自适应均衡器的LMS实现

合集下载

基于LMS的自适应均衡技术的研究

基于LMS的自适应均衡技术的研究

基于LMS的自适应均衡技术的研究预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制第一章绪论§1.1 自适应均衡技术的由来在数字通信系统中,特别是高速数字传输系统中,均衡是一个很重要的问题,无论是通过公用电话交换网,或者是通过短波信道,微波信道和卫星信道,都需要使用均衡技术[6]。

本节将对均衡技术做一简要回顾。

数字通信系统中,为了提高频带利用率和业务性能,满足高可靠性各种非话业务的无线传输,特别是为移动ISDN(综合服务数据网)的引入,都需要(几十至上百千比特每秒)高速移动无线数字信号传输技术。

而在采用时分多址(TDMA)这种高速数字移动通信中,由于多径传播,不仅产生瑞利性衰落,且产生因延时分散而造成的频率选择性衰落,无疑会使电波传输特性恶化,造成接收信号既有单纯的电平移动,又伴随有波形失真产生,影响接收质量,且传输速率越高,多径传输所引起的码间干扰(ISI)就越严重。

码间干扰被认为是在移动无线通信信道中传输高速率数据时的主要障碍。

为了克服ISI引起的失真,在一个通信系统中常常使用称之为信道均衡的信号处理技术。

均衡器的目的通过使用滤波器或其它技术来重建原始信号,去掉ISI的影响,从而提高数据传输的可靠性。

从广义上讲,均衡可以指任何用来削弱干扰的信号处理操作。

在无线信道中,可以用各种各样的自适应均衡技术来消除干扰。

由于移动衰落信道具有随机性和时变性,这就要求均衡器必须能够实时地跟踪移动通信信道的时变特性,而这种均衡器又称为自适应均衡器。

自适应均衡器一般包含两种工作模式,即训练模式和跟踪模式。

首先,发射机发射一个已知的、定长的训练序列,以便接收机处的均衡器可以做出正确的设置。

典型的训练序列是一个二进制伪随机信号或是一串预先指定的数据序列,而紧跟在训练序列之后被传送的是用户数据。

接收机处的均衡器将通过递推算法来评估信道特性,并修正滤波器系数以对信道做出补偿。

BPSK调制传输系统LMS算法自适应均衡性能分析

BPSK调制传输系统LMS算法自适应均衡性能分析

BPSK调制传输系统LMS算法自适应均衡性能分析BPSK调制传输系统中,LMS(Least Mean Square)算法是一种常用的自适应均衡算法。

它通过自适应地调整均衡器的权重系数来实现信道均衡,从而提高系统的性能。

本文将对LMS算法在BPSK调制传输系统中的性能进行分析。

首先,我们需要了解BPSK调制传输系统的基本原理。

BPSK调制是一种二进制调制方式,它将数字信号转换为两个不同的相位信号,分别代表1和0。

在传输过程中,信号会经过信道引起失真和噪声干扰。

为了恢复原始信号,我们需要对接收到的信号进行均衡处理。

LMS算法的核心思想是根据误差信号来调整均衡器的权重系数。

误差信号是接收信号经过均衡器处理后与已知原始信号之间的差异。

通过不断调整权重系数,LMS算法能够逐步减小误差信号,最终实现信道均衡。

在BPSK调制传输系统中,我们可以对LMS算法的性能进行以下几个方面的分析。

1.收敛速度:LMS算法的收敛速度是衡量其性能的重要指标之一、收敛速度越快,均衡器能够更快地适应信道的变化,提高系统的实时性和鲁棒性。

收敛速度受到多种因素的影响,例如步长参数的选择、信道的时变性等。

在实际应用中,需要根据具体情况进行优化。

2.系统误码率:误码率是衡量系统性能的重要指标。

对于BPSK调制传输系统,误码率反映了接收信号正确解码的概率。

通过调整LMS算法的参数,如步长参数和滤波器长度等,可以改善系统的误码率性能。

同时,深度学习等新兴技术也可以结合LMS算法进行优化,进一步降低误码率。

3.资源利用率:BPSK调制传输系统中,LMS算法会引入一定的计算复杂度和存储开销。

因此,需要考虑LMS算法的资源利用率。

通过算法设计和硬件优化,可以减少计算量和存储需求,提高资源利用率。

4.系统可靠性:LMS算法在均衡过程中,由于噪声和失真等因素的存在,可能导致误差信号不断波动,进而影响系统的可靠性。

可以通过优化算法参数、加入先验知识或调整均衡器结构等方法来提高系统的可靠性。

自适应均衡算法LMS研究

自适应均衡算法LMS研究

自适应均衡算法LMS研究一、自适应滤波原理与应用所谓自适应滤波器,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。

