《自动控制原理 》实验讲义

《自动控制原理 》实验讲义
《自动控制原理 》实验讲义

《自动控制原理》

实验讲义

目录

实验一典型环节的时域响应 (2)

实验二典型系统的时域响应和稳定性分析 (12)

实验三线性系统的频域响应分析 (17)

实验四线性系统的校正 (23)

实验五线性系统的根轨迹分析 (26)

安徽大学电气工程与自动化学院

2010年9月

张媛媛编写

实验一典型环节的时域响应

时域分析法是在时间域内研究控制系统在各种典型信号的作用下系统响应(或输出)随时间变化规律的方法。因为它是直接在时间域中对系统进行分析的方法,所以具有直观、准确的优点,并且可以提供系统响应的全部信息。下面就实验中将要遇到的一些概念做以简单介绍:

1、稳态分量和暂态分量:对于任何一个控制系统来说,它的微分方程的解,总是包括两部分:暂态分量和稳态分量。稳态分量反映了系统的稳态指标或误差,而暂态分量则提供了系统在过渡过程中的各项动态性能信息。

2、稳态性能和暂态性能:稳态性能是指稳态误差,通常是在阶跃函数、斜坡函数或加速度函数作用下进行测定或计算的。若时间趋于无穷时,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。稳态误差是对系统控制精度或抗扰动能力的一种度量。暂态性能又称动态性能,指稳定系统在单位阶跃函数作用下,动态过程随时间t的变化规律的指标。其动态性能指标通常为:

? 延迟时间td:指响应曲线第一次达到其终值一半所需的时间。

? 上升时间tr:指响应从终值10%上升到终值90%所需的时间。对于有振荡的系统,亦可定义为响应从第一次上升到终值所需的时间。上升时间是系统响应速度的一种度量,上升时间越短,响应速度越快。

? 峰值时间tp:指响应超过其终值到达第一个峰值所需的时间。

? 调节时间ts:指响应到达并保持在终值±5%或±2%内所需的时间。

? 超调量δ%:指响应的最大偏离量 h (tp) 与终值h (∞) 之差的百分比。

上述五个动态性能指标基本上可以体现系统动态过程的特征。在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通常,用tr或tp评价系统的响应速度;用δ%评价系统的阻尼程度;而ts是反映系统响应振荡衰减的速度和阻尼程度的综合性能指标。应当指出,除简单的一、二阶系统外,要精确确定这些动态性能指标的解析表达式是很困难的。本章通过对典型环节、典型系统的时域特性的实验研究来加深对以上概念的认识和理解。

1.1 典型环节的时域响应

1.1 实验目的

1.熟悉并掌握TD-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

1.2 实验设备

PC机一台,TD-ACC实验系统一套。

1.3 实验原理及内容

实验系统中选用高增益、低漂移的直流运算放大器配以适当的输入网络和反馈网络组成,如图1.0-1所示,运算放大器的正向端接地,负向端输入。

i R 是输入阻抗,f R 是反馈阻抗,O R 是运算放大器内阻,i U 是输入电压,o U 是输出电压,

U

是相加点电压,i I 是输入电流,f I 是反馈电流,Io 是进入运放的电流,K 是运放的开环

增益。

图1.0-1

由图得,o f i I I I +=即

o

f

o

i

i R U R U U R U ∑∑∑

+

-=

-U

又因为∑-=KU U o ,故K

U U o

-=∑ 综合两式,可得:

i

o f i i KR KR R K K R O O O U U U 11U --+-= 由于K 值很大,7

10>K ,o R i R 为几百欧姆。

则上式后两项约为0,

11

≈+K

K 。 所以得到

f i i R R O U U -= ,即i

f i R R -

=U U

O (十分重要的一个结论) 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P)

(1) 方框图:如图1.1-1所示。模拟电路图:如图1.1-2所示。

注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。以后的实验中用到的运放也如此。

图1.1-1 图1.1-2

(2) 传递函数:

i

U

K U

=

(3) 阶跃响应:

()(0)

U t K t

=≥其中

1

K R R

=

(备注:负向端输入,电压反向。)

(4) 理想与实际阶跃响应对照曲线:

①取R0 = 200K;R1 = 100K。

②取R0 = 200K;R1 = 200K。

2.积分环节 (I)

(1) 方框图,如右图1.1-3所示,将Rf用电容代替;模拟电路图,如图1.1-4所示。

图1.1-3 图1.1-4

(2) 传递函数: 0()1()i U s

U s Ts

=

; (3) 阶跃响应:0

1

()(0)U t t t T =≥

其中 0T R C =

分析过程:

TS

S CR R CS i 1

1/1U U 00O -=-=-= 因t T t TS

s s s o o i 1

)(U ,1)(U ,1)(U 2-=-==

阶跃响应则第一个运放输出端的 (4) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。

② 取R0 = 200K ;C = 2uF 。

3.比例积分环节 (PI)

(1) 方框图:如图1.1-5所示。模拟电路图:如图1.1-6所示。

图1.1-5 图1.1-6

利用“辅助单元”

搭接反馈部分

分析过程:

)1

()/1(/1U U 00101O TS

K R CS R R R CS R i +-=+-=+-= 第一个运放输出端的阶跃响应)1()(U t T

K t o +-= (3) 阶跃响应: 01

()(0)U t K t t T

=+

≥ 其中 100/K R R T R C == ;

(4) 理想与实际阶跃响应曲线对照: ① 取R0 = R1 = 200K ;C = 1uF 。

② 取R0=R1=200K ;C=2uF 。

4.惯性环节 (T)

(1) 方框图:如图1.1-7所示。

图1.1-7 图1.1-8

分析过程:

1

111

1U U 10

1011011

O +-=+-=+-=+

-=TS K CS R R R R CS R R R CS R CS

R i 因S s s s o i 1K()(U ,1)(U -==故11+TS )=)

