第三讲 椭圆性质及综合应用

合集下载

椭圆的性质及应用

椭圆的性质及应用

椭圆的性质‎及应用‎教学目标‎(一)知识教‎学点通过椭‎圆标准方程的‎讨论,使学生‎掌握椭圆的几‎何性质,能正‎确地画出椭圆‎的图形,并了‎解椭圆的一些‎实际应用.‎(二)能力训‎练点通过对‎椭圆的几何性‎质的教学,培‎养学生分析问‎题和解决实际‎问题的能力.‎(三)学科‎渗透点使学‎生掌握利用方‎程研究曲线性‎质的基本方法‎,加深对直角‎坐标系中曲线‎与方程的关系‎概念的理解,‎这样才能解决‎随之而来的一‎些问题,如弦‎、最值问题等‎.教学重点‎:椭圆的几何‎性质及初步运‎用.(解决‎办法:引导学‎生利用方程研‎究曲线的性质‎,最后进行归‎纳小结.)‎教学难点:椭‎圆离心率的概‎念的理解.‎(解决办法:‎先介绍椭圆离‎心率的定义,‎再分析离心率‎的大小对椭圆‎形状的影响,‎最后通过椭圆‎的第二定义讲‎清离心率e的‎几何意义.)‎教学疑点:‎椭圆的几何性‎质是椭圆自身‎所具有的性质‎,与坐标系选‎择无关,即不‎随坐标系的改‎变而改变.‎(解决办法:‎利用方程分析‎椭圆性质之前‎就先给学生说‎明.)活动‎设计提问、‎讲解、阅读后‎重点讲解、再‎讲解、演板、‎讲解后归纳、‎小结.教学‎过程(一)‎复习提问1‎.椭圆的定义‎是什么?2‎.椭圆的标准‎方程是什么?‎学生口述,‎教师板书.‎(二)几何性‎质根据曲线‎的方程研究曲‎线的几何性质‎,并正确地画‎出它的图形,‎是b>‎0)来研究椭‎圆的几何性质‎.说明:椭圆‎自身固有几何‎量所具有的性‎质是与坐标系‎选择无关,即‎不随坐标系的‎改变而改变.‎1.范围‎即|x|‎≤a,|y|‎≤b,这说明‎椭圆在直线x‎=±a和直线‎y=±b所围‎成的矩形里(‎图2-18)‎.注意结合图‎形讲解,并指‎出描点画图时‎,就不能取范‎围以外的点.‎2.对称性‎先请大家阅‎读课本椭圆的‎几何性质2.‎设问:为什‎么“把x换成‎-x,或把y‎换成-y?,‎或把x、y同‎时换成-x、‎-y时,方程‎都不变,所以‎图形关于y轴‎、x轴或原点‎对称的”呢‎?事实‎上,在曲线的‎方程里,如果‎把x换成-x‎而方程不变,‎那么当点P(‎x,y)在曲‎线上时,点P‎关于y轴的对‎称点Q(-x‎,y)也在曲‎线上,所以曲‎线关于y轴对‎称.类似可以‎证明其他两个‎命题.同时‎向学生指出:‎如果曲线具有‎关于y轴对称‎、关于x轴对‎称和关于原点‎对称中的任意‎两种,那么它‎一定具有另一‎种对称.如:‎如果曲线关于‎x轴和原点对‎称,那么它一‎定关于y轴对‎称.事实上‎,设P(x,‎y)在曲线上‎,因为曲线关‎于x轴对称,‎所以点P1(‎x,-y)必‎在曲线上.又‎因为曲线关于‎原点对称,所‎以P1关于原‎点对称点P2‎(-x,y)‎必在曲线上.‎因P(x,y‎)、P2(-‎x,y)都在‎曲线上,所以‎曲线关于y轴‎对称.最后‎指出:x轴、‎y轴是椭圆的‎对称轴,原点‎是椭圆的对称‎中心即椭圆中‎心.3.顶‎点只须‎令x=0,得‎y=±b,点‎B1(0,-‎b)、B2(‎0,b)是椭‎圆和y轴的两‎个交点;令y‎=0,得x=‎±a,点A1‎(-a,0)‎、A2(a,‎0)是椭圆和‎x轴的两个交‎点.强调指出‎:椭圆有四个‎顶点A1(-‎a,0)、A‎2(a,0)‎、B1(0,‎-b)、B2‎(0,b).