高二数学椭圆双曲线专项练习含答案

合集下载

高二数学椭圆双曲线专项练习含答案

高二数学椭圆双曲线专项练习含答案

高二数学椭圆双曲线专项练习选择题:1、双曲线 x2-ay2= 1 的焦点坐标是()A .( 1 a , 0) , ( -1 a , 0)B. ( 1 a , 0), (-1 a , 0)C.(-a1a1D. (-a1,0),(a 1a, 0),(a, 0)a, 0)a2、设双曲线的焦点在x 轴上 ,两条渐近线为y 1)x ,则该双曲线的离心率为(2A .5B .5/2C.5D.5/43.椭圆x2y21的两个焦点为F1、F2,过 F1作垂直于 x 轴的直线与椭圆订交,一个交点为P,则| PF2|= 4()A. 3 /2B.3C. 4了D. 7/24.过椭圆左焦点 F 且倾斜角为60°的直线交椭圆于A, B 两点,若FA 2 FB ,则椭圆的离心率等于()A 2B2C1D2 3223 x2y2x 2y 25.已知椭圆3m25n2 和双曲线2m23n2= 1 有公共的焦点,那么双曲线的渐近线方程是()A . x=±15 y B. y=±15 x C. x=± 3 y D. y=± 3 x22446.设 F1和 F2为双曲线x2y2= 1 的两个焦点,点P 在双曲线上,且知足∠F1PF2=90°,则△ F1PF2的面积4是() A.1 B .5C. 2D.5 27.已知 F1、 F2是两个定点,点 P 是以 F1和 F2为公共焦点的椭圆和双曲线的一个交点,而且PF1⊥PF2,e1和e 分别是椭圆和双曲线的离心率,则有()2A .e1e22B .e12e224C.e1e2 2 2D.112 e12e228.已知方程x 2+y 2=1 表示焦点在 y 轴上的椭圆,则m 的取值范围是()| m | 2 m1A . m<2B .1<m<2C. m< - 1 或 1<m<2 D . m< - 1 或 1<m<32x 2y 2 x 2 y 29.已知双曲线 a 2-b 2=1和椭圆m 2 + b 2 =1( a>0,m> b>0) 的离心率互为倒数,那么以a 、b 、m 为边长的三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形x 2 y 2 1 上有 n 个不一样的点 :P 1 2 n n1 的10.椭圆3 , P , , P , 椭圆的右焦点为 F. 数列{ |P F|}是公差大于1004等差数列 , 则 n 的最大值是() A . 198 B .199C . 200D .201一、填空题:11.对于曲线 C ∶x 2 y 2 C 不行能表示椭圆;②4 k=1 ,给出下边四个命题:①由线k 1当 1<k < 4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则 k < 1 或 k > 4;④若曲线 C 表示焦点在 x 轴上的椭圆,则 1< k <5此中全部正确命题的序号为_______ ______212.设圆过双曲线x 2 y 2 =1 的一个极点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__916x 2 y 2 1 21 213.双曲线= 1 的两焦点为、,点 P 在双曲线上,若 PF ⊥ PF,则点 P 到 x 轴的距离 ____9 1614.若 A ( 1, 1),又 F 1 是 5x 2+ 9y 2=45 椭圆的左焦点,点P 是椭圆的动点,则 |PA|+|P F 1|的最小值 _______15、已知 B(-5 , 0) , C(5 , 0) 是△ ABC 的两个极点,且 sinB-sinC= 3sinA, 则极点 A 的轨迹方程是5二、解答题:16、设椭圆方程为x 2 y 2 =1,求点 M (0,1)的直线l 交椭圆于点 A 、 B , O 为坐标原点,点P 知足41 OB) ,当 l 绕点 M 旋转时,求动点 P 的轨迹方程 .OP(OA217、已知 F1、 F2为双曲线x 2y21(a>0,b>0)的焦点,过F2作垂直a 2b2于 x 轴的直线交双曲线于点P,且∠ PF1F2= 30°.求双曲线的渐近线方程.图18、已知椭圆x2y21( a b 0) 的长、短轴端点分别为A、B,此后椭圆上一点 M 向 x 轴作垂线,恰巧a2b2经过椭圆的左焦点F1,向量 AB 与 OM 是共线向量.(1)求椭圆的离心率e;( 2)设 Q 是椭圆上随意一点,F1、 F2分别是左、右焦点,求∠F1QF2的取值范围;19、已知中心在原点的双曲线 C 的右焦点为 (2,0),右极点为( 3,0)。

