有机化学之碳碳重键的加成反应
第九十章碳碳双键的加成反应

CH3CHCH3 Br
δ +δ -
H 3 C C C 2 + H B r H H
H 3 C C +C H 3 + B H r - H 3 C C C 3 H B r
正碳离子稳定性得影响:
H H 3 C C H C H 2 + H X HH++ HH33CC CC+H2 CC+HH32
如顺-2-丁烯与四氧化锇加成生成顺式环状锇酸酯,后者水解生成内 消旋1,2-二醇,总得结果就是羟基化,具有顺式立体选择性。
许多加成反应具有立体选择性,但对于某些加成反应则只有很小 得立体选择性,如Z-1,2-二甲基环已烯得酸性水解反应,生成大约等 量得顺和反1,2二甲基环已醇。如:
烯烃加成得立体选择性就是可变得,她与亲电试剂得性 质、烯烃得结构和反应条件等因素有关。
按鎓型离子历程进行得反应,通常就是反式加 成产物。
二、三分子亲电加成反应
▪ 三分子亲电加成反应速度为υ=κ[烯烃][亲电 试剂]2,为三级反应,以AdE3表示。
▪ 当烯烃与卤化氢得加成,若生成比较不稳定 得正碳离子时,则倾向于按三分子亲电加成 反应历程进行。因另一HX分子得X-与之结 合,可生成稳定得产物。
▪ C=C双键与卤化氢加成得立体选择性主要 依赖于烯烃得结构。
▪ 非共轭环状烯烃如环已烯、1,2-二甲基环戊 烯、1,2-二甲基环已烯和异丁烯与HX得加 成主要就是反式加成。如:
反式加成 反式加成
▪ 当双键碳原子之一与一个能稳定生成得正碳离子 得中间体得基团如苯基共轭时,则立体选择性将发 生变化。
三、溶剂得影响
▪ 溶剂对亲电加成反应得立体化学也有影响。
▪ 如顺-1,2-二苯乙烯与溴在不同溶剂中进行加成时, 内消旋和外消旋产物得比例不同,即顺式和反式加 成产物比例不同。
第十章 碳碳重键的加成反应

CH3CH CH2 > CH2 CH2 > BrCH CH2 > CH2 CHCOOH
CH CH2 > CH2 CH2
从反应的过渡状态或活性中间体来看,无论是鎓离 子还是碳正离子,都是带正电荷的,因此,若正电 荷能得到分散,其反应速率也一定加快。
CH CH2
CH3 2C
H
Ph CH CH3
C CH3 2 > CH3 2C CHCH3 > CH3 2C CH2
C 6H 5 C C CH 3
2、亲电试剂的影响
不同亲电试剂与C=C双键的加成,其立体选择性 也不同。
Br + Br 2 H C CH 3 C H Br Br C C C6 H5 88%
反式加成
H C C C6 H 5 H Cl + Cl2 H C 6H 5 C CH3 C H Cl 33% + HBr Br H C 6H 5 C CH3 C H H 12%
相反,当双键碳原子连有吸电子基团时,随其数目 的增多,或吸电子效应增强,反应速率减慢,甚至 会改变反应机理。 一般,若双键碳原子连有三个或四个强吸电子基团 时,反应通常是按亲核加成机理进行的。
> ClH 2C C CH2 H > Cl2HC C CH2 H > Cl3C C CH2 H
H3C C CH2 H
CH 3 Br H R H Br R CH 3
苏式 ( 外消旋体)
溴与环己烯的加成
溴与具有光活性的4-甲基环己烯进行加成
(2)当双键与一个稳定碳正离子中间体的基团共 轭时,顺式加成趋势明显增加。
H C C H 3C C 6H5 H DCl CH3COOD D H H 3C C C Cl H C6 H 5 + D H H 3C C C H C 6H 5 Cl
碳碳重键的加成反应

Ph C C H Ph CCl4 1:9
C
e H M e H M H O A c C C l4 C C l4 > 100:1 很 大 83:17
Me Me C C Ph H C C Ph H
H Me Ph H HOAc CCl4 63:37 >10:1
加溴反应的机理:烯烃与溴首先生成π络合物,π络合物转变为σ 络合物,即环状溴鎓离子和Br–的离子对,最后再结合成邻二溴 化物:
C l
最后一个反应说明碘比 氯更容易生成鎓离子:
S b F ,S O ( l ) 5 2 X C H C H I 2 2 o 7 8 C X = C l ,I来自X H C C H 2 2
I
1985年测定了下列化合物的晶体结构,进一步证实了环状溴鎓离 子的存在:
Br Br3
但上面这些例子中底物都是对称的结构。如果底物结构不对称, 溴鎓离子的结构会怎么样?如果有能稳定碳正离子的取代基存在, 会不会以碳正离子作为反应的中间体而不是溴离子?在下面的反 应中,如果碳正离子是反应的中间体,两个原料应得同样的产物:
相 对 反 应 速 率 1 . 0 ( 过 量 烯 烃 ) 1 . 1 5
C H M e
6 3
C C HM e H H
5 0 5 8
C C H M e M eM e
5.1不饱和碳-碳重键的加成反应

Br
Br
(±) Br H Br 唯一产物 H
(±) Br H H Br
H
H
没有发现
一、烯烃的亲电加成——X2和XOH
2.3 与XOH的加成(X2 + H2O → XOH + HX) ——加XOH机理与X2类似,经过环卤鎓离子 ——加XOH遵守马氏规则:亲电试剂中的带 正电荷部分即X加在含氢较多的碳上。
—— reaction activity: HI > HBr > HCl ——烯烃与水加成反应活性低,一般在酸催化下进行
一、烯烃的亲电加成——HX 和H2O
1.3 Regioselectivity Markovnikov’s rule(马氏规则)
—— when an alkene undergoes electrophilic addition, the less highly substituted position is attached by the electrophile (亲电试剂).
一、烯烃的亲电加成——X2和XOH
2.1 Mechanism of Br2 Addition
——经过环溴鎓离子 (cyclic bromonium ion) ——反式(anti-)加成,无重排产物。
一、烯烃的亲电加成——X2和XOH
Addition of Cl2
氯或碘的加成中也可形成环卤鎓离子,但是 氯的立体选择性不高,而碘的反应活性差。
Br
B r 2 ,H 2 O
OH
一、烯烃的亲电加成——羟汞化-脱汞反应
Mechanism of Oxymercuration-Demercuration (溶剂汞化反应)
(1 )H g ( O A c ) 2
碳碳双键的加成原理

碳碳双键的加成原理碳碳双键的加成原理是有机化学中的一个重要概念,它指的是在碳碳双键上进行化学反应时,发生的两个原子团的直接相互作用。
碳碳双键是有机化合物中常见的结构基团,其反应机理的理解对于有机合成和有机反应的研究具有重要意义。
碳碳双键的加成反应是指在碳碳双键上发生的加成反应,其中一个或多个原子或基团与双键上的两个碳原子形成新的化学键。
这种反应可以在碳碳双键上的任何一个碳原子上进行,形成两个不同的反应产物。
碳碳双键的加成反应可以分为电子亲攻型加成反应和亲电型加成反应两种基本类型。
电子亲攻型加成反应是指一个原子或基团通过共用电子对与双键上的一个碳原子形成新的化学键。
在这类反应中,一般会形成一个新的碳碳单键,同时产生一个带正电荷的中间体。
这类反应通常涉及碳原子上的π电子云的重排,常见的例子包括烯烃的氢化反应、卤代烃的消除反应等。
亲电型加成反应是指一个带正电荷的原子或基团与双键上的一个碳原子形成新的化学键。
在这类反应中,通常会形成一个新的碳碳单键,同时产生一个带负电荷的中间体。
这类反应通常涉及碳原子上的π电子云的离域,常见的例子包括烯烃的酸催化加成反应、烯烃的卤代反应等。
碳碳双键的加成原理是通过共用电子对或电荷分布的重新排列实现的。
在共用电子对的重新排列中,双键上的π电子云会重新组合,形成一个新的σ键。
在电荷分布的重新排列中,双键上的π电子云会向带正电荷或带负电荷的原子或基团转移,形成新的化学键。
碳碳双键的加成反应在有机化学中具有广泛的应用。
它可以用于构建碳骨架,形成新的化学键,实现有机物的合成。
通过选择不同的反应条件和反应物,可以控制加成反应的位置和产物的选择性。