‎教师还需指‎出:(1)‎线段A1A2‎、线段B1B‎2分别叫椭圆‎的长轴和短轴‎,它们的长分‎别等于2a和‎2b;(2‎)a、b的几‎何意义:a是‎长半轴的长,‎b是短半轴的‎长;这时,‎教师可以小结‎以下:由椭圆‎的范围、对称‎性和顶点,再‎进行描点画图‎,只须描出较‎少的点,就可‎以得到较正确‎的图形.4‎.离心率教‎师直接给出椭‎圆的离心率的‎定义:‎等到介绍椭圆‎的第二定义时‎,再讲清离心‎率e的几何意‎义.先分析‎椭圆的离心率‎e的取值范围‎:∵a>c‎>0,∴ 0‎<e<1.‎再结合图形分‎析离心率的大‎小对椭圆形状‎的影响:‎(2)当e‎接近0时,c‎越接近0,从‎而b越接近a‎,因此椭圆接‎近圆;(3‎)当e=0时‎,c=0,a‎=b两焦点重‎合,椭圆的标‎准方程成为x‎2+y2=a‎2,图形就是‎圆了.(三‎)应用为了‎加深对椭圆的‎几何性质的认‎识,掌握用描‎点法画图的基‎本方法,给出‎如下例1.‎例1 求椭‎圆16x2+‎25y2=4‎00的长轴和‎短轴的长、离‎心率、焦点和‎顶点的坐标,‎并用描点法画‎出它的图形.‎本例前一部‎分请一个同学‎板演,教师予‎以订正,估计‎不难完成.后‎一部分由教师‎讲解,以引起‎学生重视,步‎骤是:‎(2)描‎点作图.先描‎点画出椭圆在‎第一象限内的‎图形,再利用‎椭圆的对称性‎就可以画出整‎个椭圆(图2‎-19).要‎强调:利用对‎称性可以使计‎算量大大减少‎.‎本例实质上是‎椭圆的第二定‎义,是为以后‎讲解抛物线和‎圆锥曲线的统‎一定义做准备‎的,同时再一‎次使学生熟悉‎求曲线方程的‎一般步骤,因‎此,要详细讲‎解:设d是‎点M到直线l‎的距离,根据‎题意,所求轨‎迹就是集合P‎={M‎将上式化‎简,得:(a‎2-c2)x‎2+a2y2‎=a2(a2‎-c2).‎这是椭圆‎的标准方程,‎所以点M的轨‎迹是椭圆.‎由此例不难归‎纳出椭圆的第‎二定义.(‎四)椭圆的第‎二定义1.‎定义平面内‎点M与一个定‎点的距离和它‎到一定直线的‎距离的比是常‎数线叫‎做椭圆的准线‎,常数e是椭‎圆的离心率.‎2.说明‎这时‎还要讲清e的‎几何意义是:‎椭圆上一点到‎焦点的距离和‎它到准线的距‎离的比.(‎五)小结解‎法研究图形的‎性质是通过对‎方程的讨论进‎行的,同一曲‎线由于坐标系‎选取不同,方‎程的形式也不‎同,但是最后‎得出的性质是‎一样的,即与‎坐标系的选取‎无关.前面我‎们着重分析了‎第一个标准方‎程的椭圆的性‎质,类似可以‎理解第二个标‎准方程的椭圆‎的性质.布置‎学生最后小结‎下列表格:‎五、布置‎作业1.求‎下列椭圆的长‎轴和短轴的长‎、焦距、离心‎率、各个顶点‎和焦点坐标、‎准线方程:‎(1)25x‎2+4y2-‎100=0,‎(2)x2‎+4y2-1‎=0.2.‎我国发射的科‎学实验人造地‎球卫星的运行‎轨道是以地球‎的中心为一个‎焦点的椭圆,‎近地点距地面‎266Km,‎远地点距地面‎1826Km‎,求这颗卫星‎的轨道方程.‎3.点P与‎一定点F(2‎,0)的距离‎和它到一定直‎线x=8的距‎离的比是1∶‎2,求点P的‎轨迹方程,并‎说明轨迹是什‎么图形.‎的方程.‎作业答案:‎‎4.顶点(0‎,2)可能是‎长轴的端点,‎也可能是短轴‎的一个端点,‎故分两种情况‎求方程:‎‎。

