高二年级第一学期开学考试数学试卷答案

合集下载

2023_2024学年黑龙江省哈尔滨市高二上册开学考试数学试题(附答案)

2023_2024学年黑龙江省哈尔滨市高二上册开学考试数学试题(附答案)

2023_2024学年黑龙江省哈尔滨市高二上册开学考试数学试题A .B .1142a b + 4.PM2.5是衡量空气质量的重要指标,下图是某地)的折线图,则下列关于这3/g m μA .众数为30B .中位数为31.55.的三个内角A ,B ,C 的对边分别为ABC,则A .B .6二、多选题(共4小题,每小题目要求.全部选对的得512iz +=A .周岁人群参保总费用最少1829-B .30周岁以上的参保人群约占参保总人群的20%C .54周岁以上的参保人数最少D .丁险种更受参保人青睐12.在中,内角所对的边分别为,已知,点满足,且ABC ,,A B C ,,a b c 6c =D 2AD DB =ABC15.已知某艺术班共25人作品数量的平均数为名学生每人作品数量的方差为16.已知三棱锥-P ABC 平面,PA ⊥ABC PA =17.新冠肺炎疫情期间,某地为了解本地居民对当地防疫工作的满意度,从本地居民中随机(1)求频率分布直方图中a 的值;(2)根据频率分布直方图估计本次评测分数的平均数(同一组中的数据用该组区间的中点值作代表,并精确到0.1).18.设的内角A ,B ,C 的对边分别为a ABC (1)求的大小;A (2)若,求b ,c 的值.7,sin 2sin a C B ==(1)求证:平面PCD ;⊥AE (2)求直线BE 与平面PCD 所成角的正弦值21.如图,四棱锥P ABCD -(1)证明://平面AECPB (2)设三棱锥的体积是E ACD -822.如图所示,某小区内有,,A B ,,90BAD ∠=45BCD ∠= DCA ∠(1)求两栋楼间的距离;BD(2)若小区决定沿方向取两点与建设一个三角形花园,且始终满足,求BD ,E F A 45EAF ∠=面积的最小值.AEF △7.B【分析】根据题意得出为外接圆的直径,且BC 量上的投影向量.BC8.D【分析】以向量{,AB AC数量积的运算性质,两边平方运算即可EF EA AB=++22 OM OA AM=-=在Rt,1,DOM DM OD=故选项C正确;17.(1)0.025(2)80.7【分析】(1)根据频率和为(2)根据平均数公式运算求解【详解】(1)由题意可得:(2)估计本次评测分数的平均数则,,,(0,0,0)A (2,0,0)B (2,1,0)C ,,110,,22AE ⎛⎫= ⎪⎝⎭ (2,1,1)PC =- 在中,,E 为PAD 1PA AD ==∵,面PCD ,PD PC E ⋂=PD ⊂方法三:设平面PCD 的一个法向量为11(2)因为平面ABCD ,E 为PA ⊥所以点E 到平面ABCD的距离为12因为三棱锥的体积是E ACD -38。

高二秋季开学考试(数学)试题含答案

高二秋季开学考试(数学)试题含答案

高二秋季开学考试(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)已知集合{}1,2,3,4,5,6U =,{1,}2,3A =,{}2,3,4,5B =,则()()U U A B ⋃=( )A.{6}B.{1,6}C.{2,3}D.{1,4,5,6}2.(5分)下列命题中,正确的是( )A.若a b >,则22a b >B.若,a b c d >> ,则a cb d +>+C.若,a b c d >>,则ac bd >D.若||a b <,则22a b <3.(5分)偶函数()f x 的定义域为R ,当[)0x ∈+∞,时,()f x 是增函数,则不等式()(1)f x f >的解集是( )A.(1,)+∞B.(,1)-∞C.(1,1)-D.(,1)(1,)-∞-⋃+∞4.(5分)已知11n a ⎧⎫⎨⎬+⎩⎭是等差数列,且114a =,41a =,则10a =( )A. -5B. -11C. -12D. 35.(5分)若3sin cos 0αα+=,则21cos sin 2αα+的值为( ) A.103B.53C.23D.-26.(5分)设等差数列{a n }的前n 项和为S n ,满足10a >,914S S =,则( ) A. 0d > B. S n 的最大值为23SC. 120a =D. 满足0n S >的最大自然数n 的值为23 7.(5分)已知平面向量a ,b 的夹角为3π,且·1a b =,则||a b +的最小值为( )A. 1B.C. 2D.8.(5分)在边长为1的等边ABC △所在平面内,有一点P 满足20PA PB PC ++=,则PA PB ⋅=( ) A.16-B.316C.16D. 316-9.(5分)记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a =( ) A.21n -B.122n --C.122n --D.121n --10.(5分)已知正实数a ,b 满足a b ab +=,则ab 的最小值为( )A.1B.2C.2D.4.11.(5分)已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( ) A.4B.29C.223D.41712.(5分)如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为3,点E 在棱BC 上,且满足2BE EC =,动点M 在正方体表面上运动,且1ME BD ⊥,则动点M 的轨迹的周长为( )A. 62B. 43C. 42D. 33二、 填空题 (本题共计4小题,总分20分)13.(5分)已知角α的终边经过点(,3)P m -,且4cos 5α=-,则m 等于( )14.(5分)如图,在正方体图ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( ) 15.(5分)在边长为2的正方形ABCD 中,E 为CD 的中点, AE 交BD 于F .若23AF x AB y AD =+则x y +=________.16.(5分)如图正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段CC 1上一动点(不含C ),过M 、N 、P 与正方体的截面为α,则下列说法正确的是___________.①当112CP CC ≤时,α为五边形 ②截面α为四边形时,α为等腰梯形 ③截面α过1D 时,113CP CC = ④α为六边形时在底面投影面积1,S α为五边形时在底面投影面积2S ,则12S S >三、 解答题 (本题共计6小题,总分70分)17.(10分).(10分)已知(1,2)a =, (3,2)b =-,当k 为何值时. (1)ka b +与3a b -垂直; (2)ka b +与3a b -平行.18.(12分).(12分) ABC △的内角,,A B C 的对边分别为,,a b c ,满足22cos c a b A =+.(1)求角B ;(2)若ABC △的面积为3,13b =,求ABC △的周长.19.(12分)(12分) 如图,在△ABC 中,6AC =,D 为AB 边上一点,2CD AD ==,且6cos 4BCD ∠=. (1)求sin B ; (2)求△ABC 的面积.20.(12分)(12分 已知{a n }是单调递减的等比数列,214a =,且1231,,16a a a +成等差数列.(1)求数列{a n }的通项公式; (2)设2212212log log n n n b a a -+⋅=,求数列{b n }的前50项和50T .21.(12分)(12分)已知首项都是1的两个数列{}{}(),0,n n n a b b n N *≠∈,满足11120n n n n n n a b a b b b +++-+=.1.令nn na cb =,求数列{}n c 的通项公式; 2.若13n n b -=,求数列{}n a 的前n 项和n S .22.(12分)(12分)若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值; (Ⅱ)求关于x 的不等式()0f x <的解集.答案一、单选题(本题共计12小题,总分60分)1.(5分)D2.(5分)B3.(5分)D4.(5分)B5.(5分)A6.(5分)C7.(5分)D8.(5分)D9.(5分)B10.(5分)D11.(5分)B12.(5分)A二、填空题(本题共计4小题,总分20分)13.(5分)14.(5分)215.(5分)71816.(5分)②③三、解答题(本题共计6小题,总分70分)17.(10分)答案:(1)由题意,向量,,则,,因为与垂直,所以,即,解得.(2)若与平行,则满足,即,解得..18.(12分)答案:解:(1)由正弦定理可得,,在中,.又.(2).由余弦定理可得..的周长为.19.(12分)解:(1)在ADC∆中,由余弦定理得222222221cos22224AD CD ACADCAD CD+-+-∠===⋅⨯⨯所以sin4ADC∠===因为cos BCD∠=BCD∠是三角形BCD的内角,所以sin BCD∠===所以()sin sinB ADC BCD=∠-∠sin cos cos sinADC BCD ADC BCD=∠∠-∠∠14=-=;(2)在BCD∆中,由正弦定理得sin sin sinBD CD BCBCD B BDC==∠∠,所以2sin4sin8CD BCDBDB⨯∠===,2sin sinsin sinCD BDC CD ADCBCB B∠∠====所以6AB AD BD =+=,所以11sin 622ABC S AB BC B ∆=⋅⋅=⨯⨯=. 20.(12分)解:(1)设{}n a 是公比为q 的等比数列, 因为214a =,且1231,,16a a a +成等差数列,故可得114a q =,又因为1321216a a a ⎛⎫+=+ ⎪⎝⎭,所以21111216a a q a q ⎛⎫+=+ ⎪⎝⎭,解得112a q ==或者118a =,2q ,又因为{}n a 是单调递减的等比数列,所以112a q ==, 则1112nn n a a q -⎛⎫== ⎪⎝⎭; (2)21212212212222log log 11log log 22n n n n n b a a -+-+==⎛⎫⎛⎫⋅ ⎪⎪⎝⎭⎝⎭⋅,()()21121212121n n n n ==--+-+, 11111121133521212121n nT n n n n =-+-++-=-=-+++, 50100101T =. 21.(12分)答案:1.因为,所以,即. 所以数列是以首项,公差的等差数列,故. 2.由知,于是数列前项和①①得,②①-②得所以.22.(12分)【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩. 解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x > 当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=. 当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 当1a =时,原不等式为()210x -<,不等式的解集为∅. 综上:当0a =时,不等式的解集为{}1x x >; 当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或; 当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,不等式的解集为∅.。