根据环境的改变,使用自适应算法来改变滤波器的参数和结构。

1.1均衡器的发展及概况均衡是减少码间串扰的有效措施。

均衡器的发展有史已久,二十世纪60年代前,电话信道均衡器的出现克服了数据传输过程中的码间串扰带来的失真影响。

但是均衡器要么是固定的,要么其参数的调整是手工进行。

1965年,Lucky在均衡问题上提出了迫零准则,自动调整横向滤波器的权系数。

1969年,Gerhso和Porkasi,Milier分别独立的提出采用均方误差准则(MSE)。

1972年,ungeboekc将LMS算法应用于自适应均衡。

1974年,Gedard 在kalmna滤波理论上推导出递推最小均方算法RLS(Recursive least-squares)。

LMS类算法和RLS类算法是自适应滤波算法的两个大类。

自适应滤波在信道均衡、回波抵消、谱线增强、噪声抑制、天线自适应旁瓣抑制、雷达杂波抵消、相参检测、谱估计、窄带干扰抑制、系统辨识、系统建模、语音信号处理、生物医学、电子学等方面获得广泛的应用。

1.2均衡器种类均衡技术可分为两类:线性均衡和非线性均衡。

这两类的差别主要在于自适应均衡器的输出被用于反馈控制的方法。

如果判决输出没有被用于均衡器的反馈逻辑中,那么均衡器是线性的;如果判决输出被用于反馈逻辑中并帮助改变了均衡器的后续输出,那么均衡器是非线性的。

图1.1 均衡器的分类1.3自适应算法LMS 算法LMS 算法是由widrow 和Hoff 于1960年提出来的,是统计梯度算法类的很重 要的成员之一。

它具有运算量小,简单,易于实现等优点。

LMS 算法是建立在Wiener 滤波的基础上发展而来的。

Wiener 解是在最小均方误差(MMSE)意义下使用均方误差作为代价函数而得到的在最小误差准则下的最优解。

下面是LMS自适应判决反馈均衡器的原理框图,请分析工作原理

下面是LMS自适应判决反馈均衡器的原理框图,请分析工作原理

LMS自适应判决反馈均衡器原理
DFE原理
DFE(decision feedback equalization )判决反馈均衡器。

它是一种非线性均衡器,由前馈滤波器和反馈滤波器组成,前馈部分可以消在时间上超前的码间干扰(后面符号对当前码元的前导干扰)和时间上滞后的码间干扰(前面符号对当前码元产生的拖尾干扰),反馈部分可以抵消在时间上滞后的码间干扰.
判决反馈均衡(DFE)结构最初由 Austin在1969年正式提出,其性能优于线性均衡器,而与最大似然序列估计器(MLSE)相比,实现复
杂度相对较低,是次最优的最大似然判决设备,此算法实际上解决存
在码间串扰(ISI)和加性高斯白噪声(AwGN)的信道情况下得最佳接收问题。

判决反馈均衡的基本原理就是一旦信息符号经检测和判决以后
它对随后信号的于扰在其检测之前可以被估计并消减。

其的结构图如下图所示,包括两个抽头延迟滤波器:一个是前向滤波器(FFF,另一个是反向滤波器(FBF)。

其作用和原理与前面讨论的线性横向均衡器类似FBF的输入是判决器的先前输出,其系数可以通过调整减弱当前估计中的码间干扰。

其中FFF抽头系数的个数为K1,而FBF抽头系数的个数为K2。

定义MSE为前向滤波器抽头系数由最小化解出,而反馈滤波器的系数由前向滤波器系数和通道的脉冲响应决定。

自适应均衡(包括LSM和RLS算法)

自适应均衡(包括LSM和RLS算法)