椭圆的简单几何性质课件

椭圆的简单几何性质课件

椭圆的简单几何性质课件椭圆的简单几何性质椭圆,作为一种常见的几何形状,具有许多有趣的性质和特点。

在这篇文章中,我们将探讨椭圆的一些简单几何性质,帮助读者更好地理解和应用椭圆。

一、椭圆的定义和基本元素椭圆是指平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。

这两个固定点称为焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。

椭圆的两个焦点与中心之间的距离称为焦距,记为c。

椭圆的长轴长度为2a,短轴长度为2b,其中a大于b。

二、椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,用e表示。

离心率的定义是焦距与长轴长度的比值,即e=c/a。

离心率可以用来描述椭圆的扁平程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于直线。

与离心率相关的概念是焦半径。

焦半径是指从椭圆上的任意一点到两个焦点的距离之和,记为r。

根据焦半径的定义,我们可以得到一个重要的结论:椭圆上的任意一点到两个焦点的距离之和等于2a,即r=2a。

三、椭圆的方程和参数方程椭圆的方程是描述椭圆上的点的数学表达式。

椭圆的标准方程是(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)是椭圆的中心坐标。

根据椭圆的定义,我们可以得到一个重要的性质:椭圆上的任意一点到中心的距离与椭圆的长轴、短轴长度之间存在一定的关系,即(x-h)^2/a^2+(y-k)^2/b^2=1。

除了标准方程,椭圆还可以用参数方程来表示。

参数方程是通过引入一个参数t,将椭圆上的点的坐标表示为x=a*cos(t)+h,y=b*sin(t)+k。

参数方程的优点是可以方便地描述椭圆上的点的运动和变化。

四、椭圆的性质和应用椭圆具有许多有趣的性质和应用。

首先,椭圆是一个闭合曲线,它的形状稳定且对称。

其次,椭圆上的点到两个焦点的距离之和是常数,这个性质可以应用于天文学中的行星轨道计算、卫星轨道设计等领域。

此外,椭圆还有许多与切线、法线、对称性等相关的性质。

椭圆的特性和性质总结

椭圆的特性和性质总结

椭圆的特性和性质总结
椭圆是平面解析几何中的一个重要图形,具有许多特性和性质。

本文将对椭圆的特性和性质进行总结。

1. 定义
椭圆是平面上到两个固定点(焦点)距离之和恒定的点的轨迹。

两个固定点之间的距离称为椭圆的主轴长度,焦点之间的距离为2a,主轴的中点称为椭圆的中心。

2. 方程
椭圆的标准方程为:$\frac{{x^2}}{{a^2}} + \frac{{y^2}}{{b^2}} = 1$,其中a为椭圆的半长轴长度,b为椭圆的半短轴长度。

椭圆
的离心率e定义为$e = \frac{{\sqrt{{a^2 - b^2}}}}{a}$。

3. 特性
- 椭圆是一个闭合曲线,不相交于平面上的任何其他点。

- 椭圆关于x轴和y轴对称。

- 椭圆的离心率决定了其形状,当离心率接近0时,椭圆趋近于圆形;当离心率接近1时,椭圆趋近于长方形。

- 椭圆的周长和面积可以通过特定的公式计算得出。

4. 性质
- 椭圆的焦点到椭圆上任意一点的距离之和等于2a。

- 椭圆的半长轴和半短轴之间的关系可以表示为$a^2 = b^2 +
c^2$,其中c为焦点到中心的距离。

- 椭圆的焦点到切线的距离等于切线与其法线之间的夹角的余切值乘以焦点到中心的距离。

- 椭圆的切线与法线的交点位于椭圆的焦点上。

- 椭圆的离心率e小于1,则椭圆上的任何一点到焦点的距离与到该焦点所引的切线的距离之和等于椭圆的半长轴长度。

以上是对椭圆的特性和性质进行的简要总结,椭圆在数学和物理学中具有广泛的应用,对于进一步研究和探索椭圆的性质具有重要意义。

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析椭圆是高中数学中一个重要的几何图形,它有着独特的性质和应用。

本文将从椭圆的定义、性质以及相关题目解析等方面进行阐述,帮助高中学生更好地理解和应用椭圆。

一、椭圆的定义与性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,线段F1F2的长度为2c,a和c之间的关系为a > c。

椭圆的长轴是通过焦点的直线段,长度为2a;短轴是与长轴垂直的直线段,长度为2b,且满足a > b > c。

椭圆的离心率e定义为e = c / a,离心率决定了椭圆的形状。

当e < 1时,椭圆是一个封闭曲线;当e = 1时,椭圆变成一个抛物线;当e > 1时,椭圆变成一个双曲线。

椭圆的焦点和准线的性质也是我们需要了解的。

焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a;准线是与长轴平行且过焦点的直线,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即PD =e * PF。

