30()l m x m y m m R -+++=∈与圆222(1)(0)x y r r -+=>交于A ,B 两点,C 为圆心,当实数m 变化时,ABC 面积的最大值为4,则2mr =______.29.圆2221: 290C x y ax a +++-=和圆2222: 4140C x y by b +--+=只有一条公切线,若a R ∈,b R ∈,且0ab ≠,则2241a b +的最小值为___________. 30.阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.四、解答题31.已知点(P 在以坐标原点为圆心的圆O 上,直线1l 0y +-=与圆O 相交于A ,B 两点,且A 在第一象限(1)求圆O 在点P 处的切线方程;(2)设()()000,1Q x y x ≠±是圆O 上的一个动点,点Q 关于原点O 的对称点为1Q ,点Q 关于x 轴的对称点为2Q ,如果直线1AQ ,2AQ 与y 轴分别交于()0,m 和()0,n 两点,问mn 是否为定值?若是,求出定值;若不是,说明理由.32.已知点()1,3M ,圆C :()()22214x y -++=.(1)若直线l 过点M ,且被圆C 截得的弦长为l 的方程;(2)设O 为坐标原点,点N 在圆C 上运动,线段MN 的中点为P ,求点P 的轨迹方程. 33.已知圆C :22230x y x ++-=.(1)求斜率为1且与圆C 相切的直线l 的方程;(2)已知点()4,0A ,()0,4B ,P 是圆C 上的动点,求ABP △面积的最大值.34.以三角形边BC ,CA ,AB 为边向形外作正三角形BCA ',CAB ',ABC ',则AA ',BB ',CC '三线共点,该点称为ABC 的正等角中心.当ABC 的每个内角都小于120º时,正等角中心点P 满足以下性质: (1)120APBAPC BPC ;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).35.在平面直角坐标系中,已知矩形ABCD 的长AB 为2,宽AD 为1,AB ,AD 边分别为x 轴正半轴,y 轴正半轴,以A 为坐标原点,将矩形折叠,使A 点落在线段DC 上(包括端点).(1)若折痕所在直线的斜率为k ,求折痕所在直线方程;(2)当20k -+≤≤时,求折痕长的最大值;(3)当21k -≤≤-时,折痕为线段PQ ,设()221t k PQ =-,试求t 的最大值36.已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程. 37.如图,已知圆()22:19M x y -+=,点()2,1A -.(1)求经过点A 且与圆M 相切的直线l 的方程;(2)过点()3,2P -的直线与圆M 相交于D 、E 两点,F 为线段DE 的中点,求线段AF 长度的取值范围.38.已知直线l :450x ay +-=与直线l ′:20x y -=相互垂直,圆C 的圆心与点(2,1)关于直线l 对称,且圆C 过点M (-1,-1). (1)求直线l 与圆C 的方程.(2)过点M 作两条直线分别与圆C 交于P ,Q 两点,若直线MP ,MQ 的斜率满足k MP +k MQ =0,求证:直线PQ 的斜率为1.39.已知直线l :10x y -+=,点()12,A --. (1)求过点A 且与l 垂直的直线方程; (2)求点A 关于直线l 的对称点A '的坐标;40.已知直线180l mx y n ++=:,直线2210l x my +-=:,12//l l ()(00)A m n m n >>,,的直线l 被1l 、2l(1)A 点坐标; (2)直线l 的方程.41.已知点(1,0),(4,0)A B ,曲线C 上任意一点P 满足2PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分∠EDF ,若存在,求出Q 点坐标,若不存在,请说明理由.42.已知在平面直角坐标系xOy 中,点()30A -,. (1)设动点(),M x y ,满足2=MA MO ,求动点M 的轨迹C 的方程; (2)已知Q 点的坐标为()3,3-,求过点Q 且与C 相切的直线方程.43.已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交; (3)求直线l 被圆C 截得的弦长的取值范围.44.如图直线l 过点(3,4),与x 轴、y 轴的正半轴分别交于A 、B 两点,AOB 的面积为24.点P 为线段AB 上一动点,且//PQ OB 交OA 于点Q .(1)求直线AB 斜率的大小; (2)若APQ 的面积APQS与四边形OQPB 的面积OQPB S 满足:13APQ OQPB S S =△时,请你确定P 点在AB 上的位置,并求出线段PQ 的长;(3)在y 轴上是否存在点M ,使MPQ 为等腰直角三角形,若存在,求出点M 的坐标;若不存在,说明理由.45.已知ABC 的三个顶点()30A -,,2(3)B -,,(01)C ,. (1)求ABC 外接圆的方程; (2)求ABC 内切圆的方程.46.已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .(1)求切点1P 坐标和切点n P 的坐标;(2)已知()f x x x =在0,4π⎛⎫⎪⎝⎭n n x y <.47.如果()2,0A ,()1,1B ,()1,1C -,()2,0D -,CD 是以OD 为直径的圆上一段圆弧,CB 是以BC 为直径的圆上一段圆弧,BA 是以OA 为直径的圆上一段圆弧,三段弧构成曲线Ω,(1)求AB 所在圆与CB 所在圆的公共弦方程; (2)求CB 与BA 的公切线方程.48.如图所示,甲船由A 岛出发向北偏东45︒的方向做匀速直线航行,速度为/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东1tan 2θθ⎛⎫= ⎪⎝⎭的方向作匀速直线航行,速度为/小时.(1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?49.已知圆()22:11M x y -+=,15,22A ⎛⎫ ⎪⎝⎭,()0,B t ,()()0,404C t t -<<,直线,PB PC 都是圆M 的切线,且点P 在y 轴右侧.