广州大学附属中学2024-2025学年高二上学期开学考试数学试卷及答案

广州大学附属中学2024-2025学年高二上学期开学考试数学试卷及答案

2024年9月广附高二开学考试数学问卷姓名:___________班级:___________考号:___________一.单选题(8道,共40分)1.已知{12},{}A xx B x x a =<<=<∣∣,若“x A ∈”是“x B ∈”的充分不必要条件,则a 的取值范围是( )A .1a ≤B .1a ≥C .2a ≤D .2a ≥2.已知1i z =−是方程()220,z az b a b +−=∈R 的根,则a b +=( )A .3−B .1−C .2D .33.已知e πa a =,ln πb b =,c = )A .a c b <<B .c<a<bC .c b a <<D .a b c <<4.已知π,0,4αβ∈ ,221cos sin 7αα−=,且3sinsin(2)βαβ=+,则αβ+的值为( ) A .12πB .6πC .4πD .3π5.已知函数()()sin 2f x x ϕ=+(0πϕ<<),()π6f x f x−=,则( ). A .()102f =B .()f x 的图象向左平移π6个单位长度后关于y 轴对称C .()f x 在π2π,63上单调递减D .ππ033f x f x−++=6.在某种药物实验中,规定100ml 血液中药物含量低于20mg 为“药物失效”.现测得实验动物血液中药物含量为0.8mg /ml ,若血液中药物含量会以每小时20%的速度减少,那么至少经过( )个小时才会“药物失效”.(参考数据:lg20.3010≈) A .4B .5C .6D .77,母线长为3 ) A .36πB .24πC .18πD .12π8.已知O 为ABC 的内心,角A 为锐角,sin A =AO AB AC µλ=+ ,则µλ+的最大值为( )A .12B .34C .45D .56二.多选题(3道,共18分)9.已知0,0a b >>,且1a b +=,则下列不等式成立的是( ) A .14ab ≥B .4925a b+≥C≤ D .2a a <10.如图,已知棱长为2的正方体1111ABCD A B C D −中,点P 在线段1B C 上运动,现给出下列结论:则正确的选项为( )A .直线1AD 与直线DP 所成角的大小不变B .平面1PBD ⊥平面11ACD C .点P 到平面11A C DD .存在一点P ,使得直线AP 与平面11BCC B 所成角为π311.一个同学投掷10次骰子,记录出现的点数,根据统计结果,在下列情况中可能出现点数6的有( )A .平均数为3,中位数为4B .中位数为4,众数为3C .平均数为2,方差为2.1D .中位数为3,方差为0.85三.填空题(3道,共15分)12.从高三抽出50名学生参加数学竞赛,由成绩得到如图的频率分布直方图,则估计这50名学生成绩的75%分位数为 分.13.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,AD 是ABC 的中线.若2AD =,且()222cos cos b c bc b C c B ++=+,则ABC 面积的最大值为 .14.设函数()f x 的定义域关于原点对称且满足:(ⅰ)()()()()()1212211f x f x f x x f x f x ⋅+−=−;(ⅱ)存在正常数a 使()1f a =.则函数()f x 的一个周期是.四.解答题(13,15,15,17,17,共77分)15.已知函数()()π(01,)2f x x ωϕωϕ=+<<<的图象过2π,03 − ,π3 两点,将()f x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,再向右平移π3个单位长度,得到函数()g x 的图象. (1)求函数()g x 的解析式;(2)若函数()()0F x g x =>,求函数()F x 的单调区间.16.已知斜三角形ABC .(1)借助正切和角公式证明:tan tan tan tan tan tan A B C A B C ++=.并充分利用你所证结论,在①②中选择一个求值:①tan20tan40tan40°+°°°, ②tan20tan40tan120tan20tan40°°°°°++;(2)若135C =°,求tan tan A B +的最小值.17.如图,在平行四边形ABCD 中,⊥AP BC ,垂足为P ,E 为CD 中点,(1)若AP ·AC=32,求AP 的长;(2)设|AB ||AC |cos BAC ∠AP=x AE+y AC ,求xy 的值.18.如图,在四棱锥P ABCD −中,底面ABCD 为平行四边形,60BAD ∠= ,1PD AD ==,2PB AB ==.(1)证明:BD ⊥平面PAD ;(2)当二面角D PA B −−时,求直线BD 与平面PBC 所成角的大小.19.已知有序数对{}123:,,X x x x ,有序数对{}123:,,Y y y y ,定义“Ω变换”:112y x x =−,223y x x =−,331y x x =−,可以将有序数对X 转化为有序数对Y . (1)对于有序数对{}:3,4,5X ,不断进行“Ω变换”,能得到有序数对{}0,0,0吗?请说明理由. (2)设有序数对{}123:,,X x x x 经过一次“Ω变换”得到有序数对{}():,2,Y y x x y ≥,且有序数对Y 的三项之和为2024,求yx的值.(3)在(2)的条件下,若有序数对Y 经过n 次“Ω变换”得到的有序数对的三项之和最小,求n 的最小值.2024年9月广附高二开学考试数学答案1.D ,2.A ,3.A ,4.D ,5.D ,6.D ,7.D 8.C【详解】方法一:点O 是ABC 内心的充要条件是:0aOA bOB cOC ++=,其中BC a =,AC b =,AB c =,理由如下:若0aOA bOB cOC ++=,则()()0OA AB aOA b c OA AC ++++= ,整理得()0a b c OA bAB cAC ++++=,所以bc AB AC OA a b c AB AC =−+++,即点O 在BAC ∠的角平分线上,同理可证,点O 在ABC ∠,BCA ∠的角平分线上,即点O 为ABC 的内心.故b cAOAB AC a b c a b c=+++++,故11b c a a b c b c µλµλ++=⇒=+++++.因为角A为锐角,sin A =7cos 8A =.由定理得到22222277cos 284b c a A b c bc a bc +−==⇒+−=,故a b c =+.又因为2b c c d +≥(当且仅当b c =时取等号),所以15151441122162b c c b −≥−=+++,所以15114a b c µλ=+≥=++,故45µλ≤,方法二:如图,延长AO ,交BC 于点D ,设CD yCB =,即()AD AC y AB AC −=− ,故()1AD y AB y AC =+− , 设()()()11AO xAD x y AB y AC xy AB x y AC ==+−=+−,则()1xyx y µλ= =−,x λµ∴+=,作ABC 的内切圆与BC 边切于点E ,与AB 切于点F , 设圆O 半径为r,sin A =A 为锐角,2222sin cos 2tan222sin 2sin cos 22sin cos tan 1222A A AA A A A A A ===++,故22tan2tan 12AA =+tan 2A =,故sin 22A A =,又22sincos 122A A +=,解得1sin 24A =,负值舍去,14OF OA ∴=,即4AO r =,由图知OD OE r ≥=, 4445AO r x r OD AD ==≤+.故选:C . 9.BCD 10.ABC 11.ABD【详解】对于A :10次点数为1,1,1,1,4,4,4,4,4,6符合题意,故A 正确; 对于B :10次点数为3,3,3,3,4,4,4,6,6,6符合题意,故B 正确;对于C :设10次点数为12345678910,,,,,,,,,x x x x x x x x x x 且12345678910x x x x x x x x x x ≤≤≤≤≤≤≤≤≤,平均数为m ,假设有一次点数为6,不妨设106x =,由方差公式2222222222221234567891010x x x x x x x x x x s m +++++++++=−,代入相关数据得:222222222123456789362.1410x x x x x x x x x +++++++++−,即22222222212345678925x x x x x x x x x ++++++++=,显然9x 最大只能取4,不妨设94x =得22222222123456789x x x x x x x x +++++++=,此时方程无解,所以94x ≠, 当93x =时得:222222221234567816x x x x x x x x +++++++=,8x 最大只能取3, 不妨设83x =得222222212345677x x x x x x x ++++++=,此时方程有唯一解,12345671x x x x x x x =======, 即10次点数为1,1,1,1,1,1,1,3,3,6,但此时平均数为1.9不合题意,所以93x ≠,当92x =得222222221234567821x x x x x x x x +++++++=取56782x x x x ====得222212345x x x x +++=, 此时方程无解(其余情况也均无解),所以92x ≠,当91x =时,平均数为1.5不合题意.综上所述,假设有一次点数为6不成立,故C 错误;对于D :10次点数为3,3,3,3,3,3,3,4,4,6符合题意,故D 正确.故选:ABD 12.86.25 13.【详解】因为()222cos cos b c bc b C c B ++=+,由正弦定理可得()222sin sin sin sin sin cos sin cos B C B CB C C B ++=+,又()()sin cos sin cos sin sin πsin B C C B B C A A +=+=−=,所以222sin sin sin sin sin B C B C A ++=,由正弦定理可得222b c bc a ++=,由余弦定理2222cos a b c bc A =+−,所以1cos 2A =−,又()0,πA ∈,所以2π3A =,因为AD 是ABC 中BC 边上中线,则1122AD AB AC =+ ,即2AD AB AC =+ ,所以22242AD AB AC AB AC =++⋅ ,所以22162b c bc bc bc =+−≥−,可得16bc ≤,当且仅当4b c ==时等号成立,故1sin 2ABCS bc A ==≤△ABC面积的最大值为故答案为:14.4a【详解】令12xx x =−,()()()()()()()()()()()()21122112122211f x f x f x f x f x f x x f x x f x f x f x f x f x ++−=−==−=−−=−−−, ∴()f x 是奇函数.∵()()()()()()()()()()11f a f x f a f x f x a f x a f a f x f a f x −+−+ +=−−==−−−−()()()()1,11f x f a f x −=+,∴()()()()()()()11112111f x f x f x a f x a a f x f x f x −−+ +=++==− −++,∴()()()()14222f x a f x a a f x f x a +=++== −+,()f x ∴是以4a 为周期的周期函数.【详解】(1)因为函数π())(01,)2f x x ωϕωϕ=+<<<的图象过2π(,0)3−,π(3两点,所以π4T kT +=,即12π()π4k ω+×=,解得1,2k k ω=+∈Z ,又因为01ω<<,则12ω=.π1)32ϕ×+ 所以ππ2π,62k k ϕ+=+∈Z ,则π2π,3k k ϕ=+∈Z ,又因为π||2ϕ<,所以π3ϕ=,即1π())23f x x =+,所以将()f x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,再向右平移π3个单位长度得()g x x =.(2)由(1)知,()F x x =,因为()0F x >0x >,即1sin 2x >,解得π5π2π2π,66k x k k +<<+∈Z ,所以()F x 的单调递增区间为ππ2π,2π,62k k k++∈Z ,单调递减区间为π5π2π,2π,26k k k ++∈ Z16.【详解】(1)π()C A B =−+ ,[]tan tan π()tan()C A B A B ∴=−+=−+, ∴tan tan tan 1tan tan A BC A B+=−−,tan (1tan tan )(tan tan )C A B A B ∴−=−+,tan tan tan tan tan tan A B C A B C ∴++=;①tan 20tan 4020tan 40°+°°°tan 20tan 40tan12020tan 40°+°+°°°tan 20tan 40tan12020tan 40°°°°°20tan 4020tan 40=°°°°+=②tan 20tan 40tan120tan 20tan 40tan120tan120tan 20tan 40tan 20tan 40°+°+°°°°==°=°°°°;(2)135C =° ,则045A °<<°,045B °<<°,且45A B +=°,所以tan 0A >,tan 0B >,2(tan tan )tan tan tan135tan tan tan1351tan tan 14A B A B A B A B +∴+=−°+°=−≥−, 2(tan tan )4(tan tan )40A B A B ∴+++−≥,解得tan tan 2A B +≥或tan tan 2A B +≤−−(舍去),所以tan tan 2A B +≥,当且仅当tan tan 1A B==−时取等号tan tan A B ∴+的最小值为2.【详解】(1)AP BC ⊥ ,∴AP 是AC 在AP方向上的投影向量,∴AP ·AC =2232AP AP == ,即AP =法二:AP BC ⊥ ,∴AP ·AC = |AP |·|AC |cos PAC ∠=|AP |·|AP|232AP = ,即AP =(2)在ABC 中,2222cos BC AB AC AB AC BAC ⋅⋅∠=+-=2529 +-,所以3BC =,cos B 2222BC AB AC AB BC +−=××,因为(0)B π∈,,所以π4B =,sin 1cos 12AP AB B BP AB B PC BC PB ==,==,=-=, 以P 为坐标原点,PC PA ,所在直线分别为x 轴,y 轴,建系如图: 易知000120)31()(()()P A C D ,,,,,,,,因为E 为CD 中点, 所以25()21E ,,()0,1AP =−,51,22AE =− ,()2,1AC =− ,∵AP=x AE +y AC ,∴55()()()()12221101222x y x y x y −−+−=−,=,+,-,5202112x y x y +=−−=− ,解得:4353x y =− = ,所以:209xy =−法二:在ABC 中,2222cos BC AB AC AB AC BAC ⋅⋅∠=+-=2529 +-,所以3BC =,cos B 2222BC AB AC AB BC +−=××,因为(0)B π∈,,所以π4B =,sin 1cos 12AP AB B BP AB B PC BC PB ==,==,=-=, 因为2PC PB =,所以()11213333AP AB BP AB BC AB AC AB AB AC =+=+=+−=+,又∵1()()()22x AP xAE y AC x AC CE y AC x AC AB y AC AB x y AC=+=++=−+=−++由平面向量基本定理得:122313x x y −=+=,解得:4353x y=− = ,所以:209xy =−【详解】(1)在ABD △中,由余弦定理得22212cos 1421232BD AD AB AD AB A =+−⋅=+−×××=, 显然222AD BD AB+=,则π2ADB ∠=,即AD BD ⊥, 由AD PD =,AB PB =,BD BD =,得ABD PBD △≌△,则π2PDB ∠=,即PD BD ⊥, 又AD PD D = ,,PD AD ⊂平面PAD ,所以BD ⊥平面PAD . (2)取P A 中点E ,连接BE ,DE ,如图,由AB PB =,AD PD =,则BE PA ⊥,DE PA ⊥,即BED ∠为二面角D PA B −−的平面角,由(1)知,BD ⊥平面PAD ,DE ⊂平面PAD ,则BD DE ⊥,BD ,于是tan BD BED DE ∠=DE =1PD AD ==,则AE =PA =,222PD AD PA +=,于是PD AD ⊥,又BD AD ⊥,PD BD D ∩=,,PD BD ⊂平面PBD ,因此AD ⊥平面PBD ,又//BC AD ,则BC ⊥平面PBD ,过D 作DF PB ⊥于点F ,DF ⊂平面PBD ,于是BC DF ⊥, 而BC PB B = ,,BC PB ⊂平面PBC ,则DF ⊥平面PBC , 因此直线BD 与平面PBC 夹角即为PBD ∠, Rt PBD △中,π2BDP ∠=,1sin 2PD PBD PB ∠==, 且()0,πPBD ∠∈,则π6PBD ∠=, 所以直线BD 与平面PBC 夹角为π6.19.【详解】(1)解:对于有序数对{}:3,4,5X ,不断进行“Ω变换”:112y x x =−,223y x x =−,331y x x =−,得到的有序数对分别为 1,1,2,{}0,1,1,{}1,0,1,{}1,1,0,{}0,1,1,答案第7页,共7页 以下重复出现,所以不能得到有序数对{}0,0,0.(2)解:由Ω变换知:12y x x =−,232x x =−,31x x x =−, 因为有序数对Y 的三项之和为2024,且x y ≥,所以2022x y +=,1011x y ≥≥, 所以31121011x x x x −≥≥−,故31x x −最大,即123x x x >>或321x x x >>,当123x x x >>时,可得1223132y x x x x x x x =− =− =− ,由22024x y ++=,得()1322024x x −=,即1012x =, 所以1010y =,故10105051012506y x ==;当321x x x >>时,可得2132312y x x x x x x x =− =− =− ,由22024x y ++=,得()3122024x x −=,即1012x =, 所以1010y =,故10105051012506y x ==.综上可得,505506y x =.(3)解:有序数对{}:,2,2Y y y +,将有序数对Y 经过6次“Ω变换”得到的有序数对分别为{}{}{}{}{}2,,2,2,2,4,4,2,6,6,8,2,2,10,8y y y y y y y y y y −−−−−−−−−,{}12,2,10y y −−, 由此可见,经过6次“Ω变换”后得到的有序数对也是形如{},2,2y y +的有序数对, 与有序数对Y “结构”完全相同,但最大项减小12,因为101012842=×+,所以将有序数对Y 经过684504×=次“Ω变换”后得到的有序数对为{}2,2,4, 经过“Ω变换”后得到的有序数对分别为{}{}{}{}{}0,2,2,2,0,2,2,2,0,0,2,2,2,0,2,⋅⋅⋅, 从以上分析可知,以后数对循环出现,所以有序数对各项之和不会更小,所以当505n ≥时,经过n 次“Ω变换”得到的有序数对的三项之和均最小为4. 所以n 的最小值为505.。

