2016年专项练习题集-直线与圆相交的性质
直线与圆(典型例题和练习题)

直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。
直线与圆圆与圆的位置关系考点与题型归纳

直线与圆、圆与圆的位置关系考点与题型归纳、基础知识1.直线与圆的位置关系(半径为r,圆心到直线的距离为d)2.圆与圆的位置关系(两圆半径为r i,匕,d=|O i O2|)、常用结论(1 )圆的切线方程常用结论①过圆x2 + y2= r2上一点P(x o, y o)的圆的切线方程为 x o x+ y o y= r2②过圆(x- a)2+ (y- b)2= r2上一点P(x o, y o)的圆的切线方程为(x o—a)(x— a)+ (y o — b)(y -b) = r2.③过圆x2 + y2= r2外一点M(x o, y o)作圆的两条切线,则两切点所在直线方程为x o x+ y o y =r2.(2)直线被圆截得的弦长1 i弦心距d、弦长I的一半及圆的半径r构成一直角三角形,且有r2 = d2+ ~l 2.考点一直线与圆的位置关系考法(一)直线与圆的位置关系的判断[典例]直线I: mx— y+ 1— m = 0与圆C: x2+ (y— 1)2= 5的位置关系是( )A•相交 B •相切C.相离 D •不确定mx— y+ 1 — m= 0,[解析]法一:由o ox2 + y — 1 = 5,消去 y,整理得(1 + m2)x2— 2m2x+ m2— 5= 0,因为△= 16m2+ 20>0,所以直线I与圆相交.法二:由题意知,圆心(0,1)到直线I的距离d=―<1<寸5,故直线I与圆相交.yj m2 + 1法三:直线I: mx — y+ 1 — m= 0过定点(1,1),因为点(1,1)在圆x2 + (y— 1)2= 5的内部,所以直线I 与圆相交.[答案]A[解题技法]判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用△判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.[提醒]上述方法中最常用的是几何法.考法(二)直线与圆相切的问题[典例](1)过点P(2,4)作圆(x— 1)2+ (y— 1)2 = 1的切线,则切线方程为()A . 3x+ 4y — 4= 0B.4x— 3y + 4= 0C.x = 2 或 4x— 3y+ 4 = 0D.y= 4 或 3x+ 4y— 4 = 0(2)(2019成都摸底)已知圆C: x2+ y2— 2x— 4y+ 1 = 0上存在两点关于直线I: x+ my+ 1=0对称,经过点 M(m, m)作圆C的切线,切点为 P,则|MP|= ________________________ .[解析]⑴当斜率不存在时,x= 2与圆相切;当斜率存在时,设切线方程为y— 4= k(x-2),即 kx — y+ 4-2k= 0,则|k — 1 + 4 - 2k|■ k 2 + 1=1,解得4k= 3,则切线方程为4x — 3y + 4= 0,故切线方程为 x= 2或4x — 3y + 4= 0.⑵圆C: x 2 + y 2— 2x — 4y+ 1= 0的圆心为C(1,2),半径为2•因为圆上存在两点关于直线I: x+ my + 1= 0 对称,所以直线 I: x+ my+ 1 = 0 过点(1,2),所以 1 + 2m+ 1 = 0,解得 m = —1,所以 |MC|2= 13, |MP|= 13— 4= 3.[答案](1)C(2)3考法(三)弦长问题[典例] ⑴若a 2 + b 2= 2C 2(C M 0),则直线ax+ by+ c= 0被圆x 2 + y 2= 1所截得的弦长为( )1B . 1C#D. . 2(2)(2019海口一中模拟)设直线y= x+ 2a 与圆C :x 2 + y 2— 2ay — 2= 0相交于A,B 两点, 若|AB|= 2 .3,则圆C 的面积为()A . 4 nB . 2 n C. 9 nD. 22 n[解析]⑴因为圆心(0,0)到直线ax+ by+ C = 0的距离d = t |C|=#弟=¥‘因此根寸 a 2+ b 2 V 2|C| 2据直角三角形的关系,弦长的一半就等于1 — I2 =于,所以弦长为2.(2)易知圆C: x 2 + y 2— 2ay — 2 = 0的圆心为(0, a),半径为-a 2+ 2.