(1)过点A 的直线l 被圆M l 的方程; (2)当1t =时,求点P 的横坐标; (3)求PBC 面积的最小值.五、双空题50.已知直线1:30l x y -+=,2:20l x y +=相交于点A ,则点A 的坐标为_________,圆22:+C x y 2410x y -++=,过点A 作圆C 的切线,则切线方程为__________.【答案与解析】1.B 【解析】先分析出P 在B 1C 1上时,△PEQ 的周长更短.过E 点作关于B 1C 1的对称点N ,关于B 1C 的对称点M ,则,EQ MQ EP NP ==,过P 作在平面BCC 1B 1的投影P ',连接,P Q P E '',则,PQ P Q PE P E ''>>,所以只有P 在B 1C 1上时,△PEQ 的周长更短.过E 点作关于B 1C 1的对称点N ,关于B 1C 的对称点M ,则,EQ MQ EP NP ==,把△PEQ 的周长转化为PQ PN QM ++,当,,,N P Q M 共线时,周长最短,即可求解.所以△PEQ 的周长可以转化为PQ PN QM ++. 当,,,N P Q M 共线时,周长最短.则=PQ PN QM MN ++.因为E 为中点,所以111,1C N C E CM CE ====,所以△PEQ 的周长为MN即EPQ △. 故选:B距离的计算方法有两类:(1)几何法:利用几何图形求最值;(2)代数法:把距离表示为函数,利用函数求最值. 2.B 【解析】首先根据题意求直线l ,再判断充分,必要条件. 当直线斜率存在时,直线l 的方程是1y kx =+,圆心()2,0到直线10kx y -+=的距离2d =,解得:34k =,当直线斜率不存在时,直线l 的方程是0x =与圆()2224x y -+=相切,综上可知,“直线l 与圆()2224x y -+=相切”是“直线l 的斜率为34”的必要不充分条件.故选:B 3.A 【解析】求出点A 关于x 轴对称点A ',再求点A '与圆C 上的点距离最小值即可. 依题意,圆C 的圆心(3,3)C ,半径1r =,点A (-2,2)关于x 轴对称点(2,2)A '--,连A C '交x 轴于点O ,交圆C 于点B ,如图,圆外一点与圆上的点距离最小值是圆外这点到圆心距离减去圆的半径,于是得点A '与圆C 上的点距离最小值为1A B A C r ''=-=1=, 在x 轴上任取点P ,连,,AP A P PC ',PC 交圆C 于点B ',而,AO A O AP A P ''==,AO OB A O OB A B A C r A P PC r AP PB '''''+=+==-≤+-=+,当且仅当点P 与O 重合时取“=”,所以最短路径的长度是1. 故选:A 4.D 【解析】本题首先可求出两圆的圆心,然后根据题意得出直线l 过两圆心连接而成的线段的中点且互相垂直,最后根据直线的点斜式方程即可得出结果. 224x y +=,圆心为()0,0,半径为2,224440x y x y ++-+=,即()()22224x y ++-=,圆心为()2,2-,半径为2,因为圆224x y +=和圆224440x y x y ++-+=关于直线l 对称, 所以直线l 过两圆心连接而成的线段的中点且互相垂直, 则直线l 过点()1,1-,斜率112020k,故直线方程为11y x -=+,即2y x =+, 故选:D. 5.A 【解析】根据题意S 中的元素组成以()22cos ,sin αα为圆心的圆心,半径为1的圆及其内部,当α取遍任何实数时,点集S 对应的图形如图,为矩形与两个半圆的组合图形,从而可得答案. 根据题意,点集()()(){}2222,cos sin 1,S x y x y R ααα=-+-≤∈,S 中的元素组成以()22cos ,sin αα为圆心的圆心,半径为1的圆及其内部,设M ()22cos ,sin αα又由22220cos 10sin 1sin cos 1a a αα⎧≤≤⎪≤≤⎨⎪+=⎩,则圆心M 在线段()101x y x +=≤≤上,则点集S 对应的图形如图,为矩形ABCD 与两个半圆的组合图形, 其中AB=2,BC ,则当α取遍任何实数时,S 所扫过的平面区域面积S=2ππ=;故选:A .6.C【解析】本题目是数形结合的题目,根据两点之间线段最短的原则,可以将SP 转换为'SP ,连接'MP ,找到S 点的位置,从而求出线段和的最小值将圆方程化为标准方程为:()()22151x y -+-=,如下图所示:作点(7,3)P 关于x 轴的对称点'(7,3)P -,连接'MP 与圆相交于点Q ,与x 轴相交于点S ,此时,||||SP SQ +的值最小,且'''||||||||SP SQ SP SQ P Q P M r +=+==-,由圆的标准方程得:M 点坐标为()1,5,半径1r =,所以'10P M ==,'9P M r -=,所以||||SP SQ +最小值为9 故选:C 7.A 【解析】直线过圆心,先求圆心坐标,利用1的代换,以及基本不等式求最小值即可.解:圆22250x y y +--= 即22(1)6x y +-=,表示以(0,1)C 的圆. 由于直线()10,0ax by c b c ++-=>经过圆22250x y y +--=的圆心,故有1b c +=.∴()()5414152494c b c b b c b cb c +=+=++++= 当且仅当223b c ==时,取等号, 故41b c+的最小值为9, 故选:A . 8.B 【解析】先求出直线与圆有公共点的k 值区间,再利用几何概型即可求出概率.显然,圆(224x y -+=的圆心坐标为0),半径为2,直线y kx =与圆(224x y -+=2≤,解得11k -≤≤,在[2-,2]上随机取一个数k 的试验的全部结果构成的区间长度为4,“直线y kx =与圆(224x y -+=有公共点”的事件A 的区间长度为2,于是得21()42P A ==,事件“直线y kx =与圆(224x y -+=有公共点”发生的概率为12.故选:B 9.C 【解析】设圆的切线为PM 、PN ,由cos 0APB ∠≤得90APB ∠≥,即90MPN ∠≥, 再求得PC 的取值范围,求得点P 的坐标,即可求得EF 的最大值. 