河北省保定市部分高中2024-2025学年高二上学期开学考试 数学含答案

河北省保定市部分高中2024-2025学年高二上学期开学考试 数学含答案

高二数学考试(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第二册,选择性必修第一册第一章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足1i 1iz=--+,则z =()A.22i+ B.22i-- C.2i- D.2i2.已知ABC 的三个顶点分别为()()()1,2,3,1,5,A B C m ,且π2ABC ∠=,则m =()A.2B.3C.4D.53.若{},,a b c是空间的一个基底,则下列向量不共面的为()A.,,2a b a b +B.,,a a b a c++C.,,a a c c-D.,,2b c a c a b c++++4.已知平面α的一个法向量为()1,2,2n =-,点M 在α外,点N 在α内,且()1,2,1MN =- ,则点M 到平面α的距离d =()A.1B.2C.3D.25.续航能力关乎无人机的“生命力”,太阳能供能是实现无人机长时续航的重要路径之一.某大学科研团队利用自主开发的新型静电电机,成功研制出仅重4.21克的太阳能动力微型无人机,实现纯自然光供能下的持续飞行.为激发同学们对无人机的兴趣,某校无人机兴趣社团在校内进行选拔赛,8名参赛学生的成绩依次为65,95,75,70,95,85,92,80,则这组数据的上四分位数(也叫第75百分位数)为()A.93B.92C.91.5D.93.56.在ABC 中,角,,A B C 的对边分别为,,a b c ,若tan B b ==,则2()a c ac+=()A.6B.4C.3D.27.某人忘记了一位同学电话号码的最后一个数字,但确定这个数字一定是奇数,随意拨号,则拨号不超过两次就拨对号码的概率为()A.15B.25C.35 D.9208.已知圆锥1A O 在正方体1111ABCD A B C D -内,2AB =,且1AC 垂直于圆锥1AO 的底面,当该圆锥的底面积最大时,圆锥的体积为()C.2D.3二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是一个平面,则下列命题为真命题的有()A.若m ∥,n α∥α,则m ∥nB.若,m n αα⊥⊂,则m n ⊥C.若,m m n α⊥⊥,则n α⊂或n ∥αD.若m ∥,,m n α相交,则n ∥α10.已知事件,,A B C 两两互斥,若()()()135,,4812P A P A B P A C =⋃=⋃=,则()A.()12P B C ⋂= B.()18P B =C.()724P B C ⋃=D.()16P C =11.已知厚度不计的容器是由半径为2m ,圆心角为π2的扇形以一条最外边的半径为轴旋转π2得到的,下列几何体中,可以放入该容器中的有()A.棱长为1.1m 的正方体B.底面半径和高均为1.9m 的圆锥C.棱长均为2m 的四面体D.半径为0.75m 的球三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.《九章算术》中将正四棱台称为方亭,现有一方亭111111,33ABCD A B C D AB A B -==,体积为13,则该方亭的高是__________.13.在空间直角坐标系Oxyz 中,()()()4,0,0,0,2,0,0,0,4,A B C D 为AB 的中点,则异面直线BC 与OD 所成角的余弦值为__________.14.在ABC 中,点D 在BC 边上,2,,BC BAD CAD AB AC AD AB AC AD ∠∠==⋅=⋅+⋅,则ABC 的外接圆的半径为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)某高中为了解本校高二年级学生的体育锻炼情况,随机抽取100名学生,统计他们每天体育锻炼的时间,并以此作为样本,按照[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100进行分组,得到如图所示的频率分布直方图.已知样本中休育锻炼时间在[50,60)内的学生有10人.(1)求频率分布直方图中a 和b 的值;(2)估计样本数据的中位数和平均数(求平均数时,同一组中的数据以该组区间的中点值为代表).16.(15分)在ABC 中,角,,A B C 的对边分别是,,a b c ,已知()sin cos 1cos sin ,1C B a C B b =->.(1)证明:1cos C b=.(2)若2,a ABC = 的面积为1,求c .17.(15分)如图,在四棱锥P ABCD -中,已知底面ABCD 是边长为60,BAD PA PB PD ∠====,且PE ⊥平面ABCD ,垂足为E .(1)证明:BC ⊥平面PBE .(2)求直线AC 与平面PBC 所成角的正弦值.18.(17分)在正四棱柱1111ABCD A B C D -中,已知1AB =,点,,E F G 分别在棱111,,BB CC DD 上,且,,,A E F G 四点共面,,BAE DAG ∠α∠β==.(1)若AE AG =,记平面AEFG 与底面ABCD 的交线为l ,证明:BD ∥l .(2)若π4αβ+=,记四边形AEFG 的面积为S ,求S 的最小值.19.(17分)给定平面上一个图形D ,以及图形D 上的点12,,,n P P P ,如果对于D 上任意的点P ,21ni i PP =∑为与P 无关的定值,我们就称12,,,n P P P 为关于图形D 的一组稳定向量基点.(1)已知()()()1231230,0,2,0,0,2,P P P PP P 为图形D ,判断点123,,P P P 是不是关于图形D 的一组稳定向量基点;(2)若图形D 是边长为2的正方形,1234,,,P P P P 是它的4个顶点,P 为该正方形上的动点,求1223341PP P P P P PP ++- 的取值范围;(3)若给定单位圆E 及其内接正2024边形122024,PP P P 为该单位圆上的任意一点,证明122024,,,P P P 是关于圆E 的一组稳定向量基点,并求202421i i PP =∑的值.高二数学考试参考答案1.C 因为1i 1iz=--+,所以2(1i)2i z =-+=-.2.D 因为()()2,1,2,1,BA BC m BA BC =-=-⊥ ,所以()410BA BC m ⋅=-+-=,解得5m =.3.B 因为()22a a b b =+- ,所以,,2a b a b + 共面;{},,a b c 是空间的一个基底,假设,,a a b a c ++ 共面,则存在不全为零的实数,s t ,使得()()a s a b t a c =+++ ,即()a s t a sb tc =+++,则1,0s t s t +===,无解,故,,a a b a c ++不共面;因为()a a c c =-+ ,所以,,a a c c - 共面;因为()()2a b c b c a c ++=+++ ,所以,,2b c a c a b c ++++ 共面.4.A 14213MN n d n ⋅--+===.5.D8名学生的成绩从低到高依次为65,70,75,80,85,92,95,95,且875%6⨯=,故上四分位数为929593.52+=.6.B因为tan B =,所以2π3B =,由余弦定理可得222222cos 3b a c ac B a c ac ac =+-=++=,即2()4a c ac +=,故2()4a c ac+=.7.B 设{i A =第i 次拨号拨对号码},1,2i =.拨号不超过两次就拨对号码可表示为112A A A +,所以拨号不超过两次就拨对号码的概率为()()()11211214125545P A A A P A P A A +=+=+⨯=.8.C 如图所示,取111111,,,,,AB AD DD D C C B B B 的中点,分别记为M ,,,,,N E F P G ,连接111,,,,,,,B D BD EF FP PG GM MN NE .根据正方体的性质易知六边形MNEFPG 为正六边形,此时1A C 的中点O 为该正六边形的中心,且1A C ⊥平面MNEFPG ,当圆锥底面内切于正六边形MNEFPG 时,该圆锥的底面积最大.设此时圆锥的底面圆半径为r,因为11B D ==,所以1112FP B D ==,所以22r FP ==,圆锥的底面积23ππ2S r ==,圆锥的高1122AO ==,所以圆锥的体积1113π3322V S A O =⋅=⨯=.9.BC 对于A ,若m ∥,n α∥α,则直线,m n 可能相交或平行或异面,故A 错误.对于B ,若,m n αα⊥⊂,则m n ⊥,故B 正确.对于C ,若,m m n α⊥⊥,则n ∥α或n α⊂,故C 正确.对于D ,若m ∥,,m n α相交,则n ∥α或n 与α相交,故D 错误.10.BCD因为事件,,A B C 两两互斥,所以()()()0P B C P A B P A C ⋂=⋂=⋂=,故A 错误.由()()()()1348P A B P A P B P B ⋃=+=+=,得()18P B =,故B 正确.由()()()()15412P A C P A P C P C ⋃=+=+=,得()16P C =,故D 正确.因为()()()1178624P B C P B P C ⋃=+=+=,所以C 正确.11.AC 设扇形所在圆的半径为R ,对于A ,设正方体的棱长为a ,如图1,则可容纳的最长对角线max 2OA R ===,解得max 1.15 1.1a =≈>,故A 正确.对于C ,如图2,取三段14圆弧的中点,,B C D ,则四面体OBCD 的棱长均为2m ,所以可以容纳,故C 正确.对于B ,如图2,同选项C 的分析,BCD 的外接圆半径为1.93<,所以不可以容纳,故B 错误.对于D ,如图3,4,设球的半径为r ,其中图4是图3按正中间剖开所得的轴截面,可知圆O '与圆O 内切,2O M OO r r r =+=++''10.7320.75r=-≈<,所以不可以容纳,故D错误.12.3设正四棱台的高为h.因为1133AB A B==,所以方亭1111ABCD A B C D-的体积()()221111331333V h S S h=⋅+=⋅+⨯+=下上,解得3h=.13.15依题意可得()()()2,1,0,2,1,0,0,2,4D OD BC==-,则1cos,5BC ODBC ODBC OD⋅==-,故异面直线BC与OD所成角的余弦值为15.14.233设2BAC∠θ=,因为BAD CAD∠∠=,所以BAD CAD∠∠θ==.由ABC ABD ADCS S S=+,得111sin2sin sin222AB AC AD AB AD ACθθθ⋅=⋅+⋅,即()sin2sinAB AC AD AB AD ACθθ⋅=⋅+⋅,又AB AC AD AB AC AD⋅=⋅+⋅,所以sin2sinθθ=,即2sin cos sinθθθ=,又02πθ<<,所以π2θ<<,所以sin0θ>,则1cos2θ=,所以π3θ=,所以2π23BAC∠θ==,则ABC外接圆的半径232sin3BCRBAC∠===.15.解:(1)由题意可知,学生每天体育锻炼的时间在[50,60)内的频率为100.1100=,则0.10.0110a==,由各组频率之和为1,可知()0.0050.010.02520.005101b+++⨯+⨯=,解得0.03b=.(2)前3组的频率之和为()0.0050.010.03100.450.5,++⨯=<前4组的频率之和为0.450.025100.70.5+⨯=>,所以样本数据的中位数在第4组,设为x,所以()0.45700.0250.5x+-⨯=,解得72x=,估计样本数据的中位数是72分钟.估计平均数是()()45950.05550.1650.375850.2572+⨯+⨯+⨯++⨯=分钟. 16.(1)证明:因为()sin cos 1cos sin C B a C B =-,所以sin cos cos sin cos sin C B C B a C B +=,即()cos sin sin a C B C B =+.根据πB C A +=-,得()sin sin C B A +=,所以cos sin sin a C B A =,由正弦定理得cos ab C a =,所以cos 1b C =,从而1cos C b=.(2)解:由(1)可得1sin C b==.因为ABC 的面积为1,所以1sin 12ab C b b=⋅=,解得22b C ==.又2a =,所以由余弦定理得c ==.17.(1)证明:连接,DE BD ,因为PA PB PD PE ===⊥平面ABCD ,所以EA EB ED ==.又四边形ABCD 是菱形,60BAD ∠= ,所以ABD 是正三角形,所以30EBD ∠= .由AB BD BC CD ===,得BCD 是正三角形,60DBC ∠= .所以90EBC EBD DBC ∠∠∠=+= ,即BC BE ⊥.由PE ⊥平面ABCD ,可得BC PE ⊥.因为PE BE E ⋂=,所以BC ⊥平面PBE .(2)解:以E 为坐标原点,,EB EP的方向分别为,y z 轴的正方向,建立空间直角坐标系,如图所示.因为AB =,所以2,3BE AE PE ====则())()(()(()0,2,0,1,0,2,0,0,0,,,0,2,,B AC P BC BP AC --=-=-=-.设(),,m x y z = 是平面PBC 的一个法向量,由0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩得0,20,y ⎧-=⎪⎨-+=⎪⎩取1z =,可得()m =.设直线AC 与平面PBC 所成的角为θ,则sin 6m AC m AC θ⋅=== ,即直线AC 与平面PBC所成角的正弦值为6.18.(1)证明:连接EG ,因为,,90AE AG AB AD ABE ADG ∠∠==== ,所以ABE ADG ≅ ,则BE DG =.在正四棱柱1111ABCD A B C D -中,易知BE ∥DG ,所以四边形BDGE 是平行四边形,从而BD ∥GE .又BD ⊄平面AEFG ,所以BD ∥平面AEFG .又BD ⊂平面ABCD ,平面ABCD ⋂平面AEFG l =,所以BD ∥l .(2)解:易证四边形AEFG 为平行四边形.以A 为坐标原点,AB ,1,AD AA的方向分别为,,x y z 轴的正方向,建立空间直角坐标系,如图所示.()()1,0,tan ,0,1,tan E G αβ,则()()1,0,tan ,0,1,tan AE AG αβ==,cos AE AG EAG AE AG ∠⋅==,sin S AE AG EAG ∠==S =因为π4αβ+=,所以()tan tan tan 11tan tan αβαβαβ++==-,整理得tan tan 1tan tan αβαβ+=-.由()tan tan 1tan tan tan ,tan 0,1αβαβαβ+=-∈ ,可得0tan tan 3αβ<- .S =,易知()2f x x =-42x +在(0,3-上单调递减,所以当tan tan 3αβ=-min S =,当且仅当tan tan 1αβ==-时,S .19.解:(1)点()()()1230,0,2,0,0,2P P P 不是关于D 的一组稳定向量基点.理由如下:当P 与()10,0P 重合时,有2221238PP PP PP ++= ,当P 与()22,0P 重合时,有222123128PP PP PP ++=≠ ,故()()()1230,0,2,0,0,2P P P 不是关于D 的一组稳定向量基点.(2)因为12233411414PP P P P P PP PP PP PP ++-=-= ,所以12233414PP P P P P PP PP ++-=,当P 与2P 重合时,4PP取得最大值,当P 与4P 重合时,4PP取得最小值0,所以1223341PP P P P P PP ++-的取值范围为0,⎡⎣.(3)设单位圆E 的圆心为O ,所以()2024202420242222221220241112024||2.i l i i i PP OP OPOP OP OP OP OP OP ====-=++++-⋅∑∑∑因为多边形122024PP P 是正2024边形,所以20242024110,0.i l i i OP OP OP ===⋅=∑∑又1i OP OP == ,所以2024214048i i PP ==∑ ,故122024,,,P P P 是关于圆E 的一组稳定向量基点,且.2024214048l i P ==∑.。