此外,加成反应还可以用于合成复杂有机分子,如天然产物、药物和材料等。
碳碳双键的加成原理是有机化学中重要的基础概念。
通过了解和掌握加成反应的原理和机制,可以为有机合成和有机反应的研究提供理论基础和实验指导,推动有机化学领域的发展和应用。
有机化学反应方程式总结加成反应

有机化学反应方程式总结加成反应加成反应是有机化学中常见的一种反应类型,它是指两个或多个有机物通过共用键形成新的化合物。
加成反应可以分为电子亲和加成反应和亲核加成反应两种类型。
在这篇文章中,我们将对常见的加成反应进行总结,并列举相应的反应方程式。
1. 电子亲和加成反应电子亲和加成反应是指一个互补电子结构的分子结合,其中一个分子是亲(电子负)而另一个是亲(电子正)。
常见的电子亲和加成反应包括羰基化合物的加成反应和亲电子烯烃的加成反应。
1.1 羰基化合物的加成反应羰基化合物的加成反应是指亲核试剂与羰基化合物发生反应,通过形成C-O或C-N键来形成新的化合物。
常见的羰基化合物的加成反应有亲核试剂的加成反应、亚硫酸盐的加成反应、氰化物的加成反应等。
例如,醛和酮的羰基化合物与亲核试剂水合氨反应,生成醇或胺的产物。
反应方程式如下:RCHO + NH3 → RCH2OH1.2 亲电子烯烃的加成反应亲电子烯烃的加成反应是指亲核试剂与烯烃发生反应,通过形成C-C键或C-X键来形成新的化合物。
常见的亲电子烯烃的加成反应有氢氯酸的加成反应、水的加成反应、卤素的加成反应等。
例如,溴和丙烯通过加成反应生成2,3-二溴丁烷的产物。
反应方程式如下:CH2=CH-CH3 + Br2 → CH2Br-CHBr-CH32. 亲核加成反应亲核加成反应是指亲核试剂以捐赠电子对的形式与亲电子试剂发生反应。
亲核试剂通常是负离子或带有孤对电子的中性分子。
常见的亲核加成反应包括亲核试剂与烷基卤化物的加成反应、亲核试剂与酰卤的加成反应等。
例如,氨离子与甲基氯化物发生亲核加成反应生成甲胺的产物。
反应方程式如下:CH3Cl + NH3 → CH3NH2总结:加成反应在有机化学中起着重要的作用,它可以构建分子骨架并生成新的化合物。
本文总结了电子亲和加成反应和亲核加成反应的反应方程式,并对其进行了简要解释。
通过理解和掌握这些反应,可以帮助我们在有机化学领域中更好地设计和预测化学反应。
高等有机化学3

O
R
(CH3CH2CH2)2B + CH3CH2CH3
O O
R
B与手性碳相连时, 重排时构型保持不变.
B(O2CR)3 + CH3CH2CH3 32
烯烃的硼氢化反应
烯烃的硼氢化反应的应用 (1)由烯烃制备醇, 特别是由端基烯烃制备一级醇. (与烯烃直接水合的区域选 择性相反). (2)还原烯烃.
炔烃的硼氢化反应
CH2CH2CH3
O OH (CH3CH2CH2)2B
CH2CH2CH3
(CH3CH2CH2)2B-OCH2CH2CH3
(CH3CH2CH2O)3B
H2O
CH3CH2CH2OH + B(OH)3
(CH3CH2CH2)2B CH2CH2CH3
OH O
R
H3CH2CH2C H3CH2CH2C B
O
CH2CH3 H H H
v
1
2
10.4
14
3.4
烯烃: BrCH=CH2, CH2=CHCO2H, CH2=CHCH2N+Me3Br-, Ph2C=CPh2
v <0.04
<0.03
0
0
空阻大, 共轭
(2)分步反应 CH2=CH2 + Br2
NaCl H2O
CH2Br-CH2Cl + CH2Br-CH2Br
CH2=CH2 + NaCl
O-
Br Br
O
H3C
炔烃的硼氢化-氧化:使用位阻大的含有单氢的硼烷试剂
33
34
炔烃的硼氢化反应
炔烃的硼氢化-还原:使用位阻大的含有单氢的硼烷试剂
35
36
有机化学基础知识点整理有机化合物的碳碳键形成反应

有机化学基础知识点整理有机化合物的碳碳键形成反应有机化学基础知识点整理——有机化合物的碳碳键形成反应有机化学是研究碳元素及其化合物的科学,而碳碳键是有机化合物中常见且重要的键。
本文将整理有机化学中常见的碳碳键形成反应,以帮助读者更好地理解和掌握相关知识。