1

T 1K(-+-TS S 第一个运放输出端的阶跃响应)1()(U T

t

o e K t -

--=

(3) 模拟电路图:如图1.1-8所示。 (4) 阶跃响应:0()(1)t T

U t K e

-=- 其中 101/K R R T R C == ;

(5) 理想与实际阶跃响应曲线对照: ① 取R0=R1=200K ;C=1uF 。

② 取R0=R1=200K ;C=2uF 。

5.比例微分环节 (PD)

(1) 方框图:如图1.1-9所示。模拟电路图:如图1.1-10所示。

图1.1-9 图1.1-10

(2) 传递函数:

0()

(1)()

i U s K Ts U s =+ CS

CS R CS R R R R R R i 11

U R U U U ,U U 334412120i 0

11+=+

=-=-+-=

代入得到

4

01i 201i 220i U R U R U U R R R R R R -=++ 所以,)11(U )R 1

(

U R U 4

01i 021*******i 22R R R R R R R R R R R R ++-=++-= 即

)1

1()11(U U 3212102142121021i 2++++-=+++-=CS R CS

R R R R R R R R R R R R R R R 考虑到,

,2313R R R R ≤≤)1(U U 2

121021i 2CS R R R

R R R R +++-≈ 令C T R 2

12

1021R R R R ,R R K +=+=

)1(U U i

2

TS K +-≈ (3) 阶跃响应:0()()U t KT t K δ=+ ,()t δ为单位脉冲函数,这是一个面积为t的脉冲函数,脉冲宽度为零,幅值为无穷大,在实际中是得不到的。

(4) 理想与实际阶跃响应曲线对照:

① 取R0 = R2 = 100K ,R3 = 10K ,C = 1uF ;R1 = 100K 。

U1

U2

②取R0=R2=100K,R3=10K,C=1uF;R1=200K。

6.比例积分微分环节 (PID)

(1)方框图:如图1.1-11所示。模拟电路图:如图

图1.1-11 图1.1-12 分析过程如下:

S

C

S

C

R

R

R

R

R

S

C

S

C

R

R

R

i

2

2

3

5

5

1

2

1

2

i

1

1

1

4

1

1

U

R

U

U

U

KCL

,

1

U

U

+

=

=

-

+

+

-

=

-

=

定律,

根据

代入得到

5

4

i

2

4

i

2

2

i U

R

U

R

U

U

R

R

R

R

R

R

-

=

+

+

所以)()R 1(

U R U 5

04204025042040i 22R R R R R R R R R R R R R R ++-=++-= 整理得

)1

11

(U U 2311102010012i 2+++++-=S C R S C R C R C R S C R R R R 考虑到,123R R R ≤≤上式近似为

)1

(U U 20

211001i 2S C R R R S C R R R ++-≈ 令20

211001p R R

R ,,R K C T C R T R D I ===

S T S

T K D I p ++-≈1U U i 2 (2) 传递函数:

0()1

()P d i i U s K T S U s T S

=++ (3) 阶跃响应:01

()()d p i

U t T t K t T δ=++

,()t δ为单位脉冲函数。 (4) 理想与实际阶跃响应曲线对照:

① 取R2 = R3 = 10K ,R0 = 100K ,C1 = C2 = 1uF ;R1 = 100K 。

② 取R2 = R3 = 10K ,R0 = 100K ,C1 = C2 = 1uF ;R1 = 200K 。

1.4 实验步骤

步骤 1:熟悉并掌握TD-ACC+设备的使用方法:

(1) 虚拟仪器的示波器功能使用:波形的幅度调整,扫描频率的调整;读取信号频率功能的使用。 (2) 利用虚拟示波器观察“信号源单元”的波形:方波、斜坡、抛物线信号;

(3) 调整它们的幅度和频率,再利用虚拟示波器上的频率读取功能,和“信号源单元”上数码管显

示值对比。

(4) 简单观察“运算放大器单元”和“辅助单元”组成。

步骤 2:

(1) 按1.3节中所列举的比例P 环节的模拟电路图将线接好。检查无误后开启设备电源。

(2). 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将信号源单元的两个开关分别设在“方波”档和“200ms”档,调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V ,周期为5~6s 左右。

信号源单元的频率调节方法:数码管实时显示数字,此时产生信号周期=数码管显示值×档位值,例如:数码显示30,档位是×200ms ,此时方波周期是30×200ms =6000ms =6s 。

(3). 将以上的方波信号加至图1.1-2比例环节的输入端Ui ,用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入i U 端和输出0U 端,观测输出端的实际响应曲线0()U t ,记录实验波形及结果。

(4). 改变几组参数,重新观测结果。

步骤 3:

用同样的方法分别搭接积分I 环节、比例积分PI 环节、比例微分PD 环节、惯性T 环节和比例积分微分PID 环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

注意:比例积分PI 、比例微分PD 和比例积分微分PID 三个环节的反馈部分比较复杂,可以利用“辅助单

元”上提供的阻容元件搭接!

步骤 4:最后,做完本次所有实验,整理! (1)关闭实验箱电源! (2)整理实验箱电源导线! (3)盖上箱盖!

(4)关闭计算机系统(“开始” 关机)!严禁直接关闭计算机电源!

1.5 实验报告要求

1. 按实验步骤及实验要求做完实验内容,详细记录各个步骤中的结果:波形或数据!

2. 将结果和实验原理中的对应部分对比,分析实验数据或对比实验波形,再得出自己的实验结论!写在自己的实验报告上!

3. 按时完成并上交实验报告!