浙江名校协作体2024年高二上学期开学考试数学试题+答案

浙江名校协作体2024年高二上学期开学考试数学试题+答案

2024学年第一学期浙江省名校协作体试题高二年级数学学科考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号. 3.所有答案必须写在答题卷上,写在试卷上无效. 4.考试结束后,只需上交答题卷.选择题部分一、选择题:本题8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合2{|4}A x x =<,{}|41B x x =−<≤,则A B = ( ▲ )A.{|2}x x <B.{|21}x x −<≤C.{|41}x x −<≤D.{|42}x x −<< 2.记复数z 的共轭复数为z ,若()2i 24i z +=−,则z =( ▲ )A .1BC .2D.3.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.6,乙中靶的概率为0.7, 且两人是否中靶相互独立,若甲、乙各射击一次,则( ▲ )A .两人都中靶的概率为0.12B .两人都不中靶的概率为0.42C .恰有一人中靶的概率为0.46D .至少一人中靶的概率为0.74 4.已知向量12a =,b = ,若()()//a b a b λµ++,则( ▲ ) A. 1λµ= B. 1λµ=− C.1λµ+=− D. 1λµ+= 5.已知,αβ是两个互相垂直的平面,,m n 是两条直线,m αβ= 则“//n m ”是“//n α”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6. 设函数()f x x x = ,则不等式()()332log 3log 0f x f x +−<的解集是( ▲ )A .1,2727B .1027,C .()270,D .()27+∞,7.已知函数()4f x x π=+ 的定义域为[],a b ,值域为,则b a −的取值范围是( ▲ ) A .π4π,23B .π5π,23C .5π5π,63D .2π4π,33 8.如图,在正方体1111ABCD A B C D −中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点, 且1A F //平面1AD E ,则下列说法正确的个数有( ▲ ) ①二面角1F AD E −−的大小为常数 ②二面角1F D E A −−的大小为常数 ③二面角1F AE D −−的大小为常数A .0个B .1个C .2个D .3个二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某次校十佳歌手评比中,10位评委给出的分数分别为1210,,,x x x ,计算得平均数7x =,方差 22S =,现去掉一个最高分10分和一个最低分5分后,对新数据下列说法正确的是( ▲ ) A .极差变大 B .中位数不变11.四面体ABCD 中,3AC BC AB ===,5BD =,4CD =,记四面体ABCD 外接球的表面积为S , 当AD 变化时,则( ▲ ) A. 当3AD =时,32411S=π B. 当四面体ABCD 体积最大时,28S =π C. S 可以是16π D. S 可以是100π非选择题部分三、填空题:本题共3小题,每小题5分,共15分. 12.已知幂函数()2()57m f x mm x =−+的图象关于y 轴对称,则实数m 的值是 ▲ .13.已知1,1x y >>且3log 4log 3y x =,则xxxx 的最小值为 ▲ .14.在正四面体ABCD 中,,E F 分别为,AB BC 的中点,23AG AD =,截面EFG 将四面体分成两部分,则体积较大部分与体积较小部分的体积之比是 ▲ .四、解答题:(共5大题,共77分,其中第15题13分,第16题、第17题每题15分,第18题、第19题每题17分,解答应写出文字说明、证明过程或演算步骤).15.已知a R ∈,()(){}|20A x a x a x =++>,102x B xx −=≤ −. (Ⅰ)当0a <时求集合A ;(Ⅱ)若B A ⊆,求a 的取值范围.16.为了了解某项活动的工作强度,随机调查了参与活动的100名志愿者,统计他们参加志愿者服务的时间(单位:小时),并将统计数据绘制成如图的频率分布直方图. (Ⅰ) 估计志愿者服务时间不低于18小时的概率;(Ⅱ) 估计这100名志愿者服务时间的众数,平均数(同一组数据用该组数据的中点值代替); (Ⅲ) 估计这100名志愿者服务时间的第75百分位数(结果保留两位小数).17.已知函数()sin()cos()sin +632f x x x x πππ=+−++. (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)将函数()f x 图象上所有点的横坐标缩短为原来的12(纵坐标不变),再向右平移6π个单位, 得到函数()g x 的图象,若6()5g α=−,且5,612αππ∈−,求cos 2α的值.18.如图,已知四棱锥P ABCD −中,4PB PD ==,6PA =,60APB APD ∠=∠=°,且PB PD ⊥, (Ⅰ)求证:BD PA ⊥;(Ⅱ)求直线PA 与平面ABCD 所成角的正弦值;(Ⅲ)若平面PAC 与平面ABCD 垂直,3PC =,求四棱锥P ABCD −的体积.19.已知函数()f x 的定义域为D ,若存在常数()0k k >,使得对D 内的任意x ,都有()k f x f x =,则称()f x 是“反比例对称函数”.设()2816log log f x x x =⋅,()16g x ax m ax =+−.(Ⅰ)判断函数()2816log log f x x x=⋅是否为“反比例对称函数”,并说明理由; (Ⅱ)当1a =时,若函数()f x 与()g x 的图象恰有一个交点,求m 的值;(Ⅲ)当1a >时,设()()()hx f x g x =−,已知()h x 在(0,)+∞上有两个零点12,x x ,证明:1216x x <.命题: 学军中学 温岭中学(审校) 审核:春晖中学2024学年第一学期浙江省名校协作体联考参考答案高二年级数学学科首命题:学军中学 次命题兼审校:温岭中学 审核:春晖中学15.(Ⅰ)∵0a <,()()+20a x a x +> 所以()()20x a x ++<,解得2x a −<<− 所以{}2A x x a =−<<−.............5分 (Ⅱ){}12B x x =≤<①当0a <时,B A ⊆因为,所以2a −≥,得2a ≤−;............ 7分 ②当0a =时A =Φ不合;.............9分③当02a <≤时,{}2A x x x a =<−>−或成立,所以B A ⊆成立;.............11分 ④当2a ≥时时,{}2A x x a x =<−>−或成立,所以B A ⊆成立; 20a a ≤−>综合得或 ...............................13分16.解析:(Ⅰ)由已知,志愿者服务时间不低于18小时的概率为1(0.020.06)40.68−+⨯=. ------4分(Ⅱ)由频率分布直方图可看出最高矩形底边上的中点值为20,故众数是20;--------7分 由(0.020.060.0750.025)41a ++++⨯=,解得0.07a =, ∵(0.020.06)40.32+⨯=,且(0.020.060.075)40.62++⨯=,平均数为(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=;--------11分 (Ⅲ)又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=, ∴第75%位数位于22~26之间,设第75%位数为y , 则220.750.6226220.90.62y −−=−−,解得132223.867y =+≈.----------------15分17.(Ⅰ)解析:()2sin()6f x x π=+,----------------------------3分32,2622x k k πππ⎡⎤+∈π+π+⎢⎥⎣⎦令得42233k x k ππππ+≤≤+, ()f x 的单调减区间为4[2,2],33k k k Z π+ππ+π∈-----------------6分(Ⅱ)解析:由题意得()2sin(2)6g x x π=−,则6()2sin(2)65g παα=−=−--------8分3sin(2)65πα−=−,又因为5(,)612ππα∈−,则22(,)623πππα−∈−所以4cos(2)65πα−=------------------------------------------------11分cos 2cos(2)663cos(2)cos sin(2)sin 666610ππααππππαα=−++=−−−=----------------------15分18.(Ⅰ)解析:由题意,在三角形PAB 与三角形PAD 中用余弦定理可得:AB AD ==分取BD 中点M ,连,AM PM ,由AB AD =,PB PD =,可得BD AM ⊥,BD PM ⊥,故BD ⊥平面APM ,因为AP APM ⊂平面,所以BD PA ⊥-----------4分(Ⅱ)因为BD ⊥平面APM ,所以平面PAM ⊥平面ABCD ,故点P 在平面ABCD 上的投影在两平面的交线AM 上,所以PAM ∠为所求线面角,-----------5分在Rt PBD ∆中,有BM DM PM ===;在Rt ADM ∆中,可得AM =分故在三角形PAM中:222cos 2PA AM PM PAM PA AM +−∠==⋅sin PAM ∠=,分(Ⅲ)解析:因为平面PAM ⊥平面ABCD ,故点,,,P A M C 四点共面,所以点,,A M C 三点共线,-------------------------------------------------10分所以在PAC ∆中,cos PAC ∠=,所以2222cos 9PC PA AC PA AC PAC =+−⋅⋅∠=,即2369AC AC +=,解得AC =或AC =分若AC =,则四边形ABCD为凹四边形,矛盾. 所以AC =---------------13分 因为,所以12ABCD S AC BD =⋅=四边形分所以1sin 3P ABCD ABCD V S PA PAM −=⋅⋅⋅∠=四棱锥四边形分19.(Ⅰ)解析:是.理由如下:------------------------------------1分281616lnln16ln ln log log ln 2ln 8l 160,0,16()2l ()n n 8x x x x xf f x x x x x ∀>=⋅=⋅=>=⋅-----------------------3分 故()2816log log f x x x=⋅是“反比例对称函数”.