二、椭圆的相关题目解析1. 题目:已知椭圆的长轴长为10,短轴长为8,求椭圆的离心率。

解析:根据椭圆的定义,我们知道a = 5,b = 4。

将a和c的值代入离心率公式e = c / a,可得e = 4 / 5。

2. 题目:已知椭圆的焦点坐标分别为F1(-3, 0)和F2(3, 0),且焦点到准线的距离为2,求椭圆的方程。

解析:根据椭圆的性质,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即2 = e * a。

由于焦点到准线的距离为2,而椭圆的长轴长度为2a,所以a = 1。

再根据焦点的坐标,可得椭圆的中心为O(0, 0)。

因此,椭圆的方程为x^2 + y^2 / 1^2 = 1,即x^2 + y^2 = 1。

3. 题目:已知椭圆的焦点坐标分别为F1(-2, 0)和F2(2, 0),准线方程为x = 3,求椭圆的方程。

椭圆的几何性质及综合问题

椭圆的几何性质及综合问题

椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++ =【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a by a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33 C.21 D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为(A )316 (B )23 (C )22 (D )32若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53B .23C .22D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b +=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>3F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足NB NA 57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m n y m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的右焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。

椭圆的性质课件

椭圆的性质课件

椭圆的性质课件椭圆的性质椭圆是数学中一种重要的几何图形,它具有许多独特的性质和特点。

在本文中,我们将探讨椭圆的性质,包括其定义、方程、焦点、直径和切线等方面。

一、椭圆的定义和方程椭圆可以通过一对焦点和到焦点距离之和等于常数的点的集合来定义。

具体而言,给定两个焦点F1和F2,以及一个正常数2a(a>0),椭圆是满足以下条件的点P的集合:PF1 + PF2 = 2a。

椭圆的方程可以通过焦点和到焦点距离之和的定义来推导。

假设椭圆的焦点分别为F1(c,0)和F2(-c,0),其中c为正常数。

椭圆上的任意一点P(x,y)到焦点F1和F2的距离分别为PF1和PF2,根据定义,我们有PF1 + PF2 = 2a。

根据距离公式,我们可以得到椭圆的方程:√[(x-c)²+y²] + √[(x+c)²+y²] = 2a二、椭圆的焦点和直径椭圆的焦点是椭圆上特殊的点,它们对于椭圆的性质起着重要的作用。

根据椭圆的定义,焦点F1和F2分别位于椭圆的长轴上,并且到焦点距离之和等于常数2a。

椭圆的中点O为焦点F1和F2连线的中点,也是椭圆的对称中心。

椭圆的直径是椭圆上通过中心点O的线段,且两端点都在椭圆上。

椭圆的长轴是通过焦点F1和F2的直径,而短轴是与长轴垂直的直径。

椭圆的长轴长度为2a,短轴长度为2b。

三、椭圆的切线和法线椭圆上的切线是与椭圆相切的直线,它与椭圆的曲线只有一个交点。

椭圆上的任意一点P处的切线可以通过求解椭圆的方程和切线的斜率来确定。

根据导数的定义,我们可以得到椭圆上任意一点P(x,y)处的切线的斜率为:dy/dx = -x/√[(a²-x²)/b²]椭圆上的法线是与切线垂直的直线,它与切线的交点为切点。

椭圆上任意一点P处的法线可以通过求解椭圆的方程和法线的斜率来确定。

根据切线的斜率和法线的斜率的关系,我们可以得到椭圆上任意一点P(x,y)处的法线的斜率为:dy/dx = √[(a²-x²)/b²]/x四、椭圆的性质和应用椭圆具有许多重要的性质和应用。

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解椭圆,作为平面解析几何的一部分,是高三数学的重要知识点之一。

在高三学习阶段,对于椭圆的理解和熟练运用显得尤为重要。

本文将对高三复习椭圆的知识点进行讲解,帮助同学们加深对椭圆的理解,提升解题的能力。

一、椭圆的定义及性质椭圆是平面上到两个定点F1,F2的距离之和等于常数2a的点P的轨迹。

在椭圆中,常数2a称为长轴,定点F1和F2称为焦点,连结两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。

椭圆还有一些重要的性质,如:离心率、焦距、短半轴等。

二、椭圆的方程在平面直角坐标系中,椭圆的方程有两种形式:标准方程和一般方程。

1. 标准方程:椭圆的标准方程为:$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$,其中$a$和$b$分别是椭圆的长半轴和短半轴。