由题意,圆心到直线:2l y x =+的距离为3d =<(半径)故直线l 和圆相交;当点P 在圆外时,从直线上的点向圆上的点连线成角, 当且仅当两条线均为切线时,APB ∠才是最大的角,不妨设切线为PM ,PN ,则由cos 0APB ∠≤, 得90APB ∠≥, 90MPN ∴∠≥;当90MPN ∠=时,32sin sin 452MPC PC ∠===,PC ∴=设()00,2P x x +,PC ==解得:0x =设())2,2E F,如图,EF 之间的任何一个点P ,圆C 上均存在两点,A B ,使得90APB ∠≥,线段EF 长度的最大值为EF ==故选:C 10.BCD 【解析】要理解题目中有向距离的概念,点在直线上方时为正,下方时为负,绝对值代表点到直线的距离,根据各选项判断即可 设()111,P x y , ()222,P x y ,选项A, 若121d d ==, 则1122ax by c ax by c ++=++=则点12,P P 在直线的同一侧,且到直线距离相等,所以直线12PP 与直线l 平行, 所以正确;选项B, 点12,P P 在直线l 的两侧且到直线l 的距离相等, 直线12PP 不一定与l 垂直, 所以错误; 选项C, 若120d d ==, 满足120d d +=, 即11220ax by c ax by c ++=++=, 则点12,P P 都在直线l 上, 所以此时直线12PP 与直线l 重合, 所以错误; 选项D, 若120d d ⋅≤, 即()()11220ax by c ax by c ++++≤, 所以点12,P P 分别位于直线l 的两侧或在直线l 上, 所以直线12PP 与直线l 相交或重合, 所以错误. 故选:BCD 11.AC 【解析】根据ABC 的形状先判断出CAB ∠的大小,然后结合圆心到直线的距离d 以及sin CAB ∠的取值范围求解出a 的取值范围.由题意,圆C 的圆心为()1,a ,半径为2r,由于△ABC 为等腰三角形,若该三角形为钝角三角形,则045CAB ︒<∠<︒, 设圆心C 到直线l 的距离为d,则d =则0sin 2d CAB r <∠==<, 且直线不经过圆心,即20a a +-≠,整理可得24101a a a ⎧-+<⎨≠⎩,解得22a <<+,且1a ≠.所以()(21,2a ∈⋃. 故选:AC. 12.ABD 【解析】对A ,根据斜率相乘为1-可判断;对B ,可直接求出定点可判断;对C ,取特殊的点代入即可判断;对D ,联立直线求出交点即可表示出MO 即可求出最值.对于A ,1(1)0a a ⨯+-⨯=恒成立,l 1与l 2互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立,所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确. 对于C ,在l 1上任取点(,1)x ax +,关于直线x +y =0对称的点的坐标为(1,)ax x ---,代入l 2:x +ay +1=0,则左边不等于0,故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO MO,故D 正确. 故选:ABD. 13.ABD 【解析】对于A ,设点(),P x y ,由||1||2PA PB =结合两点间的距离公式化简即可判断,对于B ,由A 可知曲线C 的方程表示圆心为()4,0-,半径为4的圆,从而可求出圆上的点到点()1,1的距离的范围,进而进行判断,对于C ,设()00,M x y ,由2MO MA =,由距离公式可得方程,再结点()00,M x y 在曲线C 上,得到一个方程,两方程联立求解判断,对于D ,由于曲线C 的方程表示圆心为()4,0-,半径为4的圆,所以只要求出圆心到直线的距离减去圆的半径可得答案由题意可设点(),P x y ,由()2,0A -,()4,0B ,||1||2PA PB =,12=,化简得2280x y x ++=,即22(4)16x y ++=,所以选项A 正确;对于选项B ,曲线C 的方程表示圆心为()4,0-,半径为4的圆,点()1,1与圆心的距离为44,而34]∈,所以选项B 正确;对于选项C ,设()00,M x y ,由2MO MA =,又()2200416x y ++=,联立方程消去0y 得02x =,解得0y 无解,所以选项C 错误; 对于选项D ,C 的圆心()4,0-到直线34130x y --=的距离为|3(4)13|55d ⨯--==,且曲线C 的半径为4,则C 上的点到直线34130x y --=的最小距离541d r -=-=故选项D 正确; 故选:ABD . 14.BCD 【解析】首先求出线段AB 的中点,即可求出线段AB 的垂直平分线,再由圆心在直线上,即可求出P 到直线AB 的距离的最值,当ABP △的外接圆与圆C 相内切时,APB ∠最小,当ABP △的外接圆与圆C 相外切时,APB ∠最大,数形结合即可求出cos APB ∠的最大值; 解:(4,0)A ,(0,2)B ,所以线段AB 的中点为()2,1M ,201042AB k -==--,所以线段AB 的垂直平分线为()122y x -=-,即23y x =-,因为圆C :()()22455x y -+-=,圆心()4,5C ,半径r = 又点()4,5C 恰在直线23y x =-上,所以点P 到直线AB 的距离最小值为2CM r -=,最大值为6CM r +=,由正弦定理可知,当ABP △的外接圆与圆C 相内切时,APB ∠最小,此时cos APB ∠最大,此时P 恰在23y x =-与()()22455x y -+-=的一个交点上,由()()2245523x y y x ⎧-+-=⎪⎨=-⎪⎩解得57x y =⎧⎨=⎩或33x y =⎧⎨=⎩,所以()5,7P ,所以AP =PMcos PM APM AP ∠==24cos cos 22cos 15APB APM APM ∠=∠=∠-=,当ABP △的外接圆与圆C 相外切时,APB ∠最大,此时2APB π∠=,故C 、D 正确;故选:BCD15.AC 【解析】选项A 先求出直线20x y -+=与两坐标轴的交点坐标,再求面积;选项B 利用直线方程的条件限制判定;选项C 利用求一点关于直线对称的点的步骤求解;选项D 分截距为零和截距不为零讨论,对于截距不为零的利用截距式方程求解.