实验二典型系统的时域响应和稳定性分析2.1 实验目的

1.研究二阶系统的特征参量(,)

n

ξω对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

2.2 实验设备

PC机一台,TD-ACC+教学实验系统一套。

2.3 实验原理及内容

1.典型的二阶系统稳定性分析

(1)结构框图:如图2-1所示。

图2-1

(2)对应的模拟电路图:如图2-2所示。

图2-2

(3) 理论分析

系统开环传递函数为:

1

1

011

()

(1)(1)

K

T

K

G s

T S T S S T S

==

++

其中1

K

K T

=。

(4) 实验内容

先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的

动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2-2),

011200200

1,0.2,

T s T s K K

R R ===?=;

系统闭环传递函数为:

2

222 ()

25

n

n n

K

W S

S S

S S K

ω

ξωω

==

++++

其中自然振荡角频率:

1

10

10

n

K

T R

ω==;阻尼比:

510

2

n

R

ξ

ω

==。2.典型的三阶系统稳定性分析

(1)结构框图:如图2-3所示。

图2-3

(2)模拟电路图:如图2-4所示。

图2-4

(3)理论分析

系统的开环传函为

:

500

(

)()

(0.11)(0.51)

R

G S H S

S S

S

=

++

(其中500

K R

=),系统的特征方程为:。32

1()()01220200

G S H S S S S K

+=?+++=

(4) 实验内容

实验前由Routh判断得Routh行列式为:

3

2

S

S

S

S

为了保证系统稳定,第一列各值应为正数,所以有

?

?

?

??

得:

01241.7K R K <Ω 系统稳定 1241.7K R K =?=Ω 系统临界稳定 1241.7K R K >?<Ω 系统不稳定

2.4 实验步骤

1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零

场效应管,所以运放具有锁零功能。将开关分别设在“方波”档和“500ms~12s”档,调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V ,周期为10s 左右。

2. 典型二阶系统瞬态性能指标的测试

(1) 按模拟电路图2-2接线,将1中的方波信号接至输入端,取R = 10K 。

(2) 用示波器观察系统响应曲线C(t),测量并记录超调P M 、峰值时间P t 和调节时间S t 。

(4) 分别按 R =20K ;40K ;100K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标P M 、

峰值时间P t 和调节时间S t ,及系统的稳定性。并将测量值和计算值进行比较 (实验前必须按公式计算出)。将实验结果填入表2-1中。表2-2中已填入了一组参考测量值,供参照。

表2-1

表2-2

其中

P M =;P t =

;P t =

;()1P C t =+。

3.典型三阶系统的性能

(1) 按图2-4接线,将1中的方波信号接至输入端,取R = 30K 。 (2) 观察系统的响应曲线,并记录波形。

(3) 减小开环增益 (R = 41.7K ;100K),观察响应曲线,并将实验结果填入表2-3中。表2-4中已填入了一组参考测量值,供参照。

2.5 实验现象分析

1. 典型二阶系统瞬态性能指标实验参考测试值见表2-2

2. 典型三阶系统在不同开环增益下的响应情况实验参考测试值见表2-4

表2-3

表2-4

注意:在做实验前一定要进行对象整定 (详见附录一),否则将会导致理论值和实际测量值相差较大。.

实验三线性系统的频域响应分析

在经典控制理论中,采用时域分析法研究系统的性能,是一种比较准确和直观的分析法,但是,在应用中也常会遇到一些困难。其一,对于高阶系统,其性能指标不易确定;其二,难于研究参数和结构变化对系统性能的影响。而频率响应法是应用频率特性研究自动控制系统的一种经典方法,它弥补了时域分析法的某些不足,且具有以下特点:

? 应用奈奎斯特稳定判据,可以根据系统的开环频率特性研究闭环系统的稳定性,且不必解出特征方程的根。

? 对于二阶系统,频率特性与暂态性能指标之间有确定的对应关系,对于高阶系统,两者也存在近似关系。由于频率特性与系统的参数和结构密切相关,可以用研究频率特性的方法,把系统参数和结构的变化与暂态性能指标联系起来。

? 频率特性具有明确的物理意义,许多元、部件的特性均可用实验方法来确定,这对于难以从分析其物理规律来列写动态方程的元、部件和系统有很大的实际意义。

? 频率响应法不仅适用于线性定常系统的分析研究,也可推广到某些非线性控制系统。

? 当系统在某些频率范围内存在严重的噪声时,使用频率的响应法,可以设计能够满意地抑制这些噪声的系统。

3.1 实验目的

1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

3.2 实验设备

PC机一台,TD-ACC+系列教学实验系统一套。

3.3 实验原理及内容

(一).实验原理

1.频率特性

当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0变至∞ ) 而变化的特性。频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性

系统的正弦稳态响应具有和正弦输入信号的幅值比()j ωΦ和相位差()j ω∠Φ随角频率 (ω由0变到∞) 变化的特性。而幅值比()j ωΦ和相位差()j ω∠Φ恰好是函数()j ωΦ的模和幅角。所以只要把系统的传递函数()S Φ令s=j ω,即可得到()j ωΦ。我们把()j ωΦ称为系统的频率特性或频率传递函数。当ω由0到∞变化时,()j ωΦ随频率ω的变化特性成为幅频特性,()j ω∠Φ随频率ω的变化特性称为相频特性。幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式

(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:

①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。

②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

(2) 极坐标图 (或称为奈奎斯特图) (3) 对数幅相图 (或称为尼柯尔斯图)

本次实验中,采用对数频率特性图来进行频域响应的分析研究。实验中提供了两种实验测试方法:直接测量和间接测量。

直接频率特性的测量:

用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。该方法在时域曲线窗口将信号源和被测系统的响应曲线显示出来,直接测量对象输出与信号源的相位差及幅值衰减情况,就可得到对象的频率特性。

间接频率特性的测量:

用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

4.举例说明间接和直接频率特性测量方法的使用。

(1) 间接频率特性测量方法 ① 对象为积分环节:1/0.1S

由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭

环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

③将积分环节构成单位负反馈,模拟电路构成如图3.1-1所示。

图3.1-1

③理论依据

图3.1-1所示的开环频率特性为:

()()() ()

()()()

B j B j B j

G j

E j E j E j

ωωωω

ωωω==∠

采用对数幅频特性和相频特性表示,则上式表示为:

其中()

G jω为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④测量方式:实验中采用间接方式,只须用两路表笔CH1和CH2来测量图3.1-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

(2) 直接频率特性测量方法

只要环节的时域响应曲线收敛就不用构成闭环系统而采用直接测量法直接测量输入、输出信号的幅值和相位关系,就可得出环节的频率特性。

①实验对象:选择一阶惯性其传函为

1

()

0.11

G S

S

=

+

②结构框图:如图所示

图3.1-2

③ 模拟电路图

图3.1-3

④ 测量方式:实验中选择直接测量方式,用CH1路表笔测输出测量端,通过移动游标,测得输出与信号源的幅值和相位关系,直接得出一阶惯性环节的频率特性。

(二).实验内容

本次实验利用教学实验系统提供的频率特性测试虚拟仪器进行测试,画出对象波特图。

1. 实验对象的结构框图

图3.1-4

2. 模拟电路图

图3.1-5

开环传函为:1

()0.1(0.11)

G s S S =+;

闭环传函:2

2

1100

()0.010.1110100

s S S S S Φ=

=++++ 得转折频率ω=10(rad/s),阻尼比ξ= 0.5。

《化工原理实验》(精馏、吸收 、萃取)

《化工原理实验》(精馏、吸收、萃取)(总分100分) 一选择题(每空2分,共30分) 1 某填料塔用水吸收空气中的氨气,当液体流量和进塔气体的浓度不变时,增大混合气体的流量,此时仍能进行正常操作,则尾气中氨气的浓度____A___ A增大 B 减少 C 不变 D 不确定 2 精馏实验开工时采用哪种回流比? C A 最小回流比 B某个确定的回流比 C 全回流 D 以上各条均可 3在精馏实验中,图解法求理论板时,与下列哪个参数量无关? B A R B F C q D x D 4精馏中引入回流,下降的液相与上升的汽相发生传质使上升的汽相易挥发组分浓度提高,最恰当的说法是 D A 液相中易挥发组分进入汽相 B 汽相中难挥发组分进入液相 C 液相中易挥发组分和难挥发组分同时进入汽相,但其中易挥发组分较多 D 液相中易挥发组分进入汽相和汽相中难挥发组分进入液相的现象同时发生 5当吸收质在液相中的溶解度甚大时,吸收过程主要受 A 控制,此时,总吸收系数 K Y近似等于 D A 气膜 B k X C 气液膜同时 D k Y E 液膜 F K X 6当回流从全回流逐渐减小时,精馏段操作线向平衡线靠近,为达到给定的分离要求,所需的理论板数 A A 逐渐增多 B 逐渐减少 C不变 7全回流时,y-x图上精馏塔的操作线位置 B A 在对角线与平衡线之间 B 与对角线重合 C 在对角线之下 8进行萃取操作时应使: C A分配系数大于1 B分配系数小于1 C选择性系数大于1 D选择性系数小于1 9 一般情况下,稀释剂B组分的分配系数k值: B A大于1 B小于1 C等于1 D难以判断,都有可能 10萃取剂加入量应使原料和萃取剂的和点M位于: C A溶解度曲线之上方区 B溶解度曲线上 C溶解度曲线之下方区 D座标线上11萃取是利用各组分间的 C 差异来分离液体混合液的。 A挥发度 B离散度 C溶解度 D密度。 12通常所讨论的吸收操作中,当吸收剂用量趋于最小用量时,完成一定的分率 D 。 A 回收率趋向最高 B 吸收推动力趋向最大 C 操作最为经济 D 填料层高度趋向无穷大 13为使脱吸操作易于进行,通常可采用 A 或 C 。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验—萃取

液液萃取塔的操作 一、实验目的 (1)了解液液萃取设备的结构和特点; (2)掌握液液萃取塔的操作; (3)掌握传质单元高度的测定方法,并分析外加能量 对液液萃取塔传质单元高度和通量的影响。 二、基本原理 1.液液萃取设备的特点 液液相传质和气液相传质均属于相间传质过程。因此这 两类传质过程具有相似之处,但也有相当差别。在液液系统中,两相间的重度差较小,界面张力也不大,所以从过程进行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分散的两相,分层分离能力也不高。因此,对于气液接触效率较高的设备,用于液液接触就显得效率不高。为了提高液液相传质设备的效率,常常补给能量,如搅拌、脉动、振动等。为使两相逆流和两相分离,需要分层段,以保证有足够的停留时间,让分散的液相凝聚,实现两相的分离。 2.液液萃取塔的操作 (1)分散相的选择在萃取设备中,为了使两相密切接触,其中一相充满设备中的主要空间,并呈连续流动,称为连续相;另一相以液滴的形式,分散在连续相中,称为分散相。哪一相作为分散相对设备的操作性能、传质效果有显著的影响。分散相的选择可通过小试或中试确定,也可根据以下几方面综合考虑: 1)为了增加相际接触面积,一般将流量大的一相作为分 散相;但如果两相的流量相差很大,并且所选用的萃取设备具有较大的轴向混合现象,此时应将流量小的一相作为分散相,以减小轴向混合。 2)应充分考虑界面张力变化对传质面积的影响,对于 dx d >0的系统,即系统的界面张力随溶质浓度增加而增加的系统;当溶质从液滴向连续相传递时,液滴的稳定性较差,容易破碎,而液膜的稳定性较好,液滴不易合并,所以形成的液滴平均直径较小,相际接触表面较大,当溶质从连续相向液滴传递时,情况刚好相反。在设计液液传质设备时,根据系统性质正确选择作为分散相的液体,可在同样条件下获得较大的相际传质表面积,强化传质过程。 3)对于某些萃取设备,如填料塔和筛板塔等,连续相优 先润湿填料或筛板是相当重要的。此时,宜将不易润湿填料或筛板的一相作为分散相。 4)分散相液滴在连续相中的沉降速度,与连续相的粘度