--------------- -------4分 (Ⅱ)解析:()()(),(0,)h x f x g x x =−∈+∞设, 由(Ⅰ)知16()()f f x x =,验证知16()()g g x x= 故16()()h x h x=.--------------------------------------------------------6分 由题意函数()f x 与()g x 的图像恰有一个交点,即()h x 恰有一个零点,故由对称性零点只能为4.-----------------------------------------------7分 由(4)0h =,得203m =.----------------------------------------8分 下检验此时()h x 恰有一个零点.由对勾函数性质知,()g x 在(]0,4上单调递减,[)4,+∞上单调递增.()ln (ln16ln )ln 2ln 8x x f x −=,设ln u x =,()(ln16)ln 2ln 8u u f x −=,()f x 关于u 在(]0,ln 4上单调递增,[)ln 4,+∞上单调递减,因此()f x 在(]0,4上单调递增,[)4,+∞上单调递减. 故()h x 在(]0,4上单调递增,[)4,+∞上单调递减.故此时()h x 恰有一个零点4.----------------------------10分注:充分必要性步骤交换亦可。

四川省内江市第一中学2023-2024学年高二上学期开学考试数学试题(含简单答案)

四川省内江市第一中学2023-2024学年高二上学期开学考试数学试题(含简单答案)

内江一中2023—2024学年高二上学期开学考试试题数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在复平面内,复数对应的点的坐标为,则复数的共轭复数( )A. B. C. D. 2. 在下列各组向量中,可以作为基底的一组是( )A. B. C. D 3. 的监测值是用来评价环境空气质量的指标之一.划分等级为:日均值在以下,空气质量为一级;日均值在,空气质量为二级;日均值超过为超标.如图是某地12月1日至10日的日均值(单位:)变化的折线图,关于日均值说法正确的是( )A. 这10天日均值的分位数为60B. 前5天的日均值的极差小于后5天的日均值的极差C. 前5天的日均值的方差大于后5天的日均值的方差 D. 这10天的日均值的中位数为414. 已知的外接圆圆心为O ,且,在向量上的投影向量为( ).z ()2,1--z z =2i --2i -+2i +2i-()()120,0,1,1e e == ()()121,2,5,10e e =-=- ()()123,5,3,5e e ==-- ()1232,3,2,4e e ⎛⎫=-=- ⎪⎝⎭2.5PM 2.5PM 335g /m μ2.5PM 33575g /m μ~ 2.5PM 375g /m μ2.5PM 3g /m μ 2.5PM 80%ABC V 2AO AB AC =+ CA = CA CBA. B. C. D. 5. 已知,则( )A. B. 或 C. D. 或6. 已知,是不共线的向量,且,,,则( )A. B ,C ,D 三点共线B. A ,B ,C 三点共线C. A ,C ,D 三点共线D. A ,B ,D 三点共线7. 设的内角的对边分别为,且,若角的内角平分线,则的最小值为( )A. 8B. 4C. 16D. 128. 八卦是中国古代的基本哲学概念,八卦文化是中华文化的核心精髓,八卦图与太极图(图1)的轮廓分别为正八边形ABCDEFGH 和圆(图2),其中正八边形的中心是点,鱼眼(黑白两点)、是圆半径的中点,且关于点对称.若,圆的半径为6,当太极图转动(即圆面及其内部点绕点转动)时,的最大值为( )A. 39B. 48C. 57D. 60二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对得2分,有选错的得0分.)9. 恩格尔系数是食品支出总额占个人消费支出总额的比重,恩格尔系数达59%以上为贫困,50%~59%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.国家统计局2023年1月17日发布了我国2022年居民收入和消费支出情况,根据统计图表,如图甲、乙所示,下列说法正确的是()34CB 12CB 13CB 14CB ππ24,,sin24425αα⎫⎛∈-=- ⎪⎝⎭tan α=34-34-43-343434-a b 28AB a b =-+ 33BC a b =- 5CD a b =+ ABC V ,,A B C ,,a b c 222b c bc a ++=A 2AD =BA AC ⋅ O O P Q OO OA =O O O PA QC ⋅A. 2022年农村居民人均可支配收入增长额超过城镇居民人均可支配收入增长额B. 2022年城镇居民收入增长率快于农村居民C. 从恩格尔系数看,可认为我国在2022年达到富裕D. 2022年全国居民人均消费支出构成中食品烟酒和居住占比超过50%10. 从1,2,3,,9中任取三个不同的数,则在下述事件中,是互斥但不是对立事件的有( )A. “三个都为偶数”和“三个都为奇数”B. “至少有一个奇数”和“至多有一个奇数”C. “至少有一个奇数”和“三个都为偶数”D. “一个偶数两个奇数”和“两个偶数一个奇数”11. 对于△ABC ,有如下判断,其中正确的判断是( )A. 若,则△ABC 为等腰三角形B. 若,,则符合条件△ABC 有两个C. 若,则△ABC 为等腰直角三角形D. 若,则△ABC 是钝角三角形12. 已知函数,以下说法中,正确是( )A. 函数关于点对称B. 函数在上单调递增C. 当时,的取值范围为D. 将函数的图像向左平移个单位长度,所得图像的解析式为三、填空题(本题共4小题,每小题5分,共20分.)的的L cos cos A B =a =b =30A = cos cos a A b B =222sin sin sin 0A B C +-<()2cos 2sin 2f x x x x =+-()f x π,012⎛⎫ ⎪⎝⎭()f x ππ,66⎡⎤-⎢⎥⎣⎦π2π,63x ⎛⎫∈ ⎪⎝⎭()f x (]2,1-()f x π12()2sin 21g x x =-13. 已知复数在复平面内对应的点在第四象限,则实数m 的取值范围是______.14. 某校高一年级共有男生420人,女生380人,为了解学生身高状况,决定按性别进行分层,用分层随机抽样的方法从高一年级全体学生中抽出40人,组建一个合唱团,则男生应该抽取__________人.15. 一个圆锥的侧面展开图是一个扇形,已知扇形的半径为3,圆心角为,则扇形的弧长等于___________;该圆锥的体积等于___________.16. 在中,由以下各个条件分别能得出为等边三角形的有:______.①已知且;②已知且;③已知且;④已知且.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17. 已知,求下列式子的值.(1)为第二象限角,求;(2).18. 已知向量的夹角为,且,,.(1)求;(2)当时,求的值.19. 黄山原名“黟山”,因峰岩青黑,遥望苍黛而名,后因传说轩辕黄帝曾在此炼丹,故改名为“黄山”,黄山雄踞风景秀丽的安徽南部,是我国最著名的山岳风景区之一、明代旅行家、地理学家徐霞客两游黄山,赞叹说:“登黄山天下无山,观止矣!”又留“五岳归来不看山,黄山归来不看岳”的美誉.为更好地提升旅游品质,黄山风景区的工作人员随机选择100名游客对景区进行满意度评分(满分100分),根据评分,制成如图所示的频率分布直方图.(1)根据频率分布直方图,求x 的值;()()3i 2i z m =+-+2π3ABC V ABC V 2a b c +=2A B C +=sin A =b c =2a b c +=2222a b c +=cos cos a B b A=60A =︒()1tan π3α+=-αsin cos αα-22sin cos cos ααα-,a b π32a = 3b = 2c a b λ=- 3a b - b c ⊥λ(2)估计这100名游客对景区满意度评分的40%分位数(得数保留两位小数);(3)若2022年黄山景区累计接待进山游客约140万人,试估计满意度评分不低于70分的人数.20. 已知函数(1)求函数的最小正周期及函数的单调递减区间;(2)求函数在上的值域.21. 如图,为了测量出到河对岸铁塔的距离与铁搭的高,选与塔底B 同在水平面内的两个测点C 与D .在C 点测得塔底B 在北偏东方向,然后向正东方向前进20米到达D ,测得此时塔底B 在北偏东方向.(1)求点D 到塔底B 距离;(2)若在点C 测得塔顶A 的仰角为,求铁塔高.22 已知平面向量,,函数.(1)求的单调增区间.(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若,,求△ABC 周长的取值范围.的.()2sin cos f x x x x =+()f x ()f x π0,2⎡⎤⎢⎥⎣⎦45︒15︒BD 30︒AB ()sin a x x = ()2sin ,sin b x x = ()1f x a b =⋅+ ()f x ()4f A =2a =内江一中2023—2024学年高二上学期开学考试试题数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对得2分,有选错的得0分.)【9题答案】【答案】CD【10题答案】【答案】AD【11题答案】【答案】ABD【12题答案】【答案】BCD三、填空题(本题共4小题,每小题5分,共20分.)【13题答案】【答案】【14题答案】【答案】21【15题答案】【答案】 ①.②. 【16题答案】【答案】①③四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)【17题答案】【答案】(1(2)【18题答案】【答案】(1)(2)【19题答案】【答案】(1)(2)(3)万人【20题答案】【答案】(1)最小正周期;单调递减区间为, (2)【21题答案】【答案】(1)米213m<<2π32-6λ=0.03x =83.33119π5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦()Z k ∈⎡⎤⎢⎥⎣⎦(2)米【22题答案】【答案】(1) (2)⎛ ⎝πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(]4,6。