选项A :因为直线20x y -+=与两坐标轴的交点为()2,0A -,()0,2B ,所以直线20x y -+=与两坐标轴围成三角形的面积是12222⨯-⨯=,故选项A 正确;选项B :直线方程写成11y y x x y y x x --=--的条件为1212,y y x x ≠≠,故选项B 错误;选项C :设点(1,1)关于直线10x y -+=的对称点为(),m n ,由1110,221111m n n m ++⎧-+=⎪⎪⎨-⎪⋅=-⎪-⎩,解得0,2m n =⎧⎨=⎩,故选项C 正确;选项D :当截距为零时,有一条43y x =;当截距不为零时,设直线方程为1x ya b+=, 因为过定点(3,4)P ,所以341a b +=,即1243b a =+-,又a ,b 均为正整数,所以3a -必为12的正因数1,2,3,4,6,12,共6种情况, 故综合起来应该有7条,故选项D 错误. 故选:AC.16.(3230x y -- 【解析】先求出射线OA ,OB 的方程,(),A m m,(),B n ,可得点C 的坐标,利用点C 在直线12y x =以及Ap BP k k =列方程组可得m 的值,再求出Ap k ,由点斜式可得直线方程. 由题意可得tan 451OA k ==,()3tan 18030tan1503OB k =-==-,所以直线OA 的方程:y x =,直线OB 的方程:y =, 设(),A m m ,(),B n ,所以AB 的中点2m n C ⎫+⎪⎪⎝⎭, 由点C 在直线12y x =上,且,,A P B 三点共线得:12201m n m m ⎧+=⎪⎪⎨-⎪=⎪-⎩解得:m ,所以A又()1,0P,所以AB AP k k =,所以直线AB 的方程是:)1y x =-,即(3230xy --=, 故答案为:(3230x y --=. 17.(1,-1) 【解析】恒过的定点坐标.由题意可设Q 的坐标为(m ,n ),则m -n -4=0,即m =n +4,过点Q 作圆O :224x y +=的切线,切点分别为A ,B ,则切点弦AB 所在直线方程为mx +ny -4=0,又由m =n +4,则直线AB 的方程变形可得nx +ny +4x -4=0,则有0440x y x +=⎧⎨-=⎩,解得11x y =⎧⎨=-⎩,则直线AB 恒过定点(1,-1).故答案为:(1,-1).18.1b ≤<【解析】由直线、曲线方程画出对应的图形,应用数形结合法,确定对应图形有两个交点时参数b 的取值范围.y x b =+表示斜率为1的平行直线系;y x 轴及其上方的半圆,如图所示.当l 通过()1,0A -,()0,1B 时,l 与C 有两交点,此时1b =,记为1l ;当l 与半圆相切时,此时b =2l ; 当l 夹在1l 与2l 之间时,l 和C 有两个不同的公共点.综上,1b ≤<故答案为:1b ≤<19.1313,55⎛⎫- ⎪⎝⎭【解析】求出点A 关于直线0x y +=的对称点E ,则直线BE 与0x y +=的交点即为所求. 点()3,1A -关于直线0x y +=的对称点为()1,3E -,又()5,2B -, 则直线BE 的方程为135123x y -+=--+,即4130x y --=,联立41300x y x y --=⎧⎨+=⎩,解得135x =,135y =-,所以使PA PB +取最小值的点P 的坐标是1313,55⎛⎫- ⎪⎝⎭.故答案为:1313,55⎛⎫- ⎪⎝⎭.20.-7 【解析】根据题意可知半径r m =-,进而算出圆心到直线的距离,再根据弦长为4,通过勾股定理列出等式即可解出.因为圆心为()()1,0m m <的圆与x 轴相切,所以半径r m =-,圆心到直线20x y -=的距离d =又因为AB 4=,由()2222212||425m AB r d m -⎛⎫=+⇒=+ ⎪⎝⎭,因为0m <,所以7m =-. 故答案为:-7.21.7y x =-+或34y x = 【解析】直线在两坐标轴上的截距相等,有两种情况,斜率为1-,或直线过原点,结合直线过点()4,3P 即可求解,有两种情况因为直线与坐标轴的截距相等,则直线的斜率为1-,或直线过原点,当直线斜率为1-时,因为直线过点()4,3P ,根据点斜式,直线方程为:()34y x -=--,化简得:7y x =-+; 当直线过原点时,34k =,所以直线方程为34y x =故答案为:7y x =-+或3y x =22.15 【解析】设3410t x y =++,即34100x y t ++-=,由直线与圆相切可得t 的范围,即可求解. 设3410t x y =++,则34100x y t ++-=,直线与圆相切时圆心()0,0到直线34100x y t ++-=的距离1d =,1=,解得:5t =或15t =,所以515t ≤≤,所以5341015x y ≤++≤, 所以3410x y ++的最大值为15, 故答案为:15. 23.8 【解析】用点P 的坐标表示出PA ,PB ,再求出PA PB ⋅并借助点P 在圆C 上的条件即可作答. 因点(,)P x y 在圆C 上,即22(2)1x y +-=,则22(1)2x y =--,且13y ≤≤, 而(1,),(1,)P PA x y x y B =--=---,于是得22221(2)44PA x y y y y PB ⋅=-+=--+=-,显然44y -在[1,3]y ∈上单调递增,则当3y =时,max (44)8y -=,即max ()8P PA B ⋅=, 所以PA PB ⋅的最大值为8. 故答案为:824.()22740x y -+=. 【解析】根据题意直接可求出n ,再根据切线的性质可得直线CT 与直线310x y +-=垂直,从而求出m ,进而求得半径,即可得出答案.解:根据题意,圆C 与直线310x y +-=相切于点()1,T n , 则()1,T n 在直线310x y +-=上,则有310n +-=,解可得2n =-, 又由圆心C 的坐标为(),0m ,直线310x y +-=的斜率为3-, 则有0113n m -=-,解可得7m =,圆的半径r TC == 故圆C 的标准方程是()22740x y -+=; 故答案为:()22740x y -+=. 25.(1,2) 【解析】任取曲线上一点()00,x y ,利用点到直线的距离公式可得d =求出d 取最小值时,01x =,即可得到答案;解:任取曲线上一点()00,x y ,则0021y x =+直线:25,l y x =-即250x y --= 点()00,x y 到直线l的距离为d===()20150y x =-+>在01x =时,min d ==02y =,故答案为:(1,2) 26【解析】根据题意,设原点到直线的距离为d ,将直线变形分析可得直线经过定点(1,2),设M (1,2),分析可得d OM ≤,即可得答案.根据题意,设原点到直线的距离为d .