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。

椭圆双曲线练习卷(含答案)(最新整理)

椭圆双曲线练习卷(含答案)(最新整理)
d 2 (x 2)2 y2 x 4x2 4 20 5 x2 4 (x 9 )2 15 , 9 92
由于-6≤ m ≤6, ∴当 x = 9 时,d 取得最小值 15 2
x2
25.椭圆
m2
y2
1m
1与双曲线 x 2
n2
y2
1n
0 有公共焦点 F1, F2 ,P 是两曲线
的一个交点,求 F1PF2 的面积。
解答:由椭圆和双曲线的对称性,不妨设点 P 在第一象限,F1 是左焦点,F2 是右焦点, 由椭圆和双曲线的定义可知
PF1 PF2 2m,
PF1
PF2
2n
解得
PF1 PF2
m n, m n.
PF1 2 PF2 2 2 m2 n2 。
椭圆 x 2 y 2 1m 1与双曲线 x 2 y 2 1n 0 有公共焦点,
|
1 2
为定值.
法二:设 M (x3,
y3 ), N (x4 ,
y4 ) ,则
k1=
y3 x3
, 2x32
4 y32
1,
于是
2x
2 3
+4k
2 1
x
2 3
=1,x
2 3

2
1 4k12
,y
2 3

2
k12 4k12
,同理,x
2 4
b 0) 有相同的焦点 F1, F2
,P 是两条曲线的一个公共点,则 PF1 PF2 的值是 m a 。
二、解答题
19.求经过椭圆 x2+2y2=4 的左焦点且倾斜角为 的直线教椭圆于 A、B 两点,求弦 AB 的
3
长度。
16
长度为:

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。

椭圆双曲线抛物线大题训练题(含答案)

椭圆双曲线抛物线大题训练题(含答案)

椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。

(1)求椭圆C的方程。

(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。

若存在,求出点E的坐标;若不存在,请说明理由。

3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。

椭圆、双曲线抛物线综合练习题及答案.

椭圆、双曲线抛物线综合练习题及答案.

一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。

( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。

( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。

$2b^2/a$ B。

$b^2/a$ C。

$b/a$ D。

$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。

双曲线练习题(含答案)

双曲线练习题(含答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学椭圆双曲线专项练习选择题:1、双曲线x 2-ay 2=1的焦点坐标是( ) A .(a +1, 0) , (-a +1, 0)B .(a -1, 0), (-a -1, 0)C .(-a a 1+, 0),(a a 1+, 0) D .(-a a 1-, 0), (aa 1-, 0) 2、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率为( )A .5B CD .5/43.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .3/2B .3C .4 了D .7/24.过椭圆左焦点F 且倾斜角为60°的直线交椭圆于B A ,两点,若FB FA 2=,则椭圆的离心率等于 ( ) A32 B 22 C 21 D 32 5.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A .x =±y 215 B .y =±x 215 C .x =± y 43 D .y =±x 436.设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( ) A .1 B .25C .2D .5 7.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,则有( ) A .221≥e eB .42221≥+e eC .2221≥+e eD .2112221=+e e 8.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<239.已知双曲线22a x -22b y =1和椭圆22mx +22b y =1(a >0,m>b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形10.椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F. 数列{|P n F|}是公差大于1001的等差数列, 则n 的最大值是( )A .198B .199C .200D .201一、填空题: 11.对于曲线C ∶1422-+-k y k x =1,给出下面四个命题:①由线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25其中所有正确命题的序号为_______ ______ 12.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__ 13.双曲线16922y x -=1的两焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离____ 14.若A (1,1),又F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|P F 1|的最小值_______ 15、已知B(-5,0),C(5,0)是△ABC 的两个顶点,且sinB-sinC=53sinA,则顶点A 的轨迹方程是二、解答题:16、设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.17、已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.18、已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;19、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