2. 一般方程:椭圆的一般方程为:$Ax^2 + By^2 + Cx + Dy + E = 0$,其中$A,B,C,D,E$为常数。

三、椭圆的基本性质1. 离心率:椭圆的离心率定义为$\varepsilon = \dfrac{c}{a}$,其中$c$为焦点到中心的距离,$a$为长半轴长。

离心率用来衡量椭圆的扁平程度,范围在0到1之间。

2. 焦距:椭圆的焦距定义为$2ae$,其中$a$为长半轴长,$e$为离心率。

3. 短半轴:椭圆的短半轴$b$满足$b = a\sqrt{1 - \varepsilon^2}$,其中$a$为长半轴长,$\varepsilon$为离心率。

四、椭圆的图像特点1. 椭圆的图像是一个闭合曲线,对称于$x$轴和$y$轴,且关于原点对称。

2. 当$a > b$时,椭圆的图像在$x$轴上开口,称为纵椭圆;当$a < b$时,椭圆的图像在$y$轴上开口,称为横椭圆。

3. 当离心率$\varepsilon = 0$时,椭圆退化为一个圆。

五、常用公式及运用1. 椭圆上一点P的坐标$(x, y)$,可由参数方程表示为:$x =a\cos\theta, y = b\sin\theta$。

椭圆的一些有趣性质及其应用

椭圆的一些有趣性质及其应用

椭圆的一些有趣性质及其应用□ 山西临汾三中 李峰泰教材中只介绍了椭圆的一些基本性质.在实际中,椭圆还有一些有趣的性质.探讨这些性质,不仅可以丰富解题思路,而且还可以培养我们的创新意识,在学习过程中会有所发现.本文介绍几个性质以示抛砖引玉.一、椭圆上点对两焦点张直角的性质P是椭圆)0(222222 b a b a y a x b =+上的一点,F1、F2是左、右焦点,O是椭圆中心,e 是离心率,OP的倾斜角为α,则∠F1PF2=90°的充要条件是221sin ee -=α.证明 如图,在△F1PF2中,∠F1PF2为直角的充要条件是221F F OP =(平面几何定理)∵.,221c OP c F F =∴=设P点坐标为(x ,y ),则ααααsin ,cos ,sin ,cos ⋅=⋅=⋅=⋅=c y c x OP y OP x 即,代入椭圆方程得:αααα2222222222sin 1cos ,sin cos -==⋅⋅+ b a c a c b∴整理得)(sin )(2222222c a b b a c -=-α即),0[,sin 442παα∈=cb∴22222421sin ee c c a cb -=-==α.例1 P是椭圆1422=+yx上的一点,F1、F2为两焦点,若∠F1PF2=90°,试求△PF1F2的面积.解 设OP的倾斜角为α,又知432=e ,代入可得31sin =α.∴1313sin 2sin 22sin 22121=⋅=⋅=⋅=⋅⋅=∆αααc c c OP F F S F PF二、椭圆准线上点对长轴顶点视角的性质椭圆)0(222222b a b a y a x b =+准线上的点对其长轴两顶点的视角为α,若椭圆的离心率为e ,则α是锐角且αsin ≤e .证明 如图,设P在x 轴上方,坐标为),(2y ca222222221tg ,,121221yc b a y ac k k k k ac a y k acay k PA PA PA PA PA PA +=⋅+-=-=+=α∵αα∴,0tg ,0 y 为锐角.整理为y 的方程0ctg 222222=+⋅-b a y a ac y c ∵此方程有实根,∴04ctg 4222242≥-=c b a c a Δα∴,sin ,csc ,0ctg 22222222222e ac a c a c c =≤≥⋅∴≥-+ααα∵α为锐角,∴e ≤αsin . 例2 P是椭圆13422=+yx右准线上的一点,点P对此椭圆左右两顶点A1、A2的视角为α,求α的最大值.解 ∵21,1,3,2====e c b a 由题设及性质得6sin 21sin πα==≤e又知α为锐角,∴α的最大值为6π.三、椭圆中心点张直角的性质若椭圆)0(222222 b a b a y a x b =+上有两点A、B,且OA⊥OB,则原点到弦AB的距离22ba ab d +=.证明 如图,设∠BOX=α,则∠AOX=2π+α,设OB=m >0,OA =n >0,A 点为(-)cos ,sin ααn n ,B点为(ααcos ,sin m m ),代入椭圆方程整理得,sin cos 1,sin cos 122222222222222ba ab nba b a mαααα+=+=2222222222,11n m OBOAAB ba b a nm+=+=+=+∴由等面积法得222222111ba ab nmnm mn OC d +=+=+==例3 直线1+=kx y 与椭圆12422=+yx交于A、B两点,当k 为何值时,以AB为直径的圆通过坐标原点.解 a =2,22=b ,∵AB为直径的圆过原点,∴OA⊥OB,由性质及原点到直线距离公式得214222112+⋅=+=kd ,解之得25±=k .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 椭圆性质及综合应用
基础回顾
1、222x ky +=表示焦点在y 轴上的椭圆,则实数k 的取值范围是 。

