椭圆几何性质及应用(基础题)
椭圆的定义及几何性质试题 精选精练

椭圆的定义及几何性质题型一:椭圆的定义及其应用1、判断轨迹:例:已知12,F F 是定点,动点M 满足12||||8MF MF +=,且12||8F F =则点M 的轨迹为( )A .椭圆 B.直线 C.圆 D.线段变式:1 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点.若1222=+B F A F ,则AB = .2、利用定义例:已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点F 1,F 2,点P 是两曲线的一个公共点,则cos ∠F 1PF 2的值为( ).A.14 B.13 C.19 D.35变式:1、(·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.2、 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ).A .2 3 B .6C .4 3 D .123、已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6 B .5 C .4 D .3 4、已知F 1,F 2是椭圆2212516x y +=的两焦点,过点F 2的直线交椭圆于1122(,)(,)A x y B x y 两点,△AF 1B 的内切圆的周长为π,则12||y y -为( ) 5.3A 10.3B 20.3C 5.3D 3、转化定义例:设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.变式练习:1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15题型二:椭圆的标准方程和性质例:[例1] (1)(2017·广东高考)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1(2)(2016·岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.变式练习1.已知椭圆的长轴是短轴的3倍,且过A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程_____2.(2018·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 题型三:椭圆的重要性质------离心率示例:如图A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22变式 1.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°“改为“F 1、F 2分别为椭圆22221(0)x y a b a b+=>>,的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另 一点B .若∠F 1AB =90°”求椭圆的离心率;2.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°”改为“椭圆通过A ,B 两点,它的一个焦点为点C ,且AB =AC =1,090BAC ∠=,椭圆的另一个焦点在AB 上”,求椭圆的离心率为________. 3.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°“改为“F 1、F 2分别为圆锥曲线的左、右焦点,曲线上存在点P 使|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32B.23或2C.12或2D.23或324. 椭圆2222(0)x y a b a b+>>的左、右顶点分别是A ,B 左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 。
椭圆的定义及几何性质专项练习

椭圆的定义及几何性质专项练习一、复习目标:二、基础知识回顾三、例题分析:题型1.椭圆的定义例题1.已知1F 、2F 为椭圆192522=+y x 的两个焦点,A 、B 为过1F 的直线与椭圆的两个交点,则2ABF ∆的周长是____________练习1.P 为椭圆14522=+y x 上的点,1F 、2F 是两焦点,若 3021=∠PF F ,则21PF F ∆的面积是( ) A . 3316 B . )32(4- C . )32(16+ D . 16 练习2.已知椭圆221169x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上,若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .7D .94练习3.椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是 __________.题型2.椭圆的标准方程例2.求适合下列条件的椭圆的标准方程:(1)离心率为22,准线方程为8±=x ; (2)长轴与短轴之和为20,焦距为54练习2:已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.题型3.椭圆的焦距例3.椭圆63222=+y x 的焦距是( )A .1B .)23(2-C .52D .)23(2+练习3:椭圆1422=+y m x 的焦距为2,则m 的值是( ) A .5 B .3 C .1或3 D .不存在题型4.求椭圆的的离心率例 4. 已知1F 为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当11PF F A ⊥,//PO AB (O 为椭圆中心)时,求椭圆的离心率.练习4 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.练习4:椭圆的中心是原点O O ,它的短轴长为22,相应于焦点(,0)F c (0c >)的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