(1) 求双曲线C 的方程;(2) 若直图线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点),求k 的取值范围。

20、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.21、设F 1、F 2分别为椭圆C :22228by a x + =1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN之积是与点P 位置无关的定值.试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.参考答案:1、双曲线x 2-ay 2=1的焦点坐标是( C ) A .(a +1, 0) , (-a +1, 0) B .(a -1, 0), (-a -1, 0)C .(-a a 1+, 0),(a a 1+, 0) D .(-a a 1-, 0), (aa 1-, 0) 2、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率e ( B )A .5B CD .5/43.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( D ) A .3/2B .3C .4D .7/24.过椭圆左焦点F 且倾斜角为60°的直线交椭圆于B A ,两点,若FB FA 2=,则椭圆的离心率等于 (D )A32 B 22 C 21 D 32 5.已知椭圆222253n y m x +和双曲线222232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( D )A .x =±y 215 B .y =±x 215 C .x =± y 43 D .y =±x 43解:由双曲线方程判断出公共焦点在x 轴上,∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0),∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅·x ∴代入m 2=8n 2,|m |=22|n |,得y =±43x .6.设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是(A )A .1 B .25C .2D .5 解:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x , 7.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,则有( D ) A .221≥e eB .42221≥+e eC .2221≥+e eD .2112221=+e e 8.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( D )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<23 9.已知双曲线22a x -22b y =1和椭圆22mx +22b y =1(a >0,m>b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( B )A .锐角三角形 B .直角三角形 C .钝角三角形 D .锐角或钝角三角形10.椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F. 数列{|P n F|}是公差大于1001的等差数列, 则n 的最大值是( C )A .198B .199C .200D .201二、填空题:11.对于曲线C ∶1422-+-k y k x =1,给出下面四个命题:①由线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25其中所有正确命题的序号为_______ ______③④; 12.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是______16/3;解:如图8—15所示,设圆心P (x 0,y 0),则|x 0|=2352+=+a c =4,代入16922y x -=1,得y 02=9716⨯,∴|OP |=316220=+y x . 13.双曲线16922y x -=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 .16/5;解:设|PF 1|=m ,|PF 2|=n (m >n ),a =3、b =4、c =5,∴m -n =6 m 2+n 2=4c 2,m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4×25-36=64,mn =32. 又利用等面积法可得:2c ·y =mn ,∴y =16/5.14.若A 点坐标为(1,1),F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|P F 1|的最小值是_______ ___.26-;15、已知B(-5,0),C(5,0)是△ABC 的两个顶点,且sinB-sinC=53sinA,则顶点A 的轨迹方程是221(3)916x y x -=≤- 三、解答题:16、设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.解:设P (x ,y )是所求轨迹上的任一点,①当斜率存在时,直线l 的方程为y =k x +1,A (x 1,y 1),B (x 2,y 2),联立并消元得:(4+k 2)x 2+2k x -3=0,x 1+x 2=-,422k k +y 1+y 2=248k+,由)(21→→→+=OB OA OP 得:(x ,y )=21(x 1+x 2,y 1+y 2),即:⎪⎪⎩⎪⎪⎨⎧+=+=+-=+=22122144242k y y y k k x x x消去k 得:4x 2+y 2-y =0当斜率不存在时,AB 的中点为坐标原点,也适合方程 所以动点P 的轨迹方程为:4x 2+y 2-y = 0.17、已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.图解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则22022b y a c -=1.解得y 0=±a b 2 ∴|PF 2|=ab 2,在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =a b 23,将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|,由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a . ∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=ab故所求双曲线的渐近线方程为y =±2x . 18、已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围; 解:(1)∵a b y c x c F MM 21,),0,(=-=-则,∴ac b k OM 2-=.∵AB OM a bk AB 与,-=是共线向量,∴a bac b -=-2,∴b =c,故22=e .(2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c θ==∠=∴+==当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈.19、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3((1) 求双曲线C 的方程;(2) 若直线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅(其中O 为原点),求k 的取值范围。

相关文档
最新文档