自适应均衡实验1、实验内容和目的1)通过对RLS 算法的仿真,验证算法的性能,更加深刻的理解算法的理论。

2)分别用RLS 算法和LSM 算法实现图1中的自适应均衡器,比较两种算法的差异,分析比较算法的性能,从而掌握两种算法的应用。

图1 自适应均衡框图2、基本原理分析1)LMS 算法原理LMS 算法一般来说包括两个基本过程:滤波过程和自适应过程。

滤波过程来计算线性滤波器的输出及输出结果与期望响应的误差。

自适应则是利用误差来自动调节滤波器的参数。

LMS 算法也是一个递推的算法。

设()J n 是滤波器在n 时刻产生的均方误差,其梯度计算如下:()()22n n ∇=-+J p Rw其中R 和p 分别是输入的自相关矩阵和输入与期望输出的互相关矩阵:()()()ˆH n n n =Ru u()()()*ˆn n n =pu d 则梯度向量的瞬态估计为:()()()()()()*ˆˆ22H n n n n n n ∇=-+J u d u u w 由最速下降算法可以得到抽头向量更新的递推关系式:()()()()()()*ˆˆˆ1Hn n n n n n μ⎡⎤+=+-⎣⎦w w u d u w整个LMS 算法归纳总结如下: 参数设置:M=抽头数(滤波器长度) μ=步长参数 m a x20MS μ<<其中max S 是抽头输入功率谱密度的最大值,而滤波器长度M 为中到大 初始化:如果知道抽头权向量()n w 的先验知识,则用它来选择()ˆ0w 的合适值,否则令()ˆ00=w。

更新滤波过程:()()()ˆH y n n n =wu ()()()e n d n y n =- ()()()()*ˆˆ1n n n e n μ+=+ww u 2)RLS 算法原理RLS 算法是一个递归的过程,递归最小二乘问题的正则方程可用矩阵写为()()()ˆn n n =Φwz 其中n 是可测数据的可变长度,()n Φ更新抽头输入的自相关矩阵,()n z 是抽头输入与期望响应之间的互相关向量,()ˆn w 是抽头的权值向量。

基于LMS算法的无线信道自适应均衡器

基于LMS算法的无线信道自适应均衡器

基于LMS 算法的无线信道自适应均衡器一、 无线衰落信道与码间干扰无线信道容易受到噪声、干扰和其他随时间变化的信道因素的影响。

其中,大尺度传播效应(large-scale propagation effects ),包括路径损耗(path loss )和阴影(shadowing )效应,这类衰落比较容易克服。

而由多径引起的小尺度传播效应(small-scale propagation effects),特别是宽带信道下的频率选择性衰落,将使接收信号产生严重的码间干扰,如果不经处理,将无法得到原始信号的精确还原。

宽带通信系统下,如果信号带宽B 远远大于相干带宽c B ,那么在间隔超过相干带宽的两个频率点上的信道幅度特性近似独立。

根据相干带宽c B 与多径信号时延扩展m T σ 的关系,码元周期1s T B ≈ 远远小于1m T cB σ= 。

因此,信道的频率选择性衰落伴随着接收信号严重的码间干扰。

无线通信系统的设计必须以合适的复杂度解决这一问题。

二、 自适应均衡器大多实用的无线通信系统都采用时域均衡作为对抗ISI 的手段。

由于无线信道是时变的,在设计接收机的时候,通常并不能精确地了解信道的冲激响应,因此,所设计的均衡器应该能根据具体的信道特性进行自适应的调整。

自适应均衡器是由参数可调的数字滤波器和自适应算法两部分组成,如图1所示。

图1:自适应滤波器原理图 由图1可见,输人信号()x n 经过滤波器后输出()y n ,与参考信号()f n 相减,得出误差信号()e n ,然后通过自适应算法调节滤波器系数设置,按照某种算法准则判断误差信号()e n 是否达到最小,重复以上过程,滤波器逐渐掌握了输人信号与噪声规律,通过调节滤波器系数,达到最佳的滤波效果。

参数可调数字滤波器可以是FIR(Finite-duration impulse Response)数字滤波器或IIR(Infinite-duration impulse Response)数字滤波器,也可以是格形数字滤波器。