浙江名校协作体2024年高二上学期开学考试数学试题参考答案

浙江名校协作体2024年高二上学期开学考试数学试题参考答案

2024学年第一学期浙江省名校协作体联考参考答案高二年级数学学科首命题:学军中学 次命题兼审校:温岭中学 审核:春晖中学15.(Ⅰ)∵0a <,()()+20a x a x +> 所以()()20x a x ++<,解得2x a −<<− 所以{}2A x x a =−<<−.............5分 (Ⅱ){}12B x x =≤<①当0a <时,B A ⊆因为,所以2a −≥,得2a ≤−;............ 7分 ②当0a =时A =Φ不合;.............9分③当02a <≤时,{}2A x x x a =<−>−或成立,所以B A ⊆成立;.............11分 ④当2a ≥时时,{}2A x x a x =<−>−或成立,所以B A ⊆成立; 20a a ≤−>综合得或 ...............................13分16.解析:(Ⅰ)由已知,志愿者服务时间不低于18小时的概率为1(0.020.06)40.68−+⨯=. ------4分(Ⅱ)由频率分布直方图可看出最高矩形底边上的中点值为20,故众数是20;--------7分 由(0.020.060.0750.025)41a ++++⨯=,解得0.07a =, ∵(0.020.06)40.32+⨯=,且(0.020.060.075)40.62++⨯=,平均数为(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=;--------11分 (Ⅲ)又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=, ∴第75%位数位于22~26之间,设第75%位数为y , 则220.750.6226220.90.62y −−=−−,解得132223.867y =+≈.----------------15分17.(Ⅰ)解析:()2sin()6f x x π=+,----------------------------3分32,2622x k k πππ⎡⎤+∈π+π+⎢⎥⎣⎦令得42233k x k ππππ+≤≤+, ()f x 的单调减区间为4[2,2],33k k k Z π+ππ+π∈-----------------6分(Ⅱ)解析:由题意得()2sin(2)6g x x π=−,则6()2sin(2)65g παα=−=−--------8分3sin(2)65πα−=−,又因为5(,)612ππα∈−,则22(,)623πππα−∈−所以4cos(2)65πα−=------------------------------------------------11分cos 2cos(2)663cos(2)cos sin(2)sin 666610ππααππππαα=−++=−−−=----------------------15分18.(Ⅰ)解析:由题意,在三角形PAB 与三角形PAD 中用余弦定理可得:AB AD ==分取BD 中点M ,连,AM PM ,由AB AD =,PB PD =,可得BD AM ⊥,BD PM ⊥,故BD ⊥平面APM ,因为AP APM ⊂平面,所以BD PA ⊥-----------4分(Ⅱ)因为BD ⊥平面APM ,所以平面PAM ⊥平面ABCD ,故点P 在平面ABCD 上的投影在两平面的交线AM 上,所以PAM ∠为所求线面角,-----------5分在Rt PBD ∆中,有BM DM PM ===;在Rt ADM ∆中,可得AM =分故在三角形PAM中:222cos 2PA AM PM PAM PA AM +−∠==⋅sin PAM ∠=,分(Ⅲ)解析:因为平面PAM ⊥平面ABCD ,故点,,,P A M C 四点共面,所以点,,A M C 三点共线,-------------------------------------------------10分所以在PAC ∆中,cos PAC ∠=,所以2222cos 9PC PA AC PA AC PAC =+−⋅⋅∠=,即2369AC AC +=,解得AC =或AC =分若AC =,则四边形ABCD为凹四边形,矛盾. 所以AC =---------------13分 因为,所以12ABCD S AC BD =⋅=四边形分所以1sin 3P ABCD ABCD V S PA PAM −=⋅⋅⋅∠=四棱锥四边形分19.(Ⅰ)解析:是.理由如下:------------------------------------1分281616lnln16ln ln log log ln 2ln 8l 160,0,16()2l ()n n 8x x x x xf f x x x x x ∀>=⋅=⋅=>=⋅-----------------------3分 故()2816log log f x x x=⋅是“反比例对称函数”.--------------- -------4分 (Ⅱ)解析:()()(),(0,)h x f x g x x =−∈+∞设, 由(Ⅰ)知16()()f f x x =,验证知16()()g g x x= 故16()()h x h x=.--------------------------------------------------------6分 由题意函数()f x 与()g x 的图像恰有一个交点,即()h x 恰有一个零点,故由对称性零点只能为4.-----------------------------------------------7分 由(4)0h =,得203m =.----------------------------------------8分 下检验此时()h x 恰有一个零点.由对勾函数性质知,()g x 在(]0,4上单调递减,[)4,+∞上单调递增.()ln (ln16ln )ln 2ln 8x x f x −=,设ln u x =,()(ln16)ln 2ln 8u u f x −=,()f x 关于u 在(]0,ln 4上单调递增,[)ln 4,+∞上单调递减,因此()f x 在(]0,4上单调递增,[)4,+∞上单调递减. 故()h x 在(]0,4上单调递增,[)4,+∞上单调递减.故此时()h x 恰有一个零点4.----------------------------10分注:充分必要性步骤交换亦可。

湖南省长沙市第一中学2024-2025学年高二上学期开学考试数学试题(答案)

湖南省长沙市第一中学2024-2025学年高二上学期开学考试数学试题(答案)