直线()()():1130l m x m y m ++-+-=,即()130m x y x y -+++-=则有1030x y x y -+=⎧⎨+-=⎩,解得12x y =⎧⎨=⎩,即直线l 恒过定点(1,2).设M (1,2),则d OM ≤即原点到直线l故答案为:.27【解析】由复数的几何意义可得满足题意的复数z 对应的点P 到复数1和i 对应点(1,0)A ,(0,1)B 距离相等,即轨迹为线段AB 的垂直平分线,则2i z +-的最小值即可转化为点(2,1)-到垂直平分线的距离求解.如图所示,设复数z ,1,i 对应的点分别为(),P x y ,(1,0)A ,(0,1)B , 由题意1i z z -=-得PA PB =即点P 的轨迹为线段AB 的垂直平分线l ,由平面几何知识可求得垂直平分线l 的方程为:0x y -=, 由|i 2i ||(2)(1)i |2i z x y x y =++-=+-++-,所以2i z +-的最小值即为点(2,1)C -到直线l 的距离,则由d CP ==,即2i z +-的故答案为:本题考查了复数的几何意义,复数模的几何意义及其运算,重点考查了运算能力,属于中档题. 28.4-或28-. 【解析】求出圆心C 到直线l 的距离,利用勾股定理求出弦长,计算ABC 的面积,从而求出直线的斜率与方程.解:直线:(1)(21)30()l m x m y m m R -+++=∈, 直线l 的方程可化为:()(23)0x y m x y -++++=, 可得230y xx y =⎧⎨++=⎩,直线恒过:(1,1)--.圆222(1)(0)x y r r -+=>的圆心(1,0),半径为:r . 圆心C 到直线l 的距离为:d ;所以三角形ABC 的面积为211||22ABCS AB d r =⋅⋅≤,2142r =,解得r =2d =.2,解得12m =-或72m =-所以,24mr =-或28-. 故答案为:4-或28-. 29.4 【解析】首先将两圆方程配成标准式,即可得到圆心坐标与半径,依题意可得两圆相内切,即可得到31-,从而得到2244a b +=,再利用乘“1”法及基本不等式计算可得;解:因为圆2221:290C x y ax a +++-=和圆2222:4140C x y by b +--+=,所以圆()221:9C x a y ++=和圆()222:21C x y b +-=,圆心分别为()1,0C a -,()20,2C b ,半径分别为3和1,依题意可知两圆31=-,所以2244a b +=,因为a R ∈,b R ∈,且0ab ≠,所以()22222222224416411111884444a b a b a a b b a b ⎛⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎝⎭⎝+⎝⎭,当且仅当222216b a a b =时,等号成立,所以2241a b +的最小值为4; 故答案为:430.【解析】建立直角坐标系,根据条件将B 点轨迹转化为阿氏圆的问题来解决如上图所示,以AC 的中点为原点,AC 边所在直线为x 轴建立直角坐标系,因为6AC =,所以()30A -,,()3,0C ,设点(),B x y ,因为sin 2sin C A =,由正弦定理可得:2c a =,即2AB BC =, 所以:()()22223434x y x y ++=-+,化简得:()22516x y -+=,且1x ≠,9x ≠, 圆的位置如上图所示,圆心为()5,0,半径4r =,观察可得,三角形底边长AC 不变的情况下,当B 点位于圆心D 的正上方时,高最大, 此时ABC 的面积最大,B 点坐标为()5,4,所以BC ==故答案为:31.(1)40x -=;(2)是定值,理由见解析. 【解析】(1)算出OP k ,然后可算出答案;(2)可得()100,Q x y --,()200,Q x y -,22004x y +=,然后表示出直线1AQ ,2AQ 的方程,然后可得0m =n =,然后可算出mn 的值.(1)因为OP k ==O 在点P处的切线斜率为所以圆O在点P处的切线方程为)1y x =-,即40x -= (2)是定值,理由如下解方程组224y x y +-=+=⎪⎩,可得A , 因为()000,(1)Q x y x ≠±,所以()100,Q x y --,()200,Q x y -,22004x y +=,由10:1)AQ y x -,令0x=,得0m =由20:1)AQ y x -,令0x =,得0n =∴2020004(1)41x mn x --===-. 32.(1)158390x y +-=或1x =;(2)()223112x y ⎛⎫-+-= ⎪⎝⎭.【解析】(1)由条件求出圆心到直线l 的距离,然后分直线l 的斜率不存在、直线l 的斜率存在两种情况求解即可;(2)设()00,N x y ,(),P x y ,然后由()()2200214x y -++=,中点坐标公式可得答案.(1)因为直线l 被圆C截得的弦长为所以圆心到直线l1=当直线l 的斜率不存在时,其方程为1x =,满足 当直线l 的斜率存在时,则其方程为()13y k x =-+所以1518d k ==⇒=-,此时直线方程为158390x y +-= 综上:直线方程为158390x y +-=或1x = (2)设()00,N x y ,(),P x y 则()()2200214x y -++= 因为P 是MN 中点,则满足000012122332x x x x y y y y +⎧=⎪=-⎧⎪⇒⎨⎨=-+⎩⎪=⎪⎩代入方程得:()223112x y ⎛⎫-+-= ⎪⎝⎭33.(1)1y x =±;(2)10+【解析】(1)设直线方程为:y x b =+,根据直线与圆相切,由圆心到直线的距离等于圆的半径求解. (2)易得点P 到直线AB 的距离的最大值为圆心到直线的距离d 与圆的半径之和,即max h d r =+,然后()()max12ABP SAB d r =⨯⨯+求解. (1)设直线方程为:y x b =+, 圆C :()2214x y ++=, 因为直线与圆相切,所以圆心到直线的距离等于圆的半径,即21d b ==⇒=±,所以直线l 方程为:1y x =±.(2)AB == 直线AB 的方程为:4y x =-+,圆心到到直线AB 的距离为:d ==所以点P 到直线AB 的距离的最大值为max 2h d r =+,所以()max 12102ABP S⎫=⨯=+⎪⎪⎝⎭.34.2【解析】由题可知,所要求的代数式恰好表示平面直角坐标系中三个距离之和,所以首先要把代数式中三个距离的对应的点找到,再根据题干所述找到相应的费马点,即可得出结果. 