圆心(0, a)到直线y = x+ 2a 的距离d = |a 2,由直线y= x+ 2a 与圆C: x 2 + y 2— 2ay — 2= 0相交于A, B 两点,|AB| =2诵,可得 齐3 = a 2 + 2,解得a 2= 2,故圆C 的半径为2,所以圆C 的面积为4 n 故选 A.[答案](1)D(2)A[题组训练]1 •已知圆的方程是X2+ y2= 1,则经过圆上一点M 誓,当的切线方程是 _________________________ -解析:因为M #, +是圆X2+y2= 1上的点,所以圆的切线的斜率为一1,则设切线方程为x + y+ a = 0,所以 #+#+ a= 0,得a=— 2,故切线方程为 x+ y— 2= 0.答案:x+ y— 2 = 02.若直线kx— y+ 2 = 0与圆x2 + y2— 2x — 3 = 0没有公共点,则实数 k的取值范围是解析:由题知,圆 x2 + y2— 2x— 3 = 0可写成(x— 1)2+ y2= 4,圆心(1,0)到直线 kx— y+ 2=0的距离|k + 2| 4 d>2,即------------ >2,解得 0v kv3.p k2+1 3答案:4 033.设直线y= kx+ 1与圆x2 + y2 + 2x— my= 0相交于A, B两点,若点A, B关于直线l:x+ y= 0 对称,则 |AB|= _____________ .解析:因为点A, B关于直线I: x+ y= 0对称,所以直线y= kx+ 1的斜率k= 1,即y = 「、mx+ 1•又圆心—1, 2在直线I: x+ y= 0上,所以m= 2,则圆心的坐标为(一1,1),半径r = 2,所以圆心到直线 y= x+ 1的距离du^2,所以AB|= 2 r2— d2= ,6.答案:6考点二圆与圆的位置关系[典例](2016 •东高考)已知圆M : x2 + y2— 2ay= 0(a> 0)截直线x+ y= 0所得线段的长度是2 2,则圆M与圆N: (x— 1)2+ (y— 1)2= 1的位置关系是( )A.内切 B .相交C.外切 D .相离x2+ y2— 2ay= 0,[解析]法一:由x+ y= 0,得两交点为(0,0), (— a, a).•••圆M截直线所得线段长度为 2 2,r = 1,则点N到直线2x-2y- 1= 0的距离d = —1| 2,2•••- a2 + - a 2 = 2 2.又 a>O,「・a= 2.A圆 M 的方程为 x2 + y2-4y= 0, 即 x2 + (y- 2产=4,圆心 M(0,2),半径 r i = 2.又圆 N : (x- 1)2+ (y- 1)2= 1,圆心 N(1,1),半径 r2= 1, •••|MN|=- 0 - 1 2+ 2- 1 2= 2.•.•「1-「2= 1, r1+ r2 = 3,1<|MN|<3,•两圆相交.法二a 一:由题知圆 M : x2 + (y- a)2— a2(a>0),圆心(0, a)到直线x+ y= 0的距离d —所以2 :a2—2—2 2,解得a —2•圆M,圆N的圆心距|MN|— .2,两圆半径之差为 1,两圆半径之和为3,故两圆相交.[答案]B[变透练清]1. (2019 太原模拟)若圆 C1: x2 + y2= 1 与圆 C2: X2 + y2- 6x- 8y+ m= 0 外切,则 m=( )A. 21 B . 19C. 9 D . - 11解析:选C 圆C1的圆心为C1(0,0),半径r1= 1,因为圆C2的方程可化为(x- 3)2+ (y-4)2= 25- m,所以圆 C2 的圆心为 C2(3,4),半径 r2= 25 - m(m V 25).从而 |C1C2=:32+ 42=5•由两圆外切得 C1C2= r1 + ",即卩1 +「25 - m= 5,解得m= 9,故选C.2.变结论若本例两圆的方程不变,则两圆的公共弦长为 ___________________ .x+ y — 4y= 0,解析:联立两圆方程两式相减得,2x-2y- 1 = 0,因为N(1,1),x-1 2 + y-1 2= 1,答案:*4匚2,故公共弦长为• 2 2. 144 = 2B . ±5C. 3[解题技法]几何法判断圆与圆的位置关系的3步骤(1) 确定两圆的圆心坐标和半径长; (2) 利用平面内两点间的距离公式求出圆心距 d,求r i + r 2, |r i — r 2|;⑶比较d, r i + r 2, |r i — r 2|的大小,写出结论.[课时跟踪检测]1.若直线2x+ y + a= 0与圆x 2 + y 2 + 2x — 4y= 0相切,则a 的值为()A. ±,5 D . ±3解析:选B 圆的方程可化为(x+ 1)2+ (y — 2)2= 5,因为直线与圆相切,所以有|a 5 = ,5, 即a= ±故选B. 2.