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

热质交换原理与设备知识点考题

填空题 1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1。405*10-5 m2/s。 有空气和氨组成的混合气体,压力为4个标准大气压,温度为273K,则空气向氨的扩散系数是m2/s。 2、有一空气和二氧化碳组成的混合物,压力为3个标准大气压,温度为0℃,则此混合物中空气的质扩散系数为0.547*10-5m2/s。 3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。 4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 2、冷凝器的类型可以分为水冷式,空气冷却式( 或称风冷式) 和蒸发式三种类型. 3、根据冷却介质的不同,冷凝器可以分为、和三类。 (水冷,空冷,水—空气冷却以及靠制冷剂蒸发或其他工艺介质进行冷却的冷凝器。) 3、冷却塔填料的作用是延长冷却水停留时间,增加换热面积,增加换热量.。均匀布水。将进塔的热水尽量细化,增加水和空气的接触面,延长接触时间,增进水汽之间的热值交换 4、冰蓄冷空调可以实现电力负荷的调峰填谷(均衡)。 5、吸附式制冷系统中的脱附—吸附循环装置代替了蒸汽制冷系统中的压缩机装置。 6、刘伊斯关系式文中叙述为h/h mad=Cp刘伊斯关系式文中叙述为即在空气一水系统的热质交换过程中,当空气温度及含湿量在实用范围内变化很小时,换热系数与传质系数之间需要保持一定的量值关系,条件的变化可使这两个系数中的某一个系数增大或减小,从而导致另一系数也相应地发生同样的变化。 7、一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。 8、总热交换是潜热交换和显热交换的总和。 9、吸收式制冷机可以“以热制冷”,其向热源放热Q1,从冷热吸热Q2,消耗热能Q0,则其性能系数COP= Q1-Q2/Qo 。 10、冬季采暖时,蒸发器表面易结霜,融霜的方法有电除霜、四通阀换相除霜、排气温度除霜 1、当流体中存在速度、温度、和浓度的梯度时,就会分别产生动量、热量和质量的传递现象。 2、锅炉设备中的过热器、省煤器属于间壁式式换热器。 4、总压力为0.1MPa的湿空气,干球温度为20℃,湿球温度为10℃,则其相对湿度为。 6、某翅片管换热器,表面对流换热系数位10W/m2·K,翅片表面温度为50℃,表面流体温度为30℃,翅片效率为2.5,则换热器的热流密度为W/m2。 12、一管式逆流空气加热器,平均换热温差为40℃,总换热量位40kW,传热系数为40W/(m2.℃)则换热器面积为25m2。 8、潜热交换是发生热交换的同时伴有质交换(湿交换)空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。 1、流体的粘性、热传导性和质量扩散通称为流体的分子传递性质。 2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的质量扩散;描述这三种分子传递性质的定律分别是牛顿粘性定律、傅里叶定律、菲克定律。

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

微机原理实验报告

西安交通大学实验报告 课程_微机与接口技术第页共页 系别__生物医学工程_________实验日期:年月日 专业班级_____组别_____交报告日期:年月日 姓名__ 学号__报告退发 ( 订正、重做 ) 同组人_教师审批签字 实验一汇编语言程序设计 一、实验目的 1、掌握Lab6000p实验教学系统基本操作; 2、掌握8088/8086汇编语言的基本语法结构; 3、熟悉8088/8086汇编语言程序设计基本方法 二、实验设备 装有emu8086软件的PC机 三、实验内容 1、有一个10字节的数组,其值分别是80H,03H,5AH,FFH,97H,64H,BBH,7FH,0FH,D8H。编程并显示结果: 如果数组是无符号数,求出最大值,并显示; 如果数组是有符号数,求出最大值,并显示。 2、将二进制数500H转换成二-十进制(BCD)码,并显示“500H的BCD是:” 3、将二-十进制码(BCD)7693转换成ASCII码,并显示“BCD码7693的ASCII是:” 4、两个长度均为100的内存块,先将内存块1全部写上88H,再将内存块1的内容移至内存块2。在移动的过程中,显示移动次数1,2 ,3…0AH…64H(16进制-ASCII码并显示子

程序) 5、键盘输入一个小写字母(a~z),转换成大写字母 显示:请输入一个小写字母(a~z): 转换后的大写字母是: 6、实现4字节无符号数加法程序,并显示结果,如99223344H + 99223344H = xxxxxxxxH 四、实验代码及结果 1.1、实验代码: DATA SEGMENT SZ DB 80H,03H,5AH,0FFH,97H,64H,0BBH,7FH,0FH,0D8H;存进数组 SHOW DB 'THE MAX IS: ','$' DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA ;把数据的基地址赋给DS MOV DS,AX MOV DX,OFFSET SHOW ;调用DOS显示字符串 MOV AH,09H INT 21H MOV SI ,OFFSET SZ ;数组的偏移地址赋给SI MOV CX,10 ;存进数组的长度给CX MOV DH,80H ;将数组的第一个数写进DH NEXT: MOV BL,[SI] ;将数组的第一个数写进BL CMP DH,BL ;比较DH和BL中数的到校 JAE NEXT1 ;如果DH中的数大于BL中,将跳转到NEXT1 MOV DH,BL ;如果DH中的数小于BL中,将BL中的数赋给DH NEXT1: INC SI ;偏移地址加1 LOOP NEXT;循环,CX自减一直到0,DH中存数组的最大值 ;接下来的程序是将将最大值DH在屏幕上显示输出 MOV BX,02H NEXT2: MOV CL,4 ROL DH,CL ;将DH循环右移四位

热质交换原理与设备复习题(题库)