通信系统中的自适应信号处理与均衡算法

通信系统中的自适应信号处理与均衡算法

通信系统中的自适应信号处理与均衡算法在通信系统中,自适应信号处理与均衡算法扮演着重要的角色。

这些算法可以有效地降低通信信道带来的干扰和失真,提高信号质量和系统性能。

本文将探讨通信系统中常见的自适应信号处理和均衡算法,并分析其原理和应用。

一、自适应信号处理算法1. 最小均方误差(LMS)算法最小均方误差算法是一种经典的自适应滤波算法。

它通过不断调整滤波器的系数以最小化输入信号与期望输出信号的均方误差。

LMS算法的优点在于实现简单、计算效率高,适用于大多数通信系统中的实时应用。

2. 最小均方归一化(LMN)算法最小均方归一化算法是LMS算法的改进版本。

相比于LMS算法,LMN算法引入了归一化因子,使得滤波器系数的更新速度更慢,从而提高了系统的稳定性和收敛性能。

LMN算法在处理非平稳信号和有频率衰减的噪声时表现出更好的性能。

3. 逆滤波器算法逆滤波器算法是一种基于正弦信号模型的自适应算法。

它通过提取信号的频率响应并运用逆滤波器来抵消信道引起的失真和频率选择性衰减。

逆滤波器算法在抗干扰和提高信号传输质量方面具有良好的性能。

二、自适应均衡算法1. 线性均衡算法线性均衡算法是一种基于滤波器的均衡技术。

它通过设计合适的滤波器将接收到的信号进行补偿,使其恢复到原始发送信号的形态。

线性均衡算法常用的方法包括零离子均衡器(ZIE)和频率域均衡器(FDE)。

这些方法能够有效地抑制多径干扰和时延扩展,提高系统的传输性能。

2. 非线性均衡算法非线性均衡算法采用非线性函数对接收信号进行处理,以提高系统的抗多径传播和干扰的能力。

常见的非线性均衡算法包括最大似然序列估计器(MLSE)和广义序列估计器(GSE)。

这些算法能够较好地抵消信道引起的非线性失真,提高系统的误码率性能。

三、自适应信号处理与均衡算法的应用1. 无线通信系统在无线通信系统中,自适应信号处理和均衡算法广泛应用于调制解调、信道估计、自动增益控制等关键技术中。

它们有效地改善了信号的传输质量,提高了系统的容量和覆盖范围。

LMS算法自适应均衡器实验

LMS算法自适应均衡器实验

LMS 算法自适应均衡器实验08S005073 房永奎一、实验目的1、掌握LMS 算法的计算过程,加深对LMS 算法的理解。

2、研究用LMS 算法自适应均衡引起失真的线性色散信道问题。

3、研究特征值扩散度()R χ和步长参数μ对学习曲线的影响。

二、实验原理1、自适应均衡器)n图1 自适应信道均衡试验原理图自适应均衡器用来纠正存在加性白噪声的信道的畸变,信道均衡器的原理框图如1所示。

随机噪声发生器(1)产生用来探测信道的测试信号序列{n x },本实验中由Bernoulli 序列组成,n x =±1,随机变量n x 具有零均值和单位方差。

随机噪声发生器(2)产生干扰信道的白噪声()n ν,具有零均值,方差为2νσ=0.001。

信道的脉冲响应用升余弦表示为:20.51cos (2)1,2,30n n n h W π⎧⎡⎤⎛⎫+-=⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪⎩(1) 其中,参数W 控制均衡器抽头输入相关矩阵的特征值分布()R χ,并且特征值分布随着W 的增大而扩大。

均衡器具有11M =个抽头。

由于信道的脉冲响应n h 关于n =2时对称,那么均衡器的最优抽头权值on ω在5n =时对称。

因此,信道的输入n x 被延时了257∆=+=个样值,以便提供均衡器的期望响应。

通过选择匹配横向均衡器中点的合适延时∆,LMS 算法能够提供信道响应的最小相位分量和非最小相位分量之逆。

2、均衡器输入相关矩阵在时刻n ,均衡器第1个抽头的输入为()()()31k k u n h x n k v n ==-+∑ (2)其中所有参数均为实数。

因此,均衡器输入的11个抽头(),(1),,(10)u n u n u n --的自相关矩阵R 为一个对称的1111⨯矩阵。

此外,因为脉冲响应n h 仅在1,2,3n =时为非零,且噪声过程()v n 是零均值、方差为2v σ的白噪声,因此相关矩阵R 是主对角线的,有以下特殊结构所示:()()()()()()()()()()()()()()()012001012021010021000000r r r r r r r r r r r r r r r ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦R (3) 其中()22221230v r h h h σ=+++ (4)()12231r h h h h =+ (5)()132r h h = (6)其中方差20.001v σ=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档