与圆 C i : x 2 + y 2— 6x+ 4y+ 12 = 0, C 2: x 2+ y 2— 14x — 2y+ 14= 0 都相切的直线有C. 3条 解析:选A两圆分别化为标准形式为C i : (x — 3)2+ (y+ 2)2= 1, C 2 : (x — 7)2 + (y — 1)2=36,则两圆圆心距|C i C 2|= 7 — 3 2+ [1 —— 2 ]2= 5,等于两圆半径差,故两圆内切.所 以它们只有一条公切线.故选A.3. (2019南宁、梧州联考)直线y= kx+ 3被圆(x — 2)2+ (y — 3)2= 4截得的弦长为2.3, 则直线的倾斜角为(),n [、. 5 nA ・6或石n D ・6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d= 22— 3 2 =1.即d=J^= 1,所以k=±富由k=tan"得a= 6或于故选A.B.x+ ay+ 1线的距离为1,故圆心(一1,3)到直线x+ ay+ 1 = 0的距离为1,即|— 1+ 3a+ 1| :1'1 + a 2=1,解得a =4.过点(3,1)作圆(x — 1)2+ y 2= r 2的切线有且只有一条,则该切线的方程为()A . 2x+ y — 5= 0B . 2x+ y — 7= 0 C. x — 2y — 5 = 0D . x — 2y — 7= 0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2 = 5,圆的方程为(x — 1)2+ y 2=5,则过点(3,1)的切线方程为(x — 1)・—3) + y(1 — 0) = 5,即2x+ y — 7 = 0•故选5. (2019重庆一中模拟)若圆x 2 + y 3+ 2x — 6y+ 6= 0上有且仅有三个点到直线 =0的距离为1,则实数a 的值为()C. 土,2解析:选B 由题知圆的圆心坐标为(一1,3),半径为2,由于圆上有且仅有三个点到直D . y=— 4圆(x — 1)2+ y 2= 1 的圆心为 C(1,0),半径为 1,以 |PC|= -''=2为直径的圆的方程为(x — 1)2+ (y+ 1)2= 1,将两圆的方程相减得 AB 所在直线的方程为 2yC. y =解析:选B解析:易知圆心(2, — 1),半径r = 2,故圆心到直线的距离|2+ 2 X — 1 — 3| 3,5 弦长为2 r 2— d2 =迸5答案: 2 '555.12 + 22±2±4 -6.(2018嘉定二模)过点P(1 , — 2)作圆C : (x— 1)4+ y2= 1的两条切线,切点分别为A,B,则AB所在直线的方程为()1B . y=— 21+ 1 = 0,即 y= —2•故选 B.x— (3 + a)y— a= 0,圆心(0,0)到直线的距离I— a| d= . 1 +3 + a&若P(2,1)为圆(x— 1)2+ y2= 25的弦AB的中点,则直线 AB的方程为 _____________________一 1解析:因为圆(x— 1)2+ y2= 25的圆心为(1,0),所以直线AB的斜率等于 =—1,由点1 — 0斜式得直线 AB的方程为y— 1 = — (x— 2),即卩x+ y— 3= 0.答案:x+ y— 3 = 09.____________________________________________________________________________ 过点P(— 3,1),Q(a,O)的光线经x轴反射后与圆x2+ y2= 1相切,则a的值为_____________________________解析:因为P( — 3,1)关于x轴的对称点的坐标为P' (— 3, — 1),一 1所以直线P' Q的方程为y= (x— a),即—3 — a所以a=— |.5答案:—|10.点 P 在圆 C1: x2+ y2— 8x— 4y + 11 = 0 上,点 Q 在圆 C2: x2+ y2+ 4x+ 2y + 1 = 0 上,则|PQ|的最小值是 ____________解析:把圆C1、圆C2的方程都化成标准形式,得(x— 4)2+ (y— 2)2= 9, (x + 2)2 + (y+ 1)2 =4.圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(一 2,— 1),半径是2.圆心距d =■4+ 2 2 + 2+ 1 2= 3 ,5> 5•故圆C1与圆C2相离,所以|PQ |的最小值是3 .5 — 5.