2、椭圆 22
1123
x y += 的焦点为 1F 和 2F ,点P 在椭圆上,如果线段 1PF 的中点在 y 轴上,那么 1PF 是 2PF 的( )
A .7倍
B .5倍
C .4倍
D .3倍
3、椭圆的一个顶点和一个焦点在直线360x y +-=上,则此椭圆的标准方程是 ( ) A.221404x y += B 2213640x y += C.22221140363640x y x y +=+=或 D.2222
114043640
x y x y +=+=或 4、过椭圆x 2a 2+y 2
b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )
A.22
B.33
C.12
D.13
5、求与椭圆x 24+y 2
3
=1有相同的离心率且经过点(2,-3)的椭圆方程.
例题讲解
例1、 P 为椭圆x 225+y 2
16
=1上任意一点,F 1、F 2为左、右焦点 (1)若PF 1的中点为M ,求证:|M O |=5-12
|PF 1|; (2)若∠F 1PF 2=60°,求|PF 1|·|PF 2|之值;
(3)椭圆上是否存在点P ,使PF 1→·PF 2→=0,若存在,求出P 点的坐标,若不存在,
例2、 已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,
当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率.
练习:
1、设椭圆的焦点分别是()14,0F -、()24,0F ,
直线l 过左焦点1F ,与椭圆交于两点A 、B ,且⊿2ABF 的周长为20,则椭圆的方程是 .
2. 在平面直角坐标系xOy 中,椭圆C :x 225+y 29
=1的左、右焦点分别是F 1、F 2,P 为椭圆C 上的一点,且PF 1⊥PF 2,则△PF 1F 2的面积为________.
3、椭圆()01:22
22>>=+Γb a b
y a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于___________
4、在ABC △中,AB BC =,7cos 18
B =-.若以A B ,为焦点的椭圆经过点
C ,则该椭圆的离心率e = .
5、设P 是椭圆x 225+y 29
=1上一点,M 、N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )
A .9,12
B .8,11
C .8,12
D .10,12
例3、经过椭圆12
22
=+y x 的左焦点1F 作倾斜角为 60的直线l ,直线l 与椭圆交于A ,B 两点,求AB 的长度。

例4、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32
,短轴一个端点到右焦点的距离为2.
(1)求该椭圆的标准方程;
(2)若P 是该椭圆上的一个动点,F 1、F 2分别是椭圆的左、右焦点,求PF 1→·PF 2→的最大值与最小值.
(3)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围
练习:1、已知椭圆2222b y a x +(a >b >0)的离心率3
6=e ,过点A (0,-b )和B (a ,0)的直线与原点的距离为2
3. (1)求椭圆的方程.
(2)(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.
2、已知椭圆:E 22
221x y a b
+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (I )求椭圆E 的离心率;
(II )如图,AB 是圆:M ()()225212
x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.
家庭作业:
1、已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外
一个焦点在BC 边上,则△ABC 的周长是( )
A .2 3
B .6
C .4 3
D .12
2、椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )
A .±34
B .±32
C .±22
D .±34
3、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )
(A )2
2 (B )212- (C )22- (D )21-
4、条件p :动点M 到两定点距离的和等于定长,条件q :动点M 的轨迹是椭圆,条件p 是条件q 的( )
A .充要条件
B .必要不充分条件
C .充分不必要条件
D .既不充分又不必要条件
5、已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到椭圆的两
个焦点的距离之和为12,则椭圆G 的方程为________.
6、以椭圆的两个焦点为直径的端点的圆与椭圆有四个不同的交点,顺次连接这四个点和两个焦点,恰好得到一个正六边形,那么椭圆的离心率等于________.
7、设21,F F 分别是椭圆)10(1:22
2<<=+b b
y x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________
8、已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.
(1)求椭圆C 2的方程;
(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上OB →=2OA →,求直线AB 的方程.。

相关文档
最新文档