椭圆必记知识点及基本题型

椭圆必记知识点及基本题型标准 方程(焦点在x 轴))0(12222>>=+b a by ax(焦点在y 轴))0(12222>>=+b a bx a y 定 义平面内与两个定点1F ,2F 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
{}a MF MF M 221=+()212F F a >范 围 x a ≤ y b ≤x b ≤ y a ≤顶点坐标 )0,(a ± (0,)b ±),0(a ± (,0)b ±对 称 轴 x 轴,y 轴;长轴长为a 2,短轴长为b 2对称中心原点(0,0)O焦点坐标1(,0)F c 2(,0)F c -1(0,)F c 2(0,)F c -焦点在长轴上,22c a b =-; 焦距:122F F c = 离 心 率 ac e = (01e <<) ,ab a ac e 22222-==,e 越大椭圆越扁,e 越小椭圆越圆。
椭圆上到焦点的最大(小)距离最大距离为:a c +最小距离为:a c - 相关应用题:远日距离a c + 近日距离a c -直线和椭圆的位置椭圆12222=+by ax与直线y kx b =+的位置关系:利用22221xyab y kx b ⎧+=⎪⎨⎪=+⎩转化为一元二次方程用判别式确定。
相交弦AB 的弦长2212121()4AB kx x x x =++- 通径:21AB y y =-★椭圆知识梳理★1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PFPF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PFPF ==+时, P 的轨迹为 以21F F 、为端点的线段2.椭圆的方程与几何性质:标准方程 )0(12222>>=+b a by ax)0(12222>>=+b a bx ay性 质参数关系 222c b a +=焦点 )0,(),0,(c c - ),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ac e3.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:M1F 2F xyOM1F2FxyO当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔★重难点突破★重点:掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用难点:椭圆的几何元素与参数c b a ,,的转换重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数c b a ,,的关系 1.要有用定义的意识 问题1已知21F F 、为椭圆192522=+yx的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。
椭圆的几何性质练习题

椭圆的几何性质练习题椭圆的几何性质练习题椭圆是数学中一种重要的几何形状,具有许多特殊的性质和应用。
在本文中,我们将通过一些练习题来探索椭圆的一些几何性质。
练习题一:椭圆的定义1. 如何定义一个椭圆?2. 椭圆的焦点和直径分别是什么?练习题二:椭圆的离心率1. 什么是椭圆的离心率?2. 离心率为1的椭圆是什么特殊的形状?练习题三:椭圆的焦点性质1. 椭圆的焦点位于什么位置?2. 如何通过椭圆的焦点和直径来确定椭圆的方程?练习题四:椭圆的长轴和短轴1. 如何确定椭圆的长轴和短轴?2. 长轴和短轴之间的关系是什么?练习题五:椭圆的周长和面积1. 如何计算椭圆的周长和面积?2. 椭圆的周长和面积与长轴和短轴之间有什么关系?练习题六:椭圆的焦点到点的距离1. 如何计算椭圆上任意一点到焦点的距离?2. 椭圆上任意一点到焦点的距离与椭圆的离心率之间有什么关系?练习题七:椭圆的应用1. 椭圆在日常生活中有哪些应用?2. 椭圆在科学和工程领域中有哪些应用?通过以上练习题,我们可以更好地理解和掌握椭圆的几何性质。
椭圆作为一种特殊的几何形状,具有许多独特的特点和应用,对于数学和实际问题的解决都具有重要意义。
在解答这些练习题的过程中,我们需要熟练掌握椭圆的定义、离心率、焦点性质、长轴和短轴的确定方法,以及椭圆的周长、面积和焦点到点的距离的计算方法。
同时,我们还需要了解椭圆在不同领域中的应用,以便更好地理解和应用椭圆的几何性质。
通过不断的练习和思考,我们可以逐渐提高对椭圆的理解和应用能力。
椭圆作为数学中的一种重要几何形状,不仅具有美丽的形态,还具有广泛的应用价值。
在学习和应用中,我们应该保持好奇心和求知欲,不断探索和发现椭圆的更多奥秘。