长沙市第一中学2024—2025学年度高二第一学期入学考试数学时量:120分钟满分:150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2Z 34A x x x =∈+<,{}1,2,5B =-,则A B 中元素的个数为()A.1B.4C.6D.7【答案】C 【解析】【分析】首先求解集合A ,再根据并集的定义,即可求解.【详解】因为{}()(){}{}{}2Z 34Z 140Z 413,2,1,0A x x x x x x x x =∈+<=∈-+<=∈-<<=---,{}1,2,5B =-,所以{}3,2,1,0,2,5A B =--- ,有6个元素.故选:C.2.命题“x ∃∈Q ,2tan x ∈Q ”的否定是()A.x ∀∈Q ,2tan x ∉QB.x ∀∈Q ,2tan x ∈QC.x ∃∈Q ,2tan x ∈QD.x ∀∉Q ,2tan x ∈Q【答案】A 【解析】【分析】根据存在量词命题的否定是全称量词命题可得否定命题.【详解】命题“x ∃∈Q ,2tan x ∈Q ”的否定是x ∀∈Q ,2tan x ∉Q .故选:A.3.已知i 是虚数单位,则复数12i1i--的虚部是()A.12-B.12C.32-D.32【答案】A 【解析】【分析】利用复数的四则运算得出结果.【详解】()()()()12i 1i 12i 3i 31i 1i 1i 1i 222-+--===---+,所以复数12i1i --的虚部为12-,故选:A.4.函数()ln e exxx f x -=+的图象大致为()A. B.C. D.【答案】B 【解析】【分析】根据函数()f x 的定义域,排除CD 选项,再由函数()f x 的为偶函数,排除A 选项,即可求解.【详解】由函数()ln e exxx f x -=+,可得其定义域为{}0x x ≠,可排除C 、D 选项,又由()()ln ln e ee exxxxx x f x f x ----===++,所以函数()f x 为偶函数,排除A 选项.故选:B.5.已知0x >,0y >,lg 2lg8lg 2x y+=,则13x y+的最小值是()A.8B.12C.16D.10+【答案】C 【解析】【分析】利用对数的运算法则和基本不等式的性质可得.【详解】解:lg 2lg8lg 2x y +=()lg 28lg 2x y ∴⋅=322x y +∴=31x y ∴+=0x >,0y >()1313333101016y x x y x y x y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当14x y ==时取等号.故选:C【点睛】本题考查对数的运算法则及基本不等式,属于中档题.6.已知随机事件A ,B ,C 中,A 与B 相互独立,B 与C 对立,且()0.3P A =,()0.6P C =,则()P A B = ()A.0.4B.0.58C.0.7D.0.72【答案】B 【解析】【分析】由公式()()()()P A B P A P B P AB =+- 可知只需求出()(),P B P AB 即可,结合对立减法公式以及独立乘法公式即可求解.【详解】()1()0.4P B P C =-=,()()()0.30.40.12P AB P A P B ==⨯=,所以()()()()0.30.40.120.58P A B P A P B P AB =+-=+-= .故选:B.7.甲、乙、丙、丁四人在一次比赛中只有一人得奖.在问到谁得奖时,四人的回答如下:甲:乙得奖.乙:丙得奖.丙:乙说错了.丁:我没得奖.四人之中只有一人说的与事实相符,则得奖的是()A.甲B.乙C.丙D.丁【答案】D 【解析】【分析】根据各人的说法,讨论四人得奖分析是否只有一人说法与事实相符,即可确定得奖的人.【详解】甲乙丙丁甲得奖乙得奖丙没得奖丁没得奖由上表知:若甲得奖,丙、丁说法与事实相符,则与题设矛盾;若乙得奖,丙、丁说法与事实相符,则与题设矛盾;若丙得奖,乙、丁说法与事实相符,则与题设矛盾;所以丁得奖,只有丙说法与事实相符.故选:D8.设5log 2a =,0.60.5b =,0.50.6c =,则()A.c b a >>B.c a b>> C.b a c>> D.a c b>>【答案】A 【解析】【分析】利用对数函数的单调性和指数函数的单调性分别求出12a <,12b >,即可判断出b a >,再利用作差法比较,c b 的大小关系即可求解.【详解】解:551log 2log 2a =<=,10.620.150.5b ==>,b a ∴>,350.610.52b ⎛⎫== ⎪⎝⎭ ,120.530.65c ⎛⎫== ⎪⎝⎭,10351011264b ⎡⎤⎛⎫⎢⎥∴==⎪⎢⎥⎝⎭⎣⎦,101210324353125c ⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎣⎦,10102431124270312564200000c b -=-=> ,c b ∴>,c b a ∴>>,故选:A .二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的是()A.()f x 的图象向左平移π6个单位长度后得到函数()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象B.直线π3x =是()f x 图象的一条对称轴C.()f x 在ππ,42⎡⎤⎢⎣⎦上单调递减D.()f x 的图象关于点5π,012⎛⎫⎪⎝⎭对称【答案】CD 【解析】【分析】利用正弦函数的性质来研究正弦型函数的性质即可.【详解】对于A ,由()f x 的图象向左平移π6个单位得:ππππsin 2=sin 26362f x x x ⎛⎫⎛⎫⎛⎫+=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,与得到函数()πsin 23g x x ⎛⎫=+⎪⎝⎭不相同,故A 错误;对于B ,将π3x =代入得:πππ5πsin 2=sin 3366f ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭,此时既不是最高点,也不是最低点,所以直线π3x =不是()f x 图象的一条对称轴,故B 错误;对于C ,当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,π2π7π2,636x ⎡⎤+∈⎢⎥⎣⎦,由于sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上递减,而2π7ππ3π,,3622⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;对于D ,将5π12x =代入得:5π5ππsin 2=sinπ012126f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,此时是函数零点,所以()f x 的图象关于点5π,012⎛⎫⎪⎝⎭对称,故D 正确;故选:CD .10.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层抽样方法抽取了容量为90的样本,经计算得男生样本的均值为170,方差为19,女生样本的均值为161,方差为28,则下列说法正确的是()参考公式:样本划分为2层,各层的容量、平均数和方差分别为:m ,x ,21s ;n ,y ,22s .记样本平均数为ω,样本方差为2s ,2222212[()][()]m n s s x s y m n m nωω=+-++-++.A.男生样本容量为50 B.每个女生被抽到的概率110C.抽取的样本的均值为165D.抽取的样本的方差为43【答案】ABD 【解析】【分析】根据抽样比即可求解人数判断A ,根据概率公式即可求解B ,根据平均数以及方差的计算公式即可求解CD.【详解】对于A ,男生被抽的人数为5009050900⨯=,故A 正确,对于B ,每个女生被抽到的概率为40090190040010⨯=,故B 正确,对于C166=,故C 错误,对于D ,样本的方差为22254[19(170166)][28(161166)]4399s =+-++-=,故D 正确,故选:ABD11.如图,正方体ABCD A B C D -''''的棱长为4,M 是侧面ADD A ''上的一个动点(含边界),点P 在棱CC '上,且||1PC '=,则下列结论正确的有()A.沿正方体的表面从点A 到点PB.保持PM 与BD '垂直时,点M的运动轨迹长度为C.若保持||PM =,则点M 的运动轨迹长度4π3D.平面AD P '截正方体ABCD A B C D -''''所得截面为等腰梯形【答案】BCD 【解析】【分析】根据平面展开即可判断A ;过P 做平面//PEF 平面ACB ',即可判断B ;根据点M 的轨迹是圆弧,即可判断C ;作出正方体ABCD A B C D -''''被平面AD P '所截的截面即可判断D .【详解】对于A ,将正方体的下面和侧面展开可得如图图形,连接AP ,则AP ==<A 错误;对于B ,如图:DD ' 平面ABCD ,AC ⊂平面ABCD ,∴DD AC '⊥,又AC BD ⊥,DD BD D '= ,DD ',BD ⊂平面DD B ',AC ∴⊥平面DD B ',BD '⊂平面DD B ',AC BD '∴⊥,同理可得BD AB ''⊥,AC AC A '= ,AC ,AB '⊂平面ACB '.BD '∴⊥平面ACB '.∴过点P 作//PG C D '交CD 交于G ,过G 作//GF AC 交AD 交于F ,由//AB C D '',可得//PG AB ',PG ⊂/平面ACB ',AB '⊂平面ACB ',//PG ∴平面ACB ',同理可得//GF平面ACB ',,,PG GF G PG GF ⋂=⊂平面PGF ,则平面//PGF 平面ACB '.设平面PEF 交平面ADD A ''于EF ,则M 的运动轨迹为线段EF ,由点P 在棱CC '上,且||1PC '=,可得||||1DG DF ==,//EF B C'∴34EF AD ==,故B 正确;对于C ,如图:若||PM =,则M 在以P 为球心,为半径的球面上,过点P 作PQ ⊥平面ADD A '',则||1D Q '=,此时||2QM =.∴点M 在以Q 为圆心,2为半径的圆弧上,此时圆心角为2π3.点M 的运动轨迹长度2π4π×2=33,故C 正确;对于D ,如图:延长DC ,D P '交于点H ,连接AH 交BC 于I ,连接PI ,∴平面AD P '被正方体ABCD A B C D -''''截得的截面为AIPD '.~PCH D DH ' ,∴||||||3||||||4PH PC HC D H DD DH ==='',~ICH ADH ,∴||||||3||||||4CI HC IH DA DH AH ===,∴||||||3||||||4PH IH PI D H AH AD ==='',//PI AD '∴,且||||PI AD '≠,∴截面AIPD '为梯形,||||AI PD '===,∴截面AIPD '为等腰梯形,故D 正确.故选:BCD .【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量(1,1)a m =- ,(,3)b m m =+,若a b a b ⋅=-⋅ ,则m 的值为________.【答案】1-【解析】【分析】根据向量的数量积的运算公式,得到向量,a b的夹角为πθ=,设(0)b a λλ=< ,结合向量的坐标表示,列出方程组,即可求解.【详解】设向量,a b的夹角为θ,因为a b a b ⋅=-⋅ ,可得cos 1θ=-,因为[0,π]θ∈,所以πθ=,即向量a 与向量b反向,又因为向量(1,1)a m =- ,(,3)b m m =+,设(0)b a λλ=< ,可得)((,13),1m m m λ-+=,可得3m m m λλλ=⎧⎨+=-⎩且0λ<解得1,1m λ=-=-.故答案为:1-.13.如图60°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在二面角两个半平面内,且垂直于AB ,6AC BD ==,8AB =,则CD =__________.【答案】10【解析】【分析】过点B 作BE AC ∥,且6BE AC ==,连接CE ,DE ,先证明BDE V 为等边三角形,从而得到DE ,再证明CE DE ⊥,进而利用勾股定理即可求解.【详解】如图,过点B 作BE AC ∥,且6BE AC ==,连接CE ,DE ,则60DBE ∠=︒,又6BD BE ==,所以BDE V 为等边三角形,所以6DE =,则四边形ABEC 为矩形,即CE AB =,由AC AB ⊥,则EB AB ⊥,又BD AB ⊥,且BD EB B = ,所以AB ⊥平面BDE ,所以CE ⊥平面BDE ,又DE ⊂平面BDE ,所以CE DE ⊥,则由勾股定理得10CD ==.故答案为:10.14.若三棱锥的棱长为5,8,21,23,29,t ,其中*N t ∈,则t 的一个取值可以为______.【答案】25(答案不唯一)【解析】【分析】根据三角形的三边关系即可求解范围,进而根据*N t ∈求解.【详解】如图所示的三棱锥中,5,21,23,29,8AB AC BC BD CD =====,在,ABC BCD 中,三边关系符合三角形的边角关系,设AD t =,则1329AC CD AD AC CD AD -<<+⇒<<且2434BD AC AD BD AC AD -<<+⇒<<,因此2429AD <<,由于*N t ∈,故可取25t =,故答案为:25(答案不唯一)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设锐角ABC V 的内角、、A B C 的对边分别为,2sin a b c c A =,,,(1)求角C ;(2)若边7c =,面积为,求ABC V 的周长.【答案】(1)π3;(2)20.【解析】【分析】(1)由正弦定理得到sin 2C =,求出π3C =;(2)由三角形面积得到40ab =,根据余弦定理得到13a b +=,从而得到周长.【小问1详解】由2sin c A 及正弦定理,得2sin sin C A A =,又π02A <<,得sin 0A >,所以3sin 2C =,又C 为锐角,所以π3C =;【小问2详解】由(1)得13sin 24ABC S ab C ab ===△40ab =,由余弦定理,得()()222222cos 22cos 3c a b ab C a b ab ab C a b ab =+-=+--=+-,所以()223169a b c ab +=+=,所以13a b +=,所以ABC V 的周长为13720l a b c =++=+=.16.现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm 和184cm 之间,将测量结果按如下方式分成6组:第1组[)160,164,第2组[)164,168,…,第6组[)180,184,得到如下频率分布直方图.(1)求a 的值并估计这50名男生的身高的第60百分位数;(2)求这50名男生中身高在176cm 以上(含176cm )的人数;(3)从这50名男生身高在176cm 以上(含176cm )的人中任意抽取2人,求该2人中身高恰有1人在180cm 以上(含180cm )的概率.【答案】(1)0.05;169.5(2)6(3)815【解析】【分析】(1)根据频率分布直方图的性质即可求解a 的值,再结合百分位数的定义即可求解结果;(2)根据图表先求出相应的频率,再求出频数即可;(3)根据图表先求出相应区间的人数,再根据古典概型求解概率即可.