答案:3 5—511.已知圆 C1: x2+ y2— 2x— 6y— 1 = 0 和圆 C2: x2 + y2— 10x— 12y+ 45 = 0.(1)求证:圆C1和圆C2相交;⑵求圆C1和圆C2的公共弦所在直线的方程和公共弦长.解:(1)证明:圆C1的圆心C1(1,3),半径「1=111, 圆C2的圆心 C2(5,6),半径r2= 4,y=— 2x 上.C 截得的弦长为两圆圆心距 d = |C i C 2|= 5, r i + r 2 = :.; 11 + 4, |r i — r 2|= 4— 11,-■•|r i — r 2|<d<门 + r 2,「.圆 C 1 和圆 C 2 相交. ⑵圆C 1和圆C 2的方程相减,得 4x+ 3y — 23 = 0, •••两圆的公共弦所在直线的方程为4x + 3y — 23= 0.|20+ 18— 23| 圆心C 2(5,6)到直线4x+ 3y —23= 0的距离d=, = 3, 寸 16+ 9故公共弦长为 2 16— 9= 2 ,7.12. 已知圆C 经过点A(2, — 1),和直线x + y= 1相切,且圆心在直线 (1) 求圆C 的方程;(2) 已知直线I 经过原点,并且被圆 C 截得的弦长为2,求直线I 的方程解:(1)设圆心的坐标为 C(a,— 2a),化简,得a 2— 2a + 1 = 0,解得a= 1. •Q(1 , — 2),半径 r = |AC|=1 —2 2+ — 2 + 1 2= ,2.•••圆 C 的方程为(x — 1)2 + (y+ 2)2= 2.⑵①当直线I 的斜率不存在时,直线I 的方程为x = 0,此时直线I 被圆 2,满足条件.②当直线I 的斜率存在时,设直线I 的方程为y= kx, K+ 2|3由题意得 -------- =1,解得k=— 4,寸 1 + k 243•直线I 的方程为y= — ]x,即3x+ 4y= 0. 综上所述,直线I 的方程为x= 0或3x+ 4y= 0.—2a+ 11.过圆x2+ y2= 1上一点作圆的切线,与 x轴、y轴的正半轴相交于 A, B两点,则|AB|B. ,.''3 D . 3解析:选C 设圆上的点为(x o , y o ),其中x o > 0, y o >0,则有x g + 的最小值为() A. .''2C. 2y 0= 1,且切线方程为x o x+ y o y = 1.分别令 y = 0, x= 0得1 / 12 1 1B0,y ,则IAB =.. x 04 5 6+ y 02=硕》右=2当且仅当 等号成立.2.(2018 •苏高考)在平面直角坐标系 xOy 中,A 为直线I: y= 2x 上在第一象限内的点,B(5,0),以AB 为直径的圆 C 与直线I 交于另一点 D.若AB CD = 0,则点A 的横坐标为n解析:因为AB CD = 0,所以AB 丄CD ,又点C 为AB 的中点,所以/ BAD = 4,设直n线I 的倾斜角为0,直线AB 的斜率为k ,则tan 0= 2, k=tan 0+ 4 =- 3.又B(5,0),所以直线AB 的方程为y=— 3(x — 5),又A 为直线l: y= 2x 上在第一象限内的点,联立直线y=— 3 x — 5 ,x= 3,AB 与直线l 的方程,得解得所以点A 的横坐标为3.y= 2x,y= 6, 答案:33. (2018 安顺摸底)已知圆 C: x 2 + (y — a)2= 4,点 A(1,0). 5 当过点A 的圆C 的切线存在时,求实数 a 的取值范围;6 设AM , AN 为圆C 的两条切线,M , N 为切点,当|MN|= 誓时,求MN 所在直线的 方程. 解:(1)过点A 的切线存在,即点 A 在圆外或圆上, •••1 + a 2>4,^a> '3或 a< — .'3. (2)设MN 与AC 交于点D, O 为坐标原点.4/52 需•••|MN|=〒,.・.|DM|=才.20_ 4 又 |MC|= 2 ,「.|CD| =25= .5,4A 的方程为(x — 1)2+ y 2 =即 x — 2y= 0 或(x — 1)2+ y 2 V 52|MC| 2 厂2丢cos Z MCA 2_7•••|OC|= 2, |AM|= 1,• MN 是以点A 为圆心,1为半径的圆A 与圆C 的公共弦,圆 1,圆 C 的方程为 x 2+ (y — 2)2 = 4 或 x 2+ (y+ 2)2= 4,•'■MN 所在直线的方程为 (x — 1)2+ y 2— 1 — x 2 — (y — 2)2+ 4 = 0, —1 — x 2— (y+ 2)2 + 4= 0,即 x+ 2y= 0,因此MN 所在直线的方程为 x — 2y= 0或x+ 2y= 0.17.在平面直角坐标系 xOy 中,直线x+ 2y — 3 = 0被圆(x — 2)2+ (y+ 1)2= 4截得的弦长为 __________ .。