总之,椭圆的几何性质是数学中的重要内容之一,通过练习题的探索和解答,我们可以更好地理解和应用椭圆的特点和应用。
希望通过这些练习题,读者们能够对椭圆有更深入的了解,并能够在实际问题中灵活运用椭圆的几何性质。
椭圆简单几何性质(作业)

椭圆的简单几何性质一、选择题x 2 y 21.已知点 (3,2)在椭圆 a 2+ b 2 =1 上,则 ( )A .点 ( -3,- 2)不在椭圆上B .点 (3 ,- 2)不在椭圆上C .点 ( -3,2)在椭圆上D .没法判断点 (- 3,- 2),(3,- 2),(-3,2)能否在椭圆上2.曲线 x 2 y 2x 2 + y 2=1(0<k<9)的关系是 () 25+9=1与--9 k 25 kA .有相等的焦距,同样的焦点B .有相等的焦距,不一样的焦点C .有不等的焦距,不一样的焦点D .以上都不对3.焦点在 x 轴上,长、短半轴长之和为 10,焦距为 4 5,则椭圆的方程为 ()x 2y 2x 2y 2 A.36+ 16=1B.16+ 36=1x 2 y 2y 2 x 2C.6+ 4 =1D. 6+4 =14.椭圆的短轴的一个极点与两焦点构成等边三角形,则它的离心率为()11 12A. 2B. 3C.4D. 25.我国于 2007 年 10 月 24 日成功发射嫦娥一号卫星,并经四次变轨飞向月球.嫦娥一号绕地球运转的轨迹是以地球的地心为焦点的椭圆.若第一次变轨前卫星的近地址到地心的距离为m,远地址到地心的距离为n,第二次变轨后两距离分别为2m,2n(近地址是指卫星距离地面近来的点,远地址是距离地面最远的点 ),则第一次变轨前的椭圆的离心率与第二次变轨后的椭圆的离心率相比较()A.没变B.变小C.变大D.没法确立二、填空题6.椭圆 9x2+y2=36 的短轴长为 ________.7.(2013 ·吉林高二检测 ) 已知长方形 ABCD, AB=4,BC=3,则以 A,B 为焦点,且过 C、D 的椭圆的离心率为 ________.8.(2011 课·标全国卷 )在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,2焦点 F1,F 2在 x 轴上,离心率为2 .过 F1的直线 l 交 C 于 A, B 两点,且△ABF2的周长为 16,那么 C 的方程为 ________.三、解答题.求与椭圆x2+y25(1)=1 有同样的焦点,且离心率为的椭圆的标准方程;9945(2)已知椭圆的两个焦点间的距离为8,两个极点坐标分别是(- 6,0),(6,0),求焦点在 x 轴上的椭圆的标准方程.10.椭圆以直线3x+4y-12= 0 和两坐标轴的交点分别作极点和焦点,求椭圆的标准方程.x2y211.如图,已知椭圆a2+b2= 1(a> b> 0),F1, F2分别为椭圆的左、右焦点,A 为椭圆的上极点,直线AF2交椭圆于另一点 B.(1)若∠ F1AB=90°,求椭圆的离心率;→→(2)若椭圆的焦距为2,且AF2= 2F2B,求椭圆的方程.。
椭圆的几何性质练习题

椭圆的几何性质练习题1. 给定一个椭圆,其长轴长度为12cm,短轴长度为8cm。
求椭圆的离心率。
2. 已知一个椭圆的长轴AB长度为20cm,短轴CD长度为16cm。
求椭圆的焦点坐标。
3. 若一个椭圆的两个焦点之间的距离为10cm,离心率为0.6。
求椭圆的短轴长度。
4. 给定一个椭圆,其长轴AB长度为24cm,焦距为10cm。
求椭圆的离心率。
5. 椭圆的焦距为8cm,离心率为0.8。
求椭圆的长轴和短轴长度。
解答:1. 椭圆的离心率定义为焦距与长轴的比值。
已知长轴为12cm,短轴为8cm,根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 12^2 - 8^2 = 144 - 64 = 80,所以焦距长度为√80 = 8√5 cm。
离心率为e = c/a =(8√5)/12 = (2√5)/3 ≈ 1.13。
2. 已知长轴长度为20cm,短轴长度为16cm。
根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 20^2 - 16^2 = 400 - 256 = 144,所以焦距长度为√144 = 12 cm。
由于椭圆的焦点在长轴上方和下方对称,所以焦点坐标为(0, ±6)。
3. 已知焦点之间的距离为10cm,离心率为0.6。
设焦距长度为c,长轴长度为2a,短轴长度为2b。
由于离心率e = c/a,可得c = ea。
又因为c^2 = a^2 - b^2,代入已知数据可得(ea)^2 = a^2 - b^2,即e^2a^2 = a^2 - b^2。
由离心率的定义可知e < 1,所以e^2 < 1,即a^2 - b^2 > 0。
将e^2a^2 = a^2 - b^2移项整理可得a^2 - e^2a^2 = b^2,即a^2(1 - e^2) = b^2。
椭圆的定义、标准方程及几何性质(分层练习)