简要回答问题 4、解释显热交换、潜热交换和全热交换,并说明他们之间的关系。 显热交换是空气与水之间存在温差时,由导热、对流和辐射作用而引起的换热结果。潜热交换是空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。总热交换是显热交换和潜热交换的代数和。 6、扩散系数是如何定义的?影响扩散系数值大小的因素有哪些? 扩散系数是沿扩散方向,在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,大小主要取决于扩散物质和扩散介质的种类及其温度和压力。 8、如何认识传质中的三种速度,并写出三者之间的关系? Ua Ub:绝对速度 Um :混合物速度 Ua Ub 扩散速度 Ua=Um+(Ua-Um) 绝对速度=主体速度+扩散速度 10、简述“薄膜理论”的基本观点。 当流体靠近物体表面流过,存在着一层附壁的薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假定膜内流体与主流不相混合和扰动,在此条件下,整个传质过程相当于此 薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性的浓度分布,膜内的扩散传质过程具有稳态的特性。 14、简述表面式冷却器处理空气时发生的热质交换过程的特点。 当冷却器表面温度低于被处理空气的干球温度,但高于其露点温度时,则空气只是冷却而不产生凝结水,称干工况。如果低于空气露点,则空气不被冷却,且其中所含水蒸气部分凝结出来,并在冷凝器的肋片管表面形成水膜,称湿工况,此过程中,水膜周围形成饱和空气边界层,被处理与表冷器之间不但发生显热交换还发生质交换和由此引起的潜热交换。 15、请说明空气调节方式中热湿独立处理的优缺点? 对空气的降温和除湿分开处理,除湿不依赖于降温方式实现。节约传统除湿中的缺点,节约能源,减少环境污染。 16、表冷器处理空气的工作特点是什么? 与空气进行热质交换的介质不和空气直接接触,是通过表冷器管道的金属壁面来进行的。空气与水的流动方式主要为逆交叉流。 17、吸附(包括吸收)除湿法和表冷器,除湿处理空气的原理和优缺点是什么? 吸附除湿是利用吸附材料降低空气中的含湿量。吸附除湿既不需要对空气进行冷却也不需要对空气进行压缩,且噪声低并可以得到很低的露点温度。 表冷器缺点:仅为降低空气温度,冷媒温度无需很低,但为了除湿必须较低, pp250的练习题1至9题 计算题 3、某空气冷却式冷凝器,以R134a 为制冷剂,冷凝温度为t s =50℃,蒸发温度t 0=5℃,时的制冷量Q 0=5500W ,压缩机的功耗是1500W ,冷凝器空气进口温度为35℃,出口温度为43℃。 (1)制冷剂与空气的对数平均温差是多少?(2)已知在空气平均温度39℃下,空气的比热为1013J/kg.K ,密度为1.1kg/m 3,所需空气流量是多少? 解:(1)△t ‘=50-35=15℃,△t ’’=50-43=7℃ ' '''''t t In t t m ???-?=θ=10.5℃ (2)冷凝总负荷021W Q Q +==5500+1500=7000W

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

8086软硬件实验报告(微机原理与接口技术上机实验)

实验一实验环境熟悉与简单程序设计 实验目的 (1)掌握DEBUG调试程序的使用方法。 (2)掌握简单程序的设计方法。 实验内容 编程将BH中的数分成高半字节和低半字节两部分,把其中的高半字节放到DH中的低4位(高4位补零),把其中的低半字节放到DL中的低4位(高4位补零)。如: BH=10110010B 则运行程序后 DH=00001011B DL=00000010B 实验准备 (1)熟练掌握所学过的指令。 (2)根据实验内容,要求预先编好程序。 实验步骤 (1)利用DEBUG程序输入、调试程序。 (2)按下表要求不断地修改BH的内容,然后记录下DX的内容。 实验报告 (1)给出程序清单。 (2)详细说明程序调试过程。

程序: CODE SEGMENT START : MOV BH,00111111B MOV AL,BH MOV CL,4 SHR AL,CL MOV DH,AL MOV AL,BH AND AL,00001111B MOV DL,AL MOV CL,0 CODE ENDS END START

实验二简单程序设计 实验目的 (3)掌握DEBUG调试程序的使用方法。 (4)掌握简单程序的设计方法。 实验内容 试编写一个汇编语言程序,要求实现功能:在屏幕上显示:Hello world My name is Li Jianguo 参考程序如下:(有错) data segment out1 db 'Hello world' ax db 'My name is Li Jianguo' data ens code segment assume cs:code;ds:data lea dx,out1 mov ah,2 int 21h mov dl,0ah mov ah,2

2014化工原理实验复习提纲(下册):

第一部分 实验基础知识 1、 如何读取实验数据 2、 如何写实验报告 3、 数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分 实验内容 a log log log log ln ln ln ln ln 1212=--+=?=+=?=截矩直线的斜率=真值,双对数坐标半对数坐标x x y y x b a y ax y bx a y ae y b bx Θ

每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理? 6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个 量?查取进料液的汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际 意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达 稳定?本实验装置能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如 何校正?