直线与圆练习题

直线与圆练习题直线与圆练习题直线与圆是几何学中常见的两个基本概念,它们之间的关系和运用在数学中有着重要的地位。
本文将通过一系列练习题,来探讨直线与圆的相关性质和运用。
1. 已知圆O的半径为r,直线AB与圆O相交于点C和D,且AC=CD=2r。
求证:∠ACB是直角。
解析:首先,我们可以通过观察得知,点A、B、C、O四点共圆。
根据圆的性质,我们可以得到∠CAB和∠CBO都是圆心角,它们对应的弧分别为AC和BC。
由于AC=CD=2r,所以∠CAD和∠CDA也是圆心角,它们对应的弧分别为AC和CD。
根据圆心角的性质,我们可以得知∠CAB=∠CAD,∠CBO=∠CDA。
由于∠CAB和∠CBO都是圆心角,所以它们的度数是相等的,即∠CAB=∠CBO。
根据等角的性质,我们可以知道∠ACB是直角。
2. 已知直线l与圆O相切于点A,直线l的斜率为k,圆O的半径为r。
求证:直线l的方程为y=kx±r√(1+k²)。
解析:设圆O的圆心坐标为(h,k)。
由于直线l与圆O相切于点A,所以直线l的斜率k与圆O的切线的斜率相等。
设切线的斜率为m,则有k=m。
根据切线的性质,我们可以知道切线与圆O的切点A到圆心的距离等于圆的半径r。
设切点A的坐标为(x₁,y₁),则有√((x₁-h)²+(y₁-k)²)=r。
由于直线l的斜率为k,所以直线l的方程为y-k=k(x-h)。
将切点A的坐标代入直线l的方程,得到y₁-k=k(x₁-h)。
整理后可得y₁=kx₁-kh+k²。
由于切点A到圆心的距离等于圆的半径r,所以√((x₁-h)²+(y₁-k)²)=r。
将切点A的坐标代入该等式,得到√((x₁-h)²+(kx₁-kh+k²-k)²)=r。
整理后可得(x₁-h)²+(kx₁-kh+k²-k)²=r²。
2016年全国3卷高考理科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅲ卷)

2016年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.68.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8110.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣【考点】HT:三角形中的几何计算.【专题】35:转化思想;44:数形结合法;58:解三角形.【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:C.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【考点】8B:数列的应用.【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【考点】87:等比数列的性质;8H:数列递推式.【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN 所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,=|FN||y1﹣y2|,∴S△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。
解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。
点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。
因为 distance = 5 > 4,所以点A在圆外。
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)

专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
直线和圆的方程练习题