椭圆的定义、标准方程及几何性质(分层练习)[基础训练]1.[2020天津河北区模拟]已知椭圆C 的中心在原点,焦点在x 轴上,且短轴长为2,离心率为255,则该椭圆的标准方程为( )A.x 25+y 2=1 B .x 23+y 2=1 C.x 24+y 2=1D .y 24+x 2=1答案:A 解析:由题意设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则2b =2,故b =1.又c a =255,a 2=b 2+c 2,∴a 2=5.∴椭圆C 的标准方程为x 25+y 2=1.故选A.2.[2020河北邯郸一模]椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍答案:A 解析:设线段PF 2的中点为D ,则|OD |=12|PF 1|,且OD ∥PF 1, ∵OD ⊥x 轴,∴PF 1⊥x 轴. ∴|PF 1|=b 2a =323=32.又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732=7|PF 1|. ∴|PF 2|是|PF 1|的7倍.3.[2020黑龙江哈尔滨六中模拟]设椭圆C :x 24+y 2=1的左焦点为F ,直线l :y =kx (k ≠0)与椭圆C 交于A ,B 两点,则|AF |+|BF |的值是( )A .2B .23C .4D .43答案:C 解析:设椭圆的右焦点为F 2,连接AF 2,BF 2.因为|OA |=|OB |,|OF |=|OF 2|,所以四边形AFBF 2是平行四边形,所以|BF |=|AF 2|,所以|AF |+|BF |=|AF |+|AF 2|=2a =4.故选C.4.[2020河南洛阳一模]已知椭圆x 211-m +y 2m -3=1的焦点在y 轴上,且焦距为4,则m 等于( )A .5B .6C .9D .10答案:C 解析:由椭圆x 211-m +y 2m -3=1的长轴在y 轴上,焦距为4,可得m -3-11+m =2,解得m =9.故选C.5.[2020安徽宣城一模]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM→·NF →=0,则椭圆的离心率为( ) A.32 B .2-12 C.3-12D .5-12答案:D 解析:由题意知,M (-a,0),N (0,b ),F (c,0), ∴NM→=(-a ,-b ),NF →=(c ,-b ). ∵NM→·NF →=0, ∴-ac +b 2=0,即b 2=ac . 又知b 2=a 2-c 2,∴a 2-c 2=ac . ∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去). ∴椭圆的离心率为5-12, 故选D.6.[2020安徽六安一中模拟]点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F ,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF |的最小值为( )A .42-4B .4-42C .6-25D .25-6答案:D 解析:设椭圆的左焦点为F 1, 则|PQ |-|PF |=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF |的最小值, 即求|PQ |+|PF 1|的最小值, 圆C 2的半径为2,所以|PQ |+|PF 1|的最小值等于|C 2F 1|-2=[-1-(-3)]2+(0-4)2-2=25-2,则|PQ |-|PF |的最小值为25-6,故选D.7.[2020山东临沂一模]已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|P A |的最大值和最小值分别是________.答案:237和2 解析:设P (x 0,y 0),则|P A |=x 20+(y 0-5)2=x 20+y 20-10y 0+25.∵点P 为椭圆x 2+2y 2=98上的一个动点,∴x 20+2y 20=98,∴x 20=98-2y 20, ∴|P A |=98-2y 20+y 20-10y 0+25=-(y 0+5)2+148. ∵-7≤y 0≤7,∴当y 0=-5时,|P A |max =237; 当y 0=7时,|P A |min =2.8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.解:(1)设椭圆右焦点F 2的坐标为(c,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12.所以椭圆的离心率e =22. (2)由(1)知,a 2=2c 2,b 2=c 2, 故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0),因为F 1(-c,0),B (0,c ), 所以F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ). 由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,故x 202c 2+y 20c 2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c , 代入①,得y 0=c3,即点P 的坐标为⎝ ⎛⎭⎪⎫-43c ,c 3.设圆的圆心为T (x 1,y 1).则x 1=-43c +02=-23c ,y 1=c3+c 2=23c , 进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 由已知,有|TF 2|2=|MF 2|2+r 2, 又|MF 2|=22,故有⎝ ⎛⎭⎪⎫c +23c 2+⎝ ⎛⎭⎪⎫0-23c 2=8+59c 2, 解得c 2=3.所以所求椭圆的方程为x 26+y 23=1.