1. 烷烃类化合物的碳碳键形成反应烷烃是由碳和氢组成的最简单的有机化合物,其碳原子上只有单键。
烷烃类化合物的碳碳键形成反应主要包括以下几种:1.1 卤代烷与金属的取代反应卤代烷与金属(如锂、镁等)反应,生成相应的有机金属化合物。
例如,卤代烷与镁反应,生成有机镁化合物。
这些有机金属化合物可以进一步与其他化合物反应,形成新的碳碳键。
1.2 亲电加成反应亲电加成反应是碳碳键形成的常见机制之一。
在亲电加成反应中,亲电试剂攻击不饱和键(如烯烃、炔烃等),形成新的碳碳键。
例如,烯烃与卤代烷反应,生成新的碳碳键。
1.3 自由基取代反应自由基取代反应是碳碳键形成的另一种常见机制。
在自由基取代反应中,自由基试剂攻击卤代烷的碳原子,形成新的碳碳键。
例如,卤代烷与卤代烷反应,生成新的碳碳键。
2. 烯烃类化合物的碳碳键形成反应烯烃是含有双键的有机化合物,其碳原子上存在一个或多个双键。
烯烃类化合物的碳碳键形成反应主要包括以下几种:2.1 电环化反应电环化反应是碳碳键形成的重要途径之一。
在电环化反应中,烯烃会发生环化反应,形成新的碳碳键。
例如,烯烃与亲电试剂反应,发生环化反应,生成新的碳碳键。
2.2 烯烃与亲电试剂的加成反应烯烃与亲电试剂发生加成反应,形成新的碳碳键。
例如,烯烃与卤代烷反应,亲电试剂攻击双键,生成新的碳碳键。
2.3 氢化反应烯烃与氢气反应,发生氢化反应,双键上的两个碳原子与氢原子形成新的碳碳键。
氢化反应常采用催化剂(如铂、钯等)催化。
3. 芳香化合物的碳碳键形成反应芳香化合物是含有芳香环的有机化合物,其碳原子上存在一定的π电子体系。
芳香化合物的碳碳键形成反应主要包括以下几种:3.1 亲电芳烃取代反应亲电试剂攻击芳香环上的碳原子,置换掉原有的基团,形成新的碳碳键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子云密度较大;
R CH CH2 E
R CH CH2 动态:
E
哪个C+稳定。
R CH CH2 空间效应 E
共轭二烯烃的亲电加成反应
C C C C E Nu
X2 Cl2, Br2 X CCC C
C C C C Nu E
CC C C E Nu
C C CC
E
Nu
Ph CH CH CH CH2 H
Ph CH CH CH CH3 Ph CH2 CH CH CH2
H Cl
CH3
D
+
H CH3 Ph D
H
Ph H
Cl
按正碳离子机理进行反应的底物结构是: ① 环状非共轭烯烃 ② 正电荷能够离域在碳骨架的体系 2) 重排产物的生成
2.鎓型离子的机理
C
δ
δ
C
C
Br Br
Br + Br C
Br
C
C
Br
Br C
C Br
反式加成
按鎓型离子机理进行反应的事实:
CH3
Br Br
不饱和碳-碳键的加成反应概述
1、与HX反应(亲电加成,自由基加成)
CC
加成 H
+ H Cl
B 消去
X H
2、水合反应(亲电加成)
CC
H2O, H2SO4 H2SO4
CC H OH
不饱和碳-碳键的加成反应概述
3、加X2反应(亲电加成)
CC
X2
CC XX
4、加XOH反应(亲电加成)
CC
X OH
CC X OH
负离子先进攻、同时进攻……
可能的反应历程
• 负离子先进攻
X--
X+
CHX2C=HCH2C2H2X XCH2CH2--
• 正离子先进攻
X+
X--
CH2=CH2
XCH2CH2+
XCH2CH2X
可能的反应历程
• 正负离子同时进攻
X-- X+
CH2=CH2 • 协同反应
CH2—CH2
XX
XCH2CH2X
当吸电子基团与双键上C原子直接相连时,亲电 加成反应活性明显减小。
试剂:与HX的酸性顺序一致, 给出质子能力越大, 亲电性越强。
HI > HBr > HCl > HF
同理: ICl > IBr > I2
溶剂:
溶剂极性越强,①利于E-Nu的异裂;
三. 亲②电利加于成C+、反翁应型的离定子的向生成。静态哪:个C原子上电
Ph CH CH CH CH3 Cl
Ph CH2 CH CH CH2 Cl
共轭双烯的加成
H+