根据题意,在平面直角坐标系中,令点(0,1)A ,(0,1)B -,(2,0)C ,(,)x y 到点A 、B 、C 的距离之和,因为ABC 是等腰三角形,AC BC =,所以C '点在x 轴负半轴上,所以CC '与x 轴重合, 令ABC 的费马点为(,)P a b ,则P 在CC '上,则0b =,因为ABC 是锐角三角形,由性质(1)得120APC ∠=︒,所以60APO ∠=︒,所以1a =a =P ⎫∴⎪⎪⎝⎭到A 、B 、C 的距离分别为PA PB =2PC =,,即为费马点P 到点A 、B 、C 的距离之和,则2PA PB PC ++=35.(1)2122k y kx =++;(2)2;(3)-【解析】(1)根据对折的对称性可得,若折叠后A 点落在G 点,则斜率相乘为1-,从而得到G 点的坐标关于k 的表达式,写出折痕所在的直线方程(2)当20k -+≤≤,分析可得折痕交在BC 和y 轴上,求出交点坐标,求出折痕长度关于k 的表达式,结合k 的范围求出最大值(3)当21k -≤≤-时,折痕交在DC 和x 轴上,求出PQ 的表达式,代入求出t 关于k 的表达式,结合k 的范围求出t 的最大值(1)①当0k =时,此时A 点与D 点重合,折痕所在的直线方程12y =; ②当0k ≠时,将矩形折叠后A 点落在线段DC 上的点记为(),1G a , 所以A 与G 关于折痕所在的直线对称, 有111OG k k k a k a⋅=-⇒⋅=-⇒=-, 故G 点坐标为(),1G k -,从而折痕所在的直线与OG 的交点坐标,即线段OG 的中点为122k M ⎛⎫- ⎪⎝⎭,,折痕所在的直线方程122k y k x ⎛⎫-=+ ⎪⎝⎭,即2122k y kx =++,由①②得折痕所在的直线方程为:2122k y kx =++;(2)当0k =时,折痕的长为2,当折痕刚好经过B 点时,将()2,0代入直线方程得:2410k k ,2k =-+2k =-时,A 点不在线段DC 上,舍)当20k -<时,折痕两个端点一定在BC 和y 轴上,直线交BC 于点212,222k P k ⎛⎫++ ⎪⎝⎭,交y轴于210,2k Q ⎛⎫+ ⎪⎝⎭,(22222211||224444732222k k PQ k k ⎡⎤⎛⎫+=+-++=+≤+-=-⎢⎥ ⎪⎝⎭⎣⎦∴2= ,而22>,故折痕长度的最大值为2;()3当21k -≤≤-时,折痕的两个端点一定在DC 和x 轴上,直线交DC 于1,122kP k ⎛⎫-⎪⎝⎭,交x 轴于21,02k Q k ⎛⎫+- ⎪⎝⎭,2222111||11222k k PQ k k k ⎡⎤+⎛⎫=---+=+⎢ ⎪⎥⎝⎭⎣⎦,22(2||1)t k PQ k k∴=-=+, 21k -≤≤-,2k k∴+≤-当且仅当()21k =--,时取“=”号),∴当k =t 取最大值,t 的最大值是-本题综合考查了直线方程、函数的最值、均值不等式,考查了数形结合和分类讨论的数学思想,属难题.36.(1)()()22231x y -+-=;(2)1y x =+. 【解析】(1)设圆C 的圆心和半径,根据已知条件用待定系数法列方程求解(2)设设直线方程1y kx =+,11(,)M x y ,22(,)N x y ,则121212OM ON x x y y ⋅=+=,所以需要含参直线与圆联立方程,根据韦达定理进行计算,一个方程求解一个未知数 解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-= (2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并。
1直线与圆-拔高难度-习题

直线与圆一、选择题(共12小题;共60分)1. 过点,且圆心在直线上的圆的方程是A. B.C. D.2. 已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于A. B. C. D.3. 已知过点作圆的切线,切点分别为,,那么点到直线的距离为A. B. C. D.4. 若过定点且斜率为的直线与圆在第—象限内的部分有交点,则的取值范围是A. B. C. D.5. 过直线上的点作圆的两条切线,,当直线,关于直线对称时,A. B. C. D.6. 已知圆,点是圆内一点,过点的圆的最短弦所在的直线为,直线的方程为,那么A. ,且与圆相离B. ,且与圆相离C. ,且与圆相交D. ,且与圆相切7. 若当方程所表示的圆取得最大面积时,则直线的倾斜角A. B. C. D.8. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若为无理数,则在过点的所有直线中A. 有无穷多条直线,每条直线上至少存在两个有理点B. 恰有条直线,每条直线上至少存在两个有理点C. 有且仅有一条直线至少过两个有理点D. 每条直线至多过一个有理点9. 已知圆,从点观察点,要使视线不被圆挡住,则的取值范围是A.B.C.D.10. 直线与,轴的交点分别为,,直线与圆的交点为,,给出下面三个结论:,;,;,.其中,所有正确结论的序号是A. B. C. D.11. 设点,若在圆上存在点,使得,则的取值范围是A. B. C. D.12. 已知点在曲线上,过原点,且与轴的另一个交点为.若线段,和曲线上分别存在点、点和点,使得四边形(点,,,顺时针排列)是正方形,则称点为曲线的“完美点”,那么下列结论中正确的是A. 曲线上不存在“完美点”B. 曲线上只存在一个“完美点”,其横坐标大于C. 曲线上只存在一个“完美点”,其横坐标大于且小于D. 曲线上存在两个“完美点”,其横坐标均大于二、填空题(共5小题;共25分)13. 已知直线,则原点到这条直线距离的最大值为.14. 直线的倾斜角的范围是.15. 在平面直角坐标系中,已知点,点,为圆上一动点,则的最大值是.16. 在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为.17. 在中,,,分别为,的中点,且,则的最小值为.三、解答题(共5小题;共65分)18. 已知方程.(1)求该方程表示一条直线的条件;(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;(3)已知方程表示的直线在轴上的截距为,求实数的值.19. 