[强化训练]1.[2020湖北1月联考]已知椭圆C :y 2a 2+x 216=1(a >4)的离心率是33,则椭圆C 的焦距是( )A .22B .26C .42D .46答案:C 解析:由e =c a =33,得a =3c ,所以c 2=a 2-b 2=3c 2-16,所以c 2=8,因此焦距为2c =4 2.2.[2020浙江温州1月模拟]如图,设P 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的动点,F 1,F 2分别为椭圆C 的左、右焦点,I 为△PF 1F 2的内心,则直线IF 1和直线IF 2的斜率之积( )A .是定值B .非定值,但存在最大值C .非定值,但存在最小值D .非定值,且不存在最值答案:A 解析:如图,连接PI 并延长交x 轴于点G ,由内角平分线定理,可得GI IP =F 1G PF 1,GI IP =F 2GPF 2,所以GI IP =F 1G +F 2G PF 1+PF 2=2c 2a =ca=e .设P (x 0,y 0),I (x I ,y I ),G (x G,0),则x 20a 2+y 20b 2=1, 所以a 2y 20a 2-x 20=b 2.由GI IP =c a ,得GI GP =GI GI +IP =y I y 0=c a +c ,故y I =cy 0a +c,由F 2G F 1G =PF 2PF 1,即c -x G x G +c =a -ex 0a +ex 0,得x G =e 2x 0.由GI IP =c a ,得GI GP =x I -x G x 0-x G =ca +c ,所以x I =ex 0.又kIF 1=y I x I +c ,kIF 2=y Ix I -c ,所以kIF 1·kIF 2=y 2Ix 2I -c 2=c 2y 20(a +c )2c 2a2x 20-c 2=1(a +c )2·a 2y 20x 20-a 2=-b 2(a +c )2. 所以直线IF 1和直线IF 2的斜率之积是定值.故选A.3.[2020福建福州一模]已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)答案:C 解析:如图,延长PF 2,F 1M 相交于N 点,∵K 点是△F 1PF 2内切圆的圆心, ∴PK 平分∠F 1PF 2,∵F 1M ⊥PK ,∴|PN |=|PF 1|,M 为F 1的N 中点, ∵O 为F 1F 2中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2|| =12||PF 1|-|PF 2||<12|F 1F 2|=c =3, ∴|OM |的取值范围为(0,3). 故选C.4.[2020安徽蚌埠一模]已知F 1,F 2是椭圆x 24+y 23=1的左、右焦点,点A 的坐标为⎝ ⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为( ) A .-2 B .-1 C .-3D .-2答案:A 解析:解法一:∵F 1,F 2是椭圆x 24+y 23=1的左、右焦点,∴F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32,∴AF 1⊥x 轴, ∵|AF 1|=32,则|AF 2|=52,∴点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,∴|F ′2F 1|=1,∴F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝ ⎛⎭⎪⎫0,-12, ∴所求直线的斜率为32-⎝ ⎛⎭⎪⎫-12-1-0=-2.故选A.解法二:如图.设∠F 1AF 2的平分线交x 轴于点N , ∠F 1AN =β,∠ANF 2=α.∵tan 2β=|F 1F 2||AF 1|,∴232=43=2tan β1-tan 2β,∴tan β=12或-2(舍).在Rt △AF 1N 中,tan β=|F 1N ||AF 1|,即|F 1N |32=12,∴|F 1N |=34,∴k l =tan α=tan(π-∠ANF 1)=-tan ∠ANF 1 =-|AF 1||F 1N |=-3234=-2.故选A.5.[2020江西赣州模拟]已知A ,B 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4答案:D 解析:如图所示,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧ty =x ,x 2a 2+y 2b 2=1可得y 2=a 2b 2b 2t 2+a2=-y 1y 2,∴△ABF 的面积S =12c |y 1-y 2| =12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时等号成立.∴bc =2.∴a 2=b 2+c 2≥2bc =4,a ≥2.∴椭圆E 的长轴长的最小值为4.故选D.6.已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=________. 答案:54 解析:由题意知,A ,C 为椭圆的两个焦点, 由正弦定理,得sin A +sin C sin B=|BC |+|AB ||AC |=2a 2c =a c =54. 7.[2020山东烟台一模]已知F (2,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.