20烯丙型碳正离子 Cl -
10烯丙型碳正离子
Cl -
单取代双键 动力学控制 Cl
1,2-addition
双取代双键 热力学控制 Cl
1,4-addition
(共轭双烯的亲电加成)
不同的共轭双烯, 是1,2-还是1,4-加成产物 需要作出具体分析
CH3 2C C CH3 2 > CH3 2C CHCH3 > CH3 2C CH2
CH3CH CH2 > CH2 CH2 > BrCH CH2 > CH2 CHCOOH
CH CH2 > CH2 CH2 >
CH CH
芳基的+C效应使正碳离子稳定
CH CH2 H Ph CH CH3
对称二芳基烯烃,芳基使双键稳定, 使亲电加成反应活性降低。
3. 溶剂 ( ) (三).亲电加成反应的定向 (Orientation) ( )
区域选择性 (Regioselective) (四). 共轭二烯烃的亲电加成 ( )
碳碳重键的加成
π电子易于极化, 利于亲电试剂的进攻, 容易发生亲电加成反 应。
CC
Y
叁键可以发生 亲电加成反应, 但更易发生亲 核加成反应。
反应事实
Cl
H3C—C—- Cl2 H3C—C—CO
-OOC—C—CH3
-OOC—C—O
CH3
反应产物中含有内酯。
推理
反应中是正离子先进攻,形成碳正离子, 羧基上的氧原子(带负电荷)就近进攻碳正离 子,得到内酯。如果负离子先进攻,不可能发 生同样反应。
Cl H3C—C—COO-OOC—C—CH3
C
C
CH3
SbF5 SO2
60
.
C
CH3 CH3
H3C Br CC
H3C
CH3 CH3
按鎓型离子机理进行反应的体系结构特点:
1) 底物是简单的烯烃或非共轭链的烯烃, 即C + 不稳定的体系;
2) 亲电试剂的进攻原子是第二周期以上的元素。
炔烃的亲电加成
CH3 C C CH3 HCl 反式加成
H3C C
CH2=CH2
CH2—CH2
XCH2CH2X
反应事实
CXHC2H=2CCHHX22O2,HH20XCH2CH2X + CXHC2H=X2CC2,HHN22aCCll XCH2CH2X + CXHC2H=X2CC2,HHH220OMMe eXCH2CH2X +
推理
反应分两步进行,一步反应不会形成 XCH2CH2OH、XCH2CH2Cl、 XCH2CH2OMe等产物。只会有 CH3CH2OH、CH3CH2Cl、 CH3CH2OMe等产物与XCH2CH2X同时 存在。
试剂
亲电部分E+ 亲核部分Nu-
E
CC
E Nu
C C + Nu
第二步:
E
C C + Nu
E
Nu
CC
反应特点:
1) 产物是大约定量的顺反异构体:
CH3 CH3
+
H2O
H+
CH3
H CH3
E
CC
Nu
H2O
OH HCCHH33 +
COHH3 HCH3
Ph H
H CH3 Cl
H
+ DCl CH3
D Ph H
+
反应事实
• 动力学二级反应 V=k[CH2=CH2][X2]
吸引电子基团存在减慢反应速度。
反应机理
分两步反应,正离子先进攻,中间体是碳 正离子,第一步为控制步骤。
X+
X--
CH2=CH2
XCH2CH2+
XCH2CH2X
一. 亲电加成反应
反应机理:
1. 正碳离子机理
E Nu
E+ Nu-
第一步:
不饱和碳-碳键的加成反应概述
5、硼氢化-氧化反应 (亲电加成)
CC
(1)B2H6 Et2O (2) -OH,H2O2
CC H OH
6、羟汞化-脱汞反应(亲电加成)
CC
(1)Hg(OAc)2 (2)NaBH4
CC H OH
亲电加成反应机理探讨
反应机理
CH2=CH2 + X2
XCH2CH2X
可能有多种反应历程,正离子先进攻、
Cl C
H
CH3
HOOC C C COOH Br2
HOOC
Br
Br
Br
CC
Br
COOH
CC
HOOC
COOH
70%
30%
C2H5 C
Br
C C2H5 H5C2 C Br
Br2 CH3COOH
Br
CC
H5C2
C2H5
Br
C C2H5 ( )
二. 亲电加成反应的活性
底物
a. 双键上的电子云密度越大,越利于亲电试剂 的进攻。