已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.(1)求抛物线的方程;(2)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆于,两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.20. 在平面直角坐标系中,圆,为直线上一点.(1)已知.①若点在第一象限,且,求过点的圆的切线方程;②若存在过点的直线交圆于点,,且恰为线段的中点,求点纵坐标的取值范围.(2)设直线与轴交与点,线段的中点为,为圆上一点,且,直线与圆交于另一点,求线段长的最小值.21. 如图,为了保护河上古桥,规划建一座新桥,同时设立一个圆形保护区.规划要求:新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任意一点的距离均不少于.经测量,点位于点正北方向处,点位于点正东方向处(为河岸),.(1)求新桥的长;(2)当多长时,圆形保护区的面积最大?22. 已知椭圆.(1)求椭圆的离心率;(2)设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.答案第一部分1. C2. B 【解析】设点的坐标为,则,即,所以点的轨迹是以为圆心,为半径长的圆,故面积为.3. C4. A5. B【解析】由题意,,为圆心到直线的距离,即.6. B 【解析】由题意可得,.因为,所以的斜率.故直线的方程为,即.又直线的方程为,故,因为,故圆和直线相离.7. A 【解析】方程表示的圆的半径,当时,有最大值,这时圆的面积也取得最大值,所以直线的斜率为,从而倾斜角为.8. C 【解析】设一条直线上存在两个有理点,,由于也在此直线上,若,则为无理数,与有理点予盾,所以,于是,又由于为无理数,而为有理数,所以,于是,所以直线只有一条,且这条直线方程只能是,故正确的选项为C.9. D10. C【解析】如图,过作,为垂足.由已知可得,,当时,,故①正确.,,.由均值不等式可得,所以,所以,都有,所以②错.对于③,因为,当时,必有,所以③正确.11. A 【解析】由题意画出图形如图:点,要使圆上存在点,使得,则的最大值大于或等于时一定存在点,使得,而当与圆相切时取得最大值,此时,图中只有到之间的区域满足,所以的取值范围是.12. B 【解析】如下图左,如果点为“完美点”,则有.以为圆心,为半径作圆(如下图右中虚线圆),交轴于点(可重合),交抛物线于点,点为“完美点”当且仅当,如下图右.(结合图象知,点一定是上方的交点,否则在抛物线上不存在点使得;也一定是上方的交点,否则不是顺时针)下面考虑当点的横坐标越来越大时,的变化情况:设,当时,,此时圆与轴相离或相切,此时不是完美点,故只需考虑.当增加时,越来越小,且趋近于(具体推理放在后面);而当时,;故曲线上存在唯一一个完美点,其横坐标大于.当增加时,越来越小,且趋近于的推理:过点作轴于点,分别过点、作、轴的平行线,交于点,先考虑:,于是当增大时,减小,且趋于,从而增大,且趋近于;再考虑,记,则.随着的增大,的长增大,也随着增大,于是增大,从而增大,增大,且趋近于,所以随着的增大而减小,且趋近于.第二部分13.【解析】直线,恒过定点,原点到直线距离的最大值,即为原点到点的距离.所以原点到直线距离的最大值为.14.【解析】设直线的倾斜角为,依题意知,.因为,所以,即.又,所以.15.【解析】设,,则,圆两边乘以,两圆方程相减可得,到直线的距离,因为,所以,所以的最大值是.16.17.【解析】如图,设 , , , ,. 所以 ,,, 所以,所以,所以点 在圆上,当直线 与该圆在第一象限相切时, 最大,设该圆的圆心为,所以,,设圆的切线方程为 (取 ), 则, 所以,当 与 相切时, 最大, 最小.此时 也最小,, 所以第三部分18. (1) 由解得 ,因此若方程 表示一条直线,则 .(2) 当时,解得 ,此时直线为 ,化为.(3) 把点 代入到直线方程,化为,解得或.当时,直线方程为,当时,,满足题意;当时,直线方程为,不符合题意,应舍去;所以实数的值为.19. (1)设点的坐标为,由题意可知解得:,,,所以抛物线的方程为:.(2)由()得抛物线的焦点,因为椭圆的一个焦点与抛物线的焦点重合,所以椭圆半焦距,,因为椭圆的离心率为,所以,,所以椭圆的方程为:.设,,由得,由韦达定理得:,.由或因为原点在以线段为直径的圆的外部,则,所以由,得实数的范围是或.20. (1)①设点的坐标为,因为,所以,解得,又点在第一象限,所以,即点的坐标为,易知过点的圆的切线的斜率必存在,可设切线的斜率为,则切线为,即,于是有,解得或,因此过点的圆的切线方程为:或.②设,则,因为点,均在圆上,所以有即该方程组有解,即圆与圆有公共点,于是,解得,即点纵坐标的取值范围是.(2)设,则解得,,直线的方程为:,由可得点横坐标为,所以,所以当,即时,最小为.21. (1)如图,以为坐标原点,所在直线为轴,建立平面直角坐标系.由条件知,,直线的斜率设点的坐标为,则联立解得,.所以因此新桥的长是.(2)设保护区的边界圆的半径为,.由条件可知,直线的方程为由于圆与直线相切,故点到直线的距离是,即因为,所以因为和到圆上任意一点的距离均不少于,所以即解之得,即所以当时,取得最大值,此时圆面积最大.22. (1)由题意,椭圆的标准方程为.所以,,从而.因此,.故椭圆的离心率.(2)直线与圆相切.证明如下:设点,的坐标分别为,,其中.因为,所以,即,解得.当时,,代入椭圆的方程,得.故直线的方程为.圆心到直线的距离.此时直线与圆相切.当时,直线的方程为,即.圆心到直线的距离.又,,故.此时直线与圆相切.第11页(共11 页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010届高三数学总复习《直线与圆》专题——综合练习
一、选择题:
1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( )
A.(1,3)--
B.(17,9)-
C.(1,3)-
D. (17,9)- 2. 若,,a b c 三数成等差数列,则直线0ax by c ++=必经过的点是( )
A.
B. (1,2)
C.
D.
3.
已知点(P ,点Q 在y 轴上,若直线PQ 的倾斜角为120°,则Q 点的坐标为( )
A. (0,2)
B.