答案:8+2 解析:设椭圆的左焦点为F ′, 由椭圆的右焦点为F (2,0),得c =2, 又过F 且垂直于x 轴的弦长为6,即2b 2a =6, 则a 2-c 2a =a 2-4a =3,解得a =4,所以|MF |+|MA |=8-|MF ′|+|MA |=8+|MA |-|MF ′|, 当M ,A ,F ′三点共线时,|MA |-|MF ′|取得最大值, (|MA |-|MF ′|)max =|AF ′|=2, 所以|MF |+|MA |的最大值为8+ 2.8.[2020河北保定一模]与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案:x 225+y 216=1 解析:设动圆的半径为r ,圆心为P (x ,y ), 则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.9.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32.(1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E ,求证:△BDE 与△BDN 的面积之比为4∶5.(1)解:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎨⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1.所以椭圆C 的方程为x24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ). 由题设知,m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n (x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n 2-m (x -2),得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2. 由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.10.[2020云南曲靖模拟]已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意,得⎩⎨⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理,得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA→·OB →=0, OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2 =54m 2-74=0,解得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.。
椭圆的几何性质(含答案)

椭圆的几何性质一、选择题1.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 2.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b 2=k (k >0)具有( )A .相同的长轴B .相同的焦点C .相同的顶点D .相同的离心率3.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.22B.32 C.53D.634.椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系为( )A .有相等的长、短轴B .有相等的焦距C .有相同的焦点D .x ,y 有相同的取值范围5.以椭圆两焦点F 1、F 2所连线段为直径的圆,恰好过短轴两端点,则此椭圆的离心率e 等于( )A.12B.22C.32D.2556.中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1C.x 281+y 245=1 D.x 281+y 236=17.焦点在x 轴上,长、短半轴之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1C.x 26+y 24=1 D.y 26+x 24=18.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22D.329.若椭圆两焦点为F 1(-4,0)、F 2(4,0),P 在椭圆上,且△PF 1F 2的最大面积是12,则椭圆方程是( ) A.x 236+y 220=1 B.x 228+y 212=1C.x 225+y 29=1 D.x 220+y 24=1二、填空题10.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.11.椭圆x 2a 2+y 2b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2c ,若d 1、2c 、d 2成等差数列,则椭圆的离心率为________.12.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.三、解答题13.