【小问1详解】由频率分布直方图知,()0.010.020.020.080.0741a +++++⨯=,解得0.05a =.因为()0.050.0740.48+⨯=,0.0840.32⨯=,所以第60百分位数落在[)168,172区间内,设第60百分位数为x ,则()1680.080.12x -⨯=,解得169.5x =,即第60百分位数为169.5.【小问2详解】由图知,身高在176cm 以上(含176cm )的人数频率为0.0340.12⨯=,则身高在176cm 以上(含176cm )的人数为500.126⨯=.【小问3详解】由(2)知,身高在176cm 以上(含176cm )的人数为6,则身高在180cm 以上(含180cm )的人数为1623⨯=,男生中身高在[)176,180内的人数为4,令身高在[)176,180内编号为1,2,3,4,身高在[)180,184内编号为5,6,则样本空间为()()()()(){()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,()()()()()()}3,4,3,5,3,6,4,5,4,6,5,6,所以该2人中身高恰有1人在180cm 以上(含180cm )的概率为815.17.如图,在底面为菱形的四棱锥P ABCD -中,PA ⊥平面ABCD ,60ABC ∠=︒,2PA AB ==,点E ,F 分别为棱BC ,PD 的中点,Q 是线段PC 上的一点.(1)若Q 是直线PC 与平面AEF 的交点,试确定PQ PC 的值;(2)若三棱锥C EQA -的体积为6,求直线AQ 与平面AEF 所成角的正弦值.【答案】(1)23(2)14【解析】【分析】(1)根据线线平行可得平面BNMK //平面AEF ,即可根据中点关系,结合面面平行的性质,即可求解AQH ∠的余弦值,根据AQ 与平面AEF 所成角与AQH ∠互为余角即可求解.(2)根据体积公式可得Q 是PC 中点,进而根据线线垂直证明PD ⊥平面AEF ,即可根据三角形的边角关系,以及余弦定理求解【小问1详解】取PA 中点为K ,取PF 中点M ,过M 作//MN PQ ,连接BN ,由于1//,,2KF AD KF AD =且1//,2BE AD BE AD =,故//,KF BE BE KF =,故四边形BEFK 为平行四边形,故//BK EF ,BK ⊄平面AEF ,EF ⊂平面AEF ,故//BK 平面AEF又//KM AF ,KM ⊄平面AEF ,AF ⊂平面AEF ,故//KM 平面AEF ,,,KM BK K KM BK ⋂=⊂平面BNMK ,故平面BNMK //平面AEF ,由于平面PBC 与平面BNMK 相交于BN ,于平面AEF 相交于EQ ,故//EQ BN ,又//MN PQ ,M 是PF 的中点,N 是BC 的中点,所以,NQ QC NQ PN ==,故Q 是PC 靠近于C 处的三等分点,故23PQ PC =【小问2详解】由于三棱锥C EQA -36,由于60,2ABC AB BC ∠=︒==,故ABC V 为等边三角形,故,3,AE BC AE ⊥=则11111331332326C EQA Q ECA ACE Q Q Q V V S h AE EC h h --===⨯⋅⋅=⨯⨯⋅= ,故1Q h =,即Q 到平面ABCD 的距离为1,由于2PA =,故Q 是PC 中点,由于PA ⊥平面ABCD ,AE ⊂平面ABCD ,故PA AE ⊥,又,//AE BC AD BC ⊥,则AE AD ⊥,,,PA AD A PA AD ⋂=⊂平面PAD ,故AE ⊥平面PAD ,PD ⊂平面PAD ,故AE PD ⊥,又,PA AD F =为中点,故AF PD ⊥,,,AF AE A AF AE ⋂=⊂平面AEF ,故PD ⊥平面AEF ,取CD 的中点H ,连接HQ ,则//HQ PD ,故HQ ⊥平面AEF ,22221111222,2222222AQ PC QH PD ==+===+=,223AH AD DH =-=,则2222231cos 24222AQ QH AH AQH AQ QH +-+-∠===⋅⨯⨯,由于AQH ∠为锐角,且AQ 与平面AEF 所成角与AQH ∠互为余角,因此AQ 与平面AEF 所成角的正弦值为1418.已知函数()sin cos f x a x b x =+,称非零向量(),p a b = 为()f x 的“特征向量”,()f x 为p 的“特征函数”.(1)设函数()ππ2sin cos 36h x x x ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的“特征向量”;(2)若函数()f x 的“特征向量”为(3p = ,求当()85f x =且ππ,36x ⎛⎫∈- ⎪⎝⎭时sin x 的值;(3)若)3,1p = 的“特征函数”为()f x ,11π0,6x ⎡⎤∈⎢⎣⎦且方程()()()2230f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.【答案】(1)13,22⎛⎫- ⎪ ⎪⎝⎭(2433-(3)(]()1,34,5 .【解析】【分析】(1)先利用两角和正余弦公式展开化简函数,再根据特征函数的概念求解即可;(2)由已知可得π4sin 35x ⎛⎫+= ⎪⎝⎭,利用ππsin sin 33x x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦即可求解;(3)由定义得()f x 并化简(化为一个角的一个三角函数形式),解方程()()()2230f x a f x a +-+-=得()1f x =或()3f x a =-且31a -≠,()1f x =求得两根,然后作出函数()f x ,11π[0,]6x ∈的图象,由图象可得()3f x a =-且31a -≠有两根的的范围.【小问1详解】因为()3131312cos sin cos sin cos sin 222222h x x x x x x x ⎛⎫⎛⎫=---=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以ℎ的“特征向量”为13,22p ⎛⎫=- ⎪ ⎪⎝⎭.【小问2详解】由题意知()πsin 2sin 3f x x x x ⎛⎫==+ ⎪⎝⎭,由()85f x =得π82sin 35x ⎛⎫+= ⎪⎝⎭,π4sin 35x ⎛⎫+= ⎪⎝⎭,因为ππ,36x ⎛⎫∈- ⎪⎝⎭,ππ0,32x ⎛⎫+∈ ⎝⎭,所以π3cos 35x ⎛⎫+= ⎪⎝⎭,所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【小问3详解】()πcos 2sin6f x x x x ⎛⎫=+=+ ⎪⎝⎭,当11π0,6x ⎡⎤∈⎢⎥⎣⎦时,ππ,2π66x ⎡⎤+∈⎢⎥⎣⎦.由()()()2230f x a f x a +-+-=得()()()()()130f x f x a ---=,所以()1f x =或()3f x a =-,由()1f x =,即π1sin 62x ⎛⎫+= ⎪⎝⎭,而11π0,6x ⎡⎤∈⎢⎥⎣⎦,解得0x =或2π3x =,即()1f x =在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个根,因为方程()()()2230f x a f x a +-+-=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上存在4个不相等的实数根,所以当且仅当()3f x a =-且31a -≠在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个不等实根,在同一坐标系内作出函数=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上的图像和直线3y a =-,因为方程()()34f x a a =-≠在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个不等实根,即当且仅当函数=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上的图像和直线()34y a a =-≠有两个公共点,由图像可知:230a -<-≤或132a <-<,解得13a <£或45a <<,所以实数G 的取值范围是(]()1,34,5⋃.个公式,还考查了三角函数中的方程的根的问题.19.在空间直角坐标系O xyz -中,已知向量(,,)u a b c = ,点0000(,,)P x y z .若平面α以u 为法向量且经过点0P ,则平面α的点法式方程可表示为000()()()0a x x b y y c z z -+-+-=,一般式方程可表示为0ax by cz d +++=.(1)若平面1α:210x y --=,平面1β:3210y z -+=,直线l 为平面1α和平面1β的交线,求直线l 的一个方向向量;(2)已知集合{(,,)|||1,||1,||1}P x y z x y z =≤≤≤,{(,,)|||||||2}Q x y z x y z =++≤,{(,,)|||||2,||||2,||||2}T x y z x y y z z x =+≤+≤+≤.记集合Q 中所有点构成的几何体的体积为1V ,P Q ⋂中所有点构成的几何体的体积为2V ,集合T 中所有点构成的几何体为W .(ⅰ)求1V 和2V 的值;(ⅱ)求几何体W 的体积3V 和相邻两个面(有公共棱)所成二面角的余弦值.【答案】(1)()1,2,3(2)(ⅰ)1323V =;2203V =;(ⅱ)316V =,12-【解析】【分析】(1)根据直线l 满足方程,对y 进行合理取值两次,求出,x z 即可求解;(2)(ⅰ)根据分析得到P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分,然后用割补法求解体积即可;(ⅱ)利用题目中给定的定义求出法向量,结合面面角的向量法求解即可.【小问1详解】直线l 是两个平面210x y --=与3210y z -+=的交线,所以直线l 上的点满足2103210x y y z --=⎧⎨-+=⎩,不妨设1y =,则1,2x z ==,不妨设3y =,则2,5x z ==,∴直线l 的一个方向向量为:()()21,31,521,2,3---=;【小问2详解】(ⅰ)记集合Q ,P Q ⋂中所有点构成的几何体的体积分别为1V ,2V ,考虑集合Q 的子集{(,,)|2,0,0,0}Q x y z x y z x y z '=++≤≥≥≥,即为三个坐标平面与2x y z ++=转成的四面体,四面体四个顶点分别为(0,0,0),(2,0,0),(0,2,0),(0,0,2),此四面体的体积为1142(22)323Q V '=⨯⨯⨯⨯=,由对称性知13283Q V V '==,考虑到P 的子集P '构成的几何体为棱长为1的正方体,即{(,,)|01,01,01}P x y z x y z '=≤≤≤≤≤≤,{(,,)|2,0,0,0}Q x y z x y z x y z '=++≤≥≥≥,P Q ''∴ 为截去三棱锥4123Q Q Q Q -所剩下的部分,P '的体积1111P V '=⨯⨯=,三棱锥4123Q Q Q Q -的体积为41231111(11)326Q Q Q Q V -=⨯⨯⨯⨯=,P Q ''∴ 的体积为412315166P Q P Q Q Q Q V V V '''-=-=-= ,∴由对称性知22083P Q V V ''== .(ⅱ)①记集合T 中所有点构成的几何体为W,如图,其中,正方体ABCD LIJM -即为集合P 所构成的区域,E ABCD -构成了一个正四棱锥,其中E 到面ABCD 的距离为2,1412233E ABCD V -=⨯⨯⨯=,W ∴的体积34686163P E ABCD V V V -=+=+⨯=.②由题意面EBC 的方程为20x z +-=,由题干定义知其法向量为1(1,0,1)n = ,面ECD 方程为20y z +-=,由题干定义知其法向量为2(0,1,1)n = ,1212121cos ,2||||n n n n n n ⋅∴<>==⋅ ,由图知两个相邻面所成的角为钝角,∴所成二面角的余弦值为:12-.【点睛】方法点睛:关于直线的方向向量求法,求出直线上的两个点坐标即可求解;求体积利用割补法,把不规则转规则进行求解:解决二面角的余弦值,利用空间向量来解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:(共10小题,每题5分,共50分)
D B A A D C C D B D 11.m+2n, 12. -7, 13.25, 14.)22,22(-, 15.③④
二、填空题:(本大题共5小题,每小题5分,共25分)
三、解答题(共75分)
16.解:( 1 )①因为()f x 是奇函数,所以f(0)=0 即11210,1,()22x x a a f x b b
+-+-+=∴=∴=++ 11212(1)(1)241f f b b b
-+-+=--∴=∴=++ 12111()22221x x x f x +-+∴==-+++ ( 2 )121212
212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x ,从而21)(21<<-x f ; 而4
343)23(3322≥+-=+-c c c 对任何实数c 成立; 所以对任何实数x 、c 都有33)(2+-<c c x f 成立.
17
18.
19.解:(1)因为1cos sin 32sin 2)(2++=x x x x f
1cos sin 322cos 1++-=x x x ……………………1分
22cos 2sin 3+-=x x ……………………………2分
,2)6
2sin(2+-=πx …………………………………3分 所以)(x f 的最小正周期.2
2ππ==T ……………………………………..4分 (2)因为,2)62sin(2)(+-
=πx x f 由222()262k x k k πππππ-
≤-≤+∈Z , ……………….…………6分 得()63k x k k π
π
ππ-≤≤+∈Z ………………………………………………..7分
所以)(x f 的单调增区间是[,]().63k k k ππππ-
+∈Z ……..……………..8分 (3)因为02x π≤≤
,所以52.666x πππ-≤-≤ ……..………...………....9分 所以.1)6
2sin(21≤-≤-πx ……..………...………...……..………...…….10分 所以].4,1[2)62sin(2)(∈+-=π
x x f ……...………...……..………...…12分
当,662ππ-=-
x 即0=x 时,)(x f 取得最小值1. 当,262ππ
=-x 即3π=
x 时,)(x f 取得最大值4. ……..………...……...13分 20.解:(I )将方程x 2+y 2﹣4x+2my+2m 2﹣2m+1=0化成标准形式,得
(x ﹣2)2+(y+m )2=﹣m 2+2m+3
∵方程x 2+y 2﹣4x+2my+2m 2﹣2m+1=0表示圆C .
∴﹣m 2+2m+3>0,解之得﹣1<m <3
(II )若点P 、Q 在圆C 上,则
,解之得m=1
∴圆C 的标准方程为(x ﹣2)2+(y+1)2=4
圆心为C 1(2,﹣1),半径R 1=2
又∵圆C 2:x 2+y 2﹣4x ﹣5=0的圆心为C 2(2,0),半径R 2=3,圆心距|CC 2|=1 ∴圆心距|C 1C 2|=1=R 2﹣R 1,故圆C 1与圆C 2相内切
因此存在点C 1(2,﹣1),使圆C 1与圆x 2+y 2﹣4x ﹣5=0相切. 21.。

相关文档
最新文档