C. (2,0)
D.
4.已知直线310ax y --=与直线2
()103
a x y -++=垂直,则a 的值是( )
A.
或
13 B. 1或13 C. 13
-或 D. 1
3
-
或1 5. 直线220x y k -+=与两坐标轴所围成的三角形面积不大于1,那么k 的范围是( ) A.1k ≥- B.1k ≤ C.11k -≤≤且0k ≠ D. 1k ≤-或1k ≥
6.已知(1,0)M ,(1,0)N -,直线20x y b +-=与线段MN 相交,则b 的取值范围是( )
A.[]2,2-
B.[]1,1-
C.11,22⎡⎤
-⎢⎥⎣⎦
D. [0,2]
7. 直线l 与直线1y =和70x y --=分别相交于P Q 、两点,线段PQ 的中点是(1,1)-,则直线l 的斜率为( )A.
23 B. 32 C. 23- D. 32
- 8. 若点(3,2)-与(,3)a 关于直线2120x by --=对称,则a b +的值为( )
A. 14或10
B. 107或1011
C. 107
-或10
11 D.
9.若12:(1)2,:24160l x m y m l mx y ++=-++=的图像是两条平行直线,则m 的值是( )
A.1m =或2m =-
B. 1m =
C. 2m =-
D.m 的值不存在 10."2"a =是“直线20ax y +=平行于直线1x y +=”的( )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
11.若直线20x y c -+=按向量(1,1)a =- 平移后与圆22
5x y +=相切,则c 的值为( )
A. 8或2-
B. 6或4-
C. 4或6-
D. 2或8-
二、填空题:
12.圆心为(1,1)且与直线4x y +=相切的圆的方程是_____________。
13.已知直线0ax by c ++=与圆O :22
1x y +=相交于A 、B 两点,
且AB =,则
O A O B ⋅ =___________。
14.直线(32)(1)10a x a y +---=不过第二象限,则的取值范围为___________。
15.已知直线l 在x 轴的截距比在y 轴上的截距大1,且过定点(6,2)P -,则l 的方程为___________。
16.(0,6)B ,(0,2)C ,A 在x 轴负半轴上,问A 为___________CAB ∠有最大值? 17.已知ABC ∆,(1,1),(2,3),(1,4),A B C A ---∠的正切值为___________。
18.正ABC ∆中,(1,1)A ,中心(5,3)M ,求三边所在直线_________,_________,_________。
19.直线l 倾斜角的正弦值为
35
,若它与两坐标轴围成三角形的面积为6,则l 的方程为___________。
20.过点(0,1)M 作直线l ,使其夹在直线12:3100,:280l x y l x y -+=+-=,之间的线段被M 平分,则l 的方程为______ _____。
21.等腰三角形两腰所在直线方程分别是790x y -+=和70x y --=,它的底边所在直线通过点(3,8)P -,则底边所在的直线方程为____ _______。
22.设有三条直线1:44l x y +=,2:0l mx y +=,3:234l x my -=。
m 为____ 以这三条
直线不能构成三角形。
23.分别过(6,2),(3,1)A B --两点的两条直线相平行,并且各自绕着,A B 旋转,如果两平行线间距离为d 。
则距离d 的取值范围为____ ;当d 取最大值时两条直线的方程分别为__ _ ,_ _ 。
三、解答题:
24.已知ABC ∆在第一象限,A(1,1),B(5,1),3
A π
∠=
,4
B π
∠=
,求:
(1)AB 所在直线的方程;(2)AC 和BC 所在直线的方程; (3)AC ,BC 所在直线与y 轴的交点间的距离。
25.:20l x y -=,(0,1),(2,0),(4,1)A B C
(1)在l 上求一点P ,使PA PC +最小;(2)在l 上求一点Q ,使PA PB -最大。
26.已知方程2
2
240x y x y m +--+=.(1)此方程表示圆,求m 的取值范围。
(2)若(1)中的圆与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点)求m 的值。
27.已知圆M :1)2(2
2
=-+y x ,Q 是x 轴上的动点,,QA QB 分别切圆M 于A 、B 两点。
(1) 如果3
2
4=
AB ,求直线MQ 的方程; (2) 求动弦∣AB ∣的最小值。
28.已知圆222
62(1)102240x y mx m y m m +---+--=。
(1)求证:不论m 取何值,圆心在同一直线1l 上;(2)与1l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:不论m 取何值,任何一条平行于1l 且与圆相交的直线被圆截得的弦长相等。
答案:
一、选择题:ADBDC ACDBCA
二、填空题12.22(1)(1)2x y -+-=;13.1
2
-
;14.[)1,+∞;15.23602-20x y x y +-=+=或
16.(-;17.194-;18.8218011)11
x y y x ±+-=-=-或;19.334y x =±±
20.440x y +-=;21.21302140x y x y ++=--=或;22.12
4,,1,63
m m m m ==-=-=
23.(
,3200,3100x y x y +-=++=
三、解答题:
24.(1)110,60;(3)5y y x y =-+=+-=25.124(1)(,1);(2)(,)255
26. (1)5<m (2)5
8=
m 27. (1)设Q (0,t ),则2
2213
8))322(1(QM MQ =++-- 得5±=t ,05252=± y x
(2)设点A ),sin 2,(cos θθ+则
1cos sin 2cos sin -=-+⋅t
θθθθ 1sin 2cos +=∴θθt 2t K MQ -= ,AB :)cos (2sin 2θθ-=--x t
y
3)411(4)1(4,4
122
22=-≤-=+=∴d AB t d
28.(1)配方得圆心,将心坐标消去m 可得直线a :x-3y-3=0 (2)设与直线a 平行的直线c :x-3y+b=0(b ≠-3),则圆心到直线a 的距离为
()10
|3|10
|
133|b b m m d +=
+--=
,∵圆的半径r=5,∴当d <r 时,直线与圆相交,当d=r 时,
直线与圆相切,当d >r 时直线与圆相离。
(3)对于任一条平行于a 且与圆相交的直线的直线c ,由于圆心到直线c 的距离都与m 无关,所以弦长与m 无关。