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆的离心率e =32,求椭圆的方程.14.已知椭圆mx 2+5y 2=5m 的离心率为e =105,求m 的值.椭圆的几何性质(答案)1、[答案] C [解析] ∵点(3,2)在椭圆x 2a 2+y 2b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C. 2、[答案] D [解析] 椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)中,不妨设a >b ,椭圆x 2a 2+y 2b 2=1的离心率e 1=a 2-b 2a,椭圆x 2a 2k +y 2b 2k =1(k >0)的离心率e 2=k a 2-b 2ka=a 2-b 2a .3、[答案] A [解析] 由题意得b =c ,∴a 2=b 2+c 2=2c 2,e =c a =22.4、[答案] B [解析] ∵0<k <9,∴0<9-k <9,16<25-k <25,∴25-k -9+k =16,故两椭圆有相等的焦距.5、[答案] B [解析] 由题意得b =c ,∴a 2=b 2+c 2=2c 2,∴e =c a =22.6、[答案] A [解析] ∵2a =18,∴a =9,由题意得2c =13×2a =13×18=6,∴c =3,∴a 2=81,b 2=a 2-c 2=81-9=72,故椭圆方程为x 281+y 272=1.7、[答案] A [解析] 由题意得c =25,a +b =10,∴b 2=(10-a )2=a 2-c 2=a 2-20, 解得a 2=36,b 2=16,故椭圆方程为x 236+y 216=1.8、[答案] D [解析] 由题意得a =2b ,a 2=4b 2=4(a 2-c 2),∴c a =32.9、[答案] C [解析] 由题意得c =4,∵P 在椭圆上,且△PF 1F 2的最大面积为12,∴12×2c ×b =12,即bc =12,∴b =3,a =5,故椭圆方程为x 225+y 29=1. 10、[答案]5-12 [解析] 设椭圆方程为x 2a 2+y 2b2=1,则有A (a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得b a ⎝⎛⎭⎫-b c =-1,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e >0,∴e =5-12.11、[答案] 12 [解析] 由题意得4c =d 1+d 2=2a ,∴e =c a =12.12、[答案] 2b 2a[解析] ∵垂直于椭圆长轴的弦所在直线为x =±c ,由⎩⎪⎨⎪⎧x =±c x 2a 2+y 2b 2=1,得y 2=b 4a 2,∴|y |=b 2a ,故弦长为2b 2a .13、[解析] 由题意,得⎩⎪⎨⎪⎧4a =16c a =32,∴a =4,c =2 3.∴b 2=a 2-c 2=4,所求椭圆方程为x 216+y 24=1.14、[解析] 由已知可得椭圆方程为x 25+y 2m=1(m >0且m ≠5). 当焦点在x 轴上,即0<m <5时,有a =5,b =m ,则c =5-m , 依题意得5-m 5=105,解得m =3.当焦点在y 轴上,即m >5时,有a =m ,b = 5. 则c =m -5,依题意有m -5m=105.解得m =253.即m 的值为3或253.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的简单几何性质
1.若焦点在x轴上的椭圆x2
2+
y2
m=1的离心率为
1
2,则m等于()
A.3
B.3
2C.
8
3D.
2
3
2.若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率e是()
A.3
4B.
2
3C.
1
2D.
1
4
3.椭圆(m+1)x2+my2=1的长轴长是()
A.2m-1
m-1
B.
-2-m
m
C.2m
m D.-
21-m
m-1
4.椭圆的两个焦点和它在短轴上的两个顶点连成一个正方形,则此椭圆的离心率为()
A.1
2B.
2
2
C.
3
2D.
3
3
5.(2009·江西高考)过椭圆x2
a2+
y2
b2=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于
点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()
A.
2
2B.
3
3
C.1
2D.
1
3
6.若AB为过椭圆x2
25+
y2
16=1中心的线段,F1为椭圆的焦点,则△F1AB面积的
最大值为()
A.6 B.12
C.24 D.48
1
7.椭圆的一个焦点将长轴分为3∶2的两段,则椭圆的离心率是________.
8.过椭圆x2
5+
y2
4=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O
为坐标原点,则△OAB的面积为________.
9.若椭圆x2
k+2+
y2
4=1的离心率e=
1
3,则k的值等于________.
10.求适合下列条件的椭圆的标准方程:
(1)长轴长是短轴长的3倍,且过点(3,-1);
(2)椭圆过点(3,0),离心率e=
6 3.
11.已知椭圆4x2+y2=1及直线y=x+m,
(1)当直线和椭圆有公共点,求实数m的取值范围.
(2)求被椭圆截得的最长线段所在的直线方程.
2。