《直线和圆的方程》练习题一、选择题1、三角形ABC 中,A(-2,1),B(1,1),C(2,3),则k AB ,k BC 顺次为 ( )A . -71,2 B . 2,-1 C . 0,2 D . 0,-71 2、斜率为-21,在y 轴上的截距为5的直线方程是 ( ) A . x -2y = 10 B . x + 2y = 10 C . x -2y + 10 = 0 D . x + 2y + 10 = 03、经过(1,2)点,倾斜角为135˚的直线方程是 ( )A . y -2 = x -1B . y -1 =-(x -2)C . y -2 = -(x -1)D . y -1 =x -24、原点在直线l 上的射影是P (-2,1),则直线l 的方程为 ( )A . x + 2y = 0B . x + 2y -4 = 0C . 2x -y + 5 = 0D . 2x + y + 3 = 05、如果直线ax + 2y + 2 = 0与3x -y -2 = 0直线平行,那么系数a = ( )A . -3B . -6C . -23D . 32 6、点(0,10)到直线y = 2x 的距离是 ( )A . 25B . 5C . 3D . 57、到点C(3,-2)的距离等于5的轨迹方程为 ( )A .(x -3)2 + (y + 2)2 = 5B . (x -3)2 + (y + 2)2 = 25C . (x + 3)2 + (y -2)2 = 5D .(x + 3)2 + (y -2)2 = 258、已知圆的方程为x 2 + y 2-4x + 6y = 0,下列是通过圆心直线的方程为( )A . 3x + 2y + 1 = 0B . 3x -2y + 1= 0C .3x -2y = 0D . 3x + 2y = 09、已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为 ( )A .(x + 1)2 + (y -1)2 = 25B .(x -1)2 + (y + 1)2 = 100C .(x -1)2 + (y + 1)2 = 25D .(x + 1)2 + (y -1)2 = 10010、直线3x + 4y + 2 = 0与圆x 2 + y 2 + 4x = 0交于A ,B 两点,则线段AB 的垂直平分线的方程是 ( )A . 4x -3y -2 = 0B . 4x -3y -6 = 0C . 4x + 3y + 6 = 0D . 4x + 3y + 8 = 011、直线3x -4y -5 = 0和(x -1)2 + (y + 3)2 = 4位置关系是 ( )A . 相交但不过圆心B . 相交且过圆心C . 相切D . 相离12、点P (1,5)关于直线x + y = 0的对称点的坐标是 ( )A . (5,1)B . (1,-5)C .(-1,5)D . (-5,-1)13、过点P(2,3)且在两坐标轴有相等截距的直线方程是 ( )A .x + y -5 = 0B .x + y + 5 = 0C .x + y -5 = 0 或x + y + 5 = 0D .x + y -5 = 0 或3x -2y = 014、若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 .15、过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.16、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .17、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长__________。
直线与圆的位置关系(含答案)

【知识清单】:
1.直线与圆的位置关系(半径r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆与圆的位置关系(两圆半径r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
3.(2015·大连双基测试)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析:法一:将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得k∈(- , ).
法二:圆心(0,0)到直线y=kx+2的距离d= ,直线与圆没有公共点的充要条件是d>1,
即 >1,
解得k∈(- , ).
答案:k∈(- , )
[谨记通法]:判断直线与圆的位置关系的2大策略
(1)若两方程已知或圆心到直线的距离易表达,则用几何法.
(2)若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.