微机原理上机实验答案

实验01A 将FFFFH送到AX,BX,CX,DX,SI,DI,BP寄存器 程序如下: CODE SEGMENT ASSUME CS:CODE START PROC FAR STT:PUSH DS SUB AX,AX PUSH AX ;============================== MOV AX,0FFFFH MOV BX,AX MOV CX,AX MOV DX,AX MOV SI,AX MOV DI,AX MOV BP,AX ;============================== RET START ENDP CODE ENDS END STT 实验01B 将FFH送到内存1000H,1001H,1002H,1003H,1004H单元中程序如下: DA TA SEGMENT ORG 1000H H1 DB 5 DUP(?) DA TA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DA TA START PROC FAR STT:PUSH DS SUB AX,AX PUSH AX ;============================== MOV AL,0FFH MOV DI,1000H MOV CX,5 ;循环5次 LP1:MOV [DI],AL ;FF放入1000H-1004H中 INC DI

DEC CX JNZ LP1 ;============================== RET START ENDP CODE ENDS END STT 实验02A 编写一个加法程序,在数据段偏移地址1000H处开始,存放有两个3字节长的数据(高位对应高地址,低位对应低地址),求这两数据(十六进制数)的和,并将结果放在两数据之后,利用DEBUG调试程序,并求解:CCBBAAH+223344H=?CCBBAA+554433H=? 程序如下: DA TA SEGMENT ORG 1000H H1 DB 10 DUP(?) DA TA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DA TA START PROC FAR STT:PUSH DS SUB AX,AX PUSH AX Mov ax,dseg Mov ds,ax ;============================== MOV SI,1000H ;不带最高位进位的全加器 MOV DI,1003H MOV BX,1006H MOV CX,3 CLC AA: MOV AL,[SI] ADC AL,[DI] MOV [BX],AL PUSHF ;保护FR,这里其实没有必要,因为INC不会产生进位 INC SI INC DI INC BX POPF LOOP AA

热质交换原理与设备第三版重点总复习

热质交换原理与设备第三版重点总复习 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

一、填空题(共30分) 1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。 2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。 3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。 3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。 5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。 6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。 7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。 8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量m A与组分A的_浓度 梯度成正比,其表达式为 s m kg dy dC D m A AB A ? - =2 ;当混合物以某一质平均速度V移动 时,该表达式的坐标应取___随整体移动的动坐标__。 9、麦凯尔方程的表达式为: ()dA i i h dQ d md z - =,它表明当空气与水发生直接接触,热 湿交换同时进行时。总换热量的推动力可以近似认为是湿空气的焓差。1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是×10-5 m2/s。 3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。 4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 6刘伊斯关系式是 h/h mad=Cp。 2、冷凝器的类型可以分为水冷式,空气冷却式 ( 或称风冷式 ) 和蒸发式三种类型.

化工原理实验答案汇编

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。

微机原理及应用实验报告

微机原理及应用实验报告标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

微机原理及应用实验报告 班级: 姓名: 学号: 中南大学 机电工程学院精密测控实验室

实验二软件程序设计 1.实验目的: 1、掌握MCS-51单片机指令系统及用汇编语言编程技巧; 2、了解和熟悉用MCS-51单片机仿真开发机调试程序的方法。 2.实验内容: 1、编写排序程序并上机调试通过。 已知8031内部RAM60H~69H单元中,依次存放了 FFH,99H,77H,CCH,33H,DDH,88H,BBH,44H,EEH,它们均为无符号数,编程 将它们按递减次序排序,即最大数放在60H中,最小数放在69H中。 2.、编写多字节加法程序并上机调试通过。 8031内部RAM20H~22H单元中,存放了3字节被加数(低字节在前),在2AH~2CH单元中存放3字节加数(低字节在前),求两数之和,并将结 果存入以20H为起始地址的区域中(低字节在前)。 3.实验设备名称、型号: 4.画出软件程序流程图,写出上机调试通过的汇编语言程序清单: 程序1、编写排序程序并上机调试通过。 已知8031内部RAM60H~69H单元中,依次存放了 FFH,99H,77H,CCH,33H,DDH,88H,BBH,44H,EEH,它们均为无符号数,编程 将它们按递减次序排序,即最大数放在60H中,最小数放在69H中。

解:本设计采用冒泡排序法,使用双重循环,并在内循环中进行比较如果合乎从大到小的顺序则不动,否则两两交换,这样比较下去,比较9次 后,最小的那个数就会沉底,在下一次比较时将减少一次比较次数。如 果一次比较完毕,没有发生交换,说明已经按照从大到小的顺序排列 了。则可以退出循环,结束程序。 程序结构框图和程序代码如下:

热质交换原理与设备整理版

一 当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。 二 单位体积混合物中某成分的质量称为该组分的质量浓度,以符号ρ表示。 组分的实际速度,称为绝对速度。 相对主体流动速度的移动速度,称为扩散速度。 绝对速度=主体流动速度+扩散速度 与热量传递中的导热和对流传热类似,质量传递的方式亦分为分子传质和对流传质。 分子传质又称为分子扩散,简称为扩散,它是由于分子的无规则热运动而形成的物质传递现象。 对流传质是指壁面和运动流体之间,或两个有限互溶的运动流体之间的质量传递。 凭借流体质点的湍流和漩涡来传递物质的现象,称为紊流扩散。 斐克定律: 在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A 和组分B 将发生扩散。其中组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比,这就是扩散基本定律——斐克定律: 斐克定律只适用于由于分子无规则热运动引起的扩散过程,其传递的速度即为扩散速度u A -u (或u A -u m ) 在气体扩散过程中,分子扩散有两种形式,即双向扩散(反方向扩散)和单项扩散(一组分通过另一停滞组分的扩散)。 等分子反方向扩散:设由A 、B 两组分组成的二元混合物中,组分A 、B 进行反方向扩散,若二者扩散的通量相等,则成为等分子反方向扩散。 液体中的稳态扩散过程: 液体中的分子扩散速率远远低于气体中的分子扩散速率,其原因是由于液体分子之间的距离较近,扩散物质A 的分子运动容易与邻近液体B 的分子相碰撞,使本身的扩散速率减慢。 常见有两种情况:即组分A 与组分B 的等分子反方向扩散 及 组分A 通过停滞组分B 的扩散。 固体中的稳态扩散过程: 固体中的扩散,包括气体、液体、 1 当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。 du dy τμ=- 表示两个作直线运动的流体层之间的切应力正比于垂直运动方向的速度变化率。不同的流体有不同的传递动量的能力,这种性质用流体的动力黏性系数μ来反映,其物理意义可以理解为,它表征了单位速度梯度作用的切应力,反映了流体黏性滞性的动力性质,因此称它为“动力”黏性系数。τ,表示单位时间内通过单位面积传递的动量,又称动量通量密度,N/㎡ dt q dy λ=-,q 为热量通量密度,或能量通量密度,表示单位时间内通过单位面积传递的热