1.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A.x-y+5=0B.x+y-1=0
C.x-y-5=0D.2x+y+1=0
解析:选A由题意得圆的标准方程为(x+1)2+(y-2)2=5,则圆心C(-1,2).过圆心与点(-2,3)的直线l1的斜率为k= =-1.当直线l与l1垂直时,|AB|取得最小值,故直线l的斜率为1,所以直线l的方程为y-3=x-(-2),即x-y+5=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年专项练习题集-直线与圆相交的性质
选择题
1.直线x y 3+4+2=0与圆x y 22+=3的位置关系为( )
A .相离
B .相交但直线不过圆心
C .直线过圆心
D .相切
【分值】5
【答案】B
【易错点】计算错误。
【考查方向】本题主要考查了直线与圆的位关系的判断。
【解题思路】求出圆心到直线的距离,与半径进行比较。
【解析】圆心(0,0)到直线x y 3+4+2=0的距离
0+0+22=55,而20<<5,选B 。
2.若圆x y x y 22++2-4=0关于直线x y m 3++=0对称,则实数m 的值为( ). A .3-
B .1-
C .1
D .3
【分值】5
【答案】C
【易错点】忽略当圆关于直线对称时直线过圆的圆心这个条件。
【考查方向】本题主要考查了直线与圆相交的性质。
【解题思路】将圆心坐标代入直线方程,求出m 。
【解析】若圆x y x y 22++2-4=0关于直线x y m 3++=0对称,故圆心在直线x y m 3++=0上,又圆心坐标为(,)-12,故()m 3⨯-1+2+=0,解得1m =.
3.若点(,)A m n 在圆O :228x y +=上,则直线8mx ny +=与圆O 的位置关系是( ).
A .相离
B .相切
C .相交
D .不确定
【分值】5
【答案】B
【易错点】本题容易将直线方程与圆的方程联立,并利用判别式求解,导致计算十分复杂而导致解题失败。
【考查方向】本题主要考查了点与圆的位置关系以及直线与圆相交的性质。
【解题思路】由点(,)A m n 在圆O :22
8x y +=上,得到关于,m n 的关系式,利用圆心到直线的距离公式求出O 到直线8mx ny +=的距离d ,利用d 与r 的关系大小关系判断直线与圆的位置关系。
【解析】点(,)A m n 在圆O :228x y +=上,故22
8m n +=,圆心(0,0)O 到直线
8mx ny +=的距离为
d r =
===,故直线4ax by +=与圆O 相切.
选B.
4.直线30ax y --=与圆226490x y x y +-++=相交于,A B 两点,若AB ≥,则a 的取值范围是( )
A .1[,1]7
-
B .1(,]][1,)7-∞-+∞
C .[0,1]
D .2[,0]3-
【分值】5
【答案】A
【易错点】将直线方程与圆的方程联立利用代数法求解导致计算量大而出错。
【考查方向】本题主要考查了直线与圆相交及圆的弦长公式的应用.
【解题思路】用a 表示圆心到直线的距离d ,利用
AB =≥a 的不等式,解关于a 的不等式即可得到结果。
【解析】圆心的圆心坐标为(3,2)-,半径为2,设圆心到直线的距离为d ,则由点到直线距
离公式,有
|d =,∴||AB =,则||AB ≥,∴27610a a --≤,解得1[,1]7
a ∈-,故选A .
5.过点P (1,2)的直线,将圆形区域{(x ,y )|x 2+y 2≤10}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )
A .x +2y -5=0
B .y -2=0
C .2x -y =0
D .2x +y -5=0
【分值】5
【答案】A
【易错点】不知道什么时候两个部分的面积之差最大。
【考查方向】本题主要考查了直线与圆相交的性质。
【解题思路】当圆心与P 的连线和过点P 的直线垂直时,这两个部分的面积之差最大.
【解析】当圆心与P 的连线和过点P 的直线垂直时,符合条件,圆心O 与P 点连线的斜率为2,所以要求直线的斜率为12
-
.又因为直线过P (1,2),所以该直线方程为x +2y -5=0.故选A.
填空题
6.过点(1,1)A 的直线l 将圆22(1)(2)9x y ++-=分成两段弧,当优弧与劣弧的长度之差最大时,直线l 的方程为________.
【分值】5
【答案】230x y +-=.
【易错点】不知道劣弧什么时候最短。
【考查方向】本题主要考查了直线与圆相交的性质.