微机原理上机实验报告3

201406 微机原理上机实验报告 实验三 班级:物联网1班 姓名:邓笑游 学号: 01210261y11 成绩:

实验3:8086 典型习题的上机求解实验 一、实验目的 1、了解8086指令的特点。 2、学会用Debug和源程序的上机方法求解作业答案的方法。 二、预习要点 1、习题的现场 2、选用工具的方法 三、实验项目 在DOS下利用Debug调试工具和MASM、LINK工具和模版验证求解典型习题的答案。 四、实验设备环境 PC机1台,DOS操作系统,Debug调试工具 五、实验方法 1.现有数据段如下: DAT1 SEGMENT ORG 0020H A1 DW 12H , 23H A2 DB 11H , 21H A3 EQU 1234H A4 EQU $+8 A5 DW 31H , A2 DAT1 ENDS 该数据段占有多少字节的存储空间?A5的偏移地址是何值?A4的值是多少? 2.若48H和93H是无符号数。 SOUR DB 48H,93H MZ DB ?

MOV AL,SOUR CMP AL,SOUR+1 JA K1 MOV AL,SOUR+1 K1: MOV MZ,AL 试问:①(MZ)=_____________ ②48H和93H是有符号数,JA K1指令应改为什么指令? 3.编程序统计某班100个学生英语考试分数高于等于85分以上的人数,结果存入MN字节中。 六、实验要求 将习题1、2、3改造上机求解答案

实验3报告习题1的上机源程序 习题1的汇编、链接

习题1的代码段 已看到答案,该数据段占有10个字节的存储空间?A5的偏移地址是0026H?A4的值是002EH 习题2的源程序

河北工程大学-化工原理-萃取试验

河北工程大学-化工原理-萃取试验

————————————————————————————————作者:————————————————————————————————日期:

课题名称:化工原理试验试验名称:干燥试验 学院:理学院 专业:应用化学班级: 1001 同组人员:一组徐德玉马兴峰吴峰王胜 指导老师:裴振昭 试验日期: 2013年6月22号

一、 实验目的 1、熟悉并掌握洞道干燥仪器的原理及操作步骤。 2、掌握干燥曲线和干燥速率曲线的测定方法。 3、学习物料含水量的测定方法。 4、加深对物料临界含水量Xc 的概念及其影响因素的理解。 5、计算恒速阶段的干燥速率以及降速阶段干燥速率线斜率。 6、学习用误差分析方法对实验结果进行误差估算。 二、 实验原理 物料在恒定干燥条件下的干燥过程分为三个阶段:Ⅰ物料预热阶段;Ⅱ恒速干燥阶段;Ⅲ降速阶段图2。图中AB 段处于预热阶段,空气中部分热量用来加热物料。在随后的第Ⅱ阶段BC ,由于物料表面存在自由水分,物料表面温度等于空气的湿球温度tw ,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且较大。到了第Ⅲ阶段,物料中含水量减少到某一临界含水量时,由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持润湿, 则物料表面将形成干区,干燥速率开始降低,含水量越小,速率越慢,干燥曲线CD 逐渐达到平衡含水量X * 而终止。干燥速率曲线只能通过实验测得,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质、结构以及所含水分的性质的影响。 干燥速率为单位时间内在单位面积上汽化的水分质量,用微分式表示,则为 3 (kg/m ) (1)dw u s Ad τ = 式中:u —— 干燥速率 [kg/m 2s] A —— 干燥表面 [m 2 ] τd —— 相应的干燥时间 [s] dw —— 汽化的水分量 [kg] 因为 dx G dw c -= 所以式(1)可改写为 图1 干燥速率曲线

化工原理实验讲义(版本)

化工原理实验 实验讲义 西南科技大学材料科学与工程学院材料基础中心实验室 二○一三年十二月

目录 实验一、流体力学综合阻力实验A (2) 实验二、固体流态化的流动特性实验 (6) 实验三、除尘性能实验 (11) 实验四、圆球法测固体材料导热系数 (13)

实验一、流体力学综合阻力实验A 实验前介绍 双台综合阻力实验台(图1)为流体力学综合性多用途教学实验装置。为双台型,可供两组学生同时进行实验。利用本装置可进行下列实验: 1.沿程阻力实验 2.局部(阀门)阻力实验 3.孔板流量计流量系数测定实验 4.文丘里流量计流量系数测定实验 实验装置 实验台的结构简图如图1所示。它主要由沿程阻力实验管路1、局部(阀门)阻力实验管路2、孔板流量计实验管路3和文丘里流量计实验管路4等四路实验管所组成,并有水泵及其驱动电机5,塑料储水箱6,有机玻璃回水水箱及计量水箱7(实测流量时用)、压差显示板8(图中未示出)和一些闸门组成的实验水循环系统和压差显示系统等,双台实验装置安装在一个底架9和管道支架10上。 文丘里实验管路为所有其它实验管路共用的出流通道。 图1 实验台结构简图 工业应用 以水泥工业的预热预分解系统为例:对于预热器系统来说,系统的阻力损失直接关系到能耗问题,因此在设计时就要充分考虑到局部阻力和沿程阻力等,所以了解这两种阻力的性质、可能出现的情况、以及如何减少这类损失等知识是很有必要的。对于其他生产工艺来说都是同样的重要。 在生产中经常要对系统的稳定运行进行热工标定,即:测定管道内的流体速度,以检测系统是否正常稳定运行,并依此数据进行调节。这就会用到流量计和毕托管等测定流体速度,

相关文档
最新文档