【解题思路】当圆心和A 点的连线与直线l 垂直时,优弧与劣弧的长度之差最大.
【解析】设圆心为B ,则(1,2)B -,由圆的性质得直线l 与AB 垂直时,优弧与劣弧的长度
之差最大,由点斜式得直线l 的方程为230x y +-=.
7.直线250x y -+=与圆2225x y +=相交于M 、N 两点,则弦长|MN|= .
【分值】5
【答案】【易错点】计算错误。
【考查方向】本题主要考查了直线与圆相交的性质。
【解题思路】求出圆心到直线的距离d ,利用MN =
【解析】圆心到直线的距离
d ==MN ==.
8.若直线y x a =+与曲线y 有2个不同的公共点,则实数a 的取值范围是____________.
【分值】5 【答案】2).
【易错点】不会利用数形结合求解导致出现增根或者漏解。
【考查方向】本题主要考查了直线与圆相交的性质以及数形结合的思想,在高考中此类问题经常出现.
【解题思路】将曲线y 直线的图象,平移直线,观察当直线与圆有两个不同交点时,求出b 的取值范围.
【解析】曲线方程变形为()2
224x y -+=,表示圆心C 为(2,0),半径为2的上半圆,根据题意画出图形,如图所示,
当直线y x a =+过原点O 时,将O 坐标代入直线方程得:即0a =;
当直线y x a =+与半圆相切时,圆心C 到直线的距离d r =,2=,即22a +=-
(不合题意舍去)或2a +=2a =,
则直线与曲线有两个公共点时a 的范围为02a ≤<.
综合题
9.已知过点()1,2M 的直线l 与圆22450x y x +--=相交于,A B 两点,设弦AB 的中点为P ,求动点P 的轨迹方程.
【分值】6
【答案】223220x y x y +--+=
【易错点】不会利用中点的特性导致无法求出P 的轨迹方程。
【考查方向】本题主要考查了直线与圆相交的性质、曲线的轨迹问题。
【解题思路】设(),P x y ,已知圆的圆心为1O ,则1O P ⊥AB ,利用11O P AB k k ⋅=-,代入
相关的点的坐标,即可求出P 的轨迹方程。
【解析】设(),P x y ,圆心()12,0O ,连接1O P ,则1O P ⊥AB .
当1x ≠且2x ≠时,11O P AB k k ⋅=-,又21AB MP y k k x -==-,则有02121y y x x --⋅=---,化简得223220x y x y +--+=......(1)
当1x =或2x =时,P 点的坐标为()()()()1,0,1,2,2,0,2,2都是方程(1)的解,所以弦AB 中点P 的轨迹方程为223220x y x y +--+=.
10.已知圆C :22(3)(4)25x y -+-=,直线l :20mx y m +--=.
(1)求证:直线l 恒过定点;
(2)求直线l 被圆C 截得的弦长最长与最短的方程.
【分值】12
【答案】(1)恒过定点(1,2);(2)最长弦方程为x-y+1=0,最短弦方程为x+y-3=0
【易错点】不知道如何求解直线l 所过的定点。
【考查方向】本题主要考查了直线过定点问题以及直线与圆相交的性质。
【解题思路】(1)将直线化为直线束方程:(1)20m x y -+-=.联立方程,求出解为定点坐标。
(2)由题求直线被圆所截取的弦的最长与最短,结合几何性质分别对应着,直线过圆心,及线与圆心所在的直线垂直两种情况,可求出对应的方程。
【解析】(1)证明:将直线化为直线束方程:(1)20m x y -+-=.
联立方程1020x y -=⎧⎨-=⎩
,得点(1,2);将点(1,2)代入直线方程,不论m 为何值时都满足方程,所以直线l 恒过定点(1,2);
(2)当直线l 过圆心与定点(1,2)时,弦长最大,代入圆心坐标得1m =-.
此时直线l方程为x-y+1=0,当直线l垂直于圆心与定点(1,2)所在直线时弦长最短,此
m=,此时直线l方程为x+y-3=0.
时直线l的斜率为1-,代入方程得1。