化工原理第四章-萃取
化工原理下液液萃取

选择适当的萃取剂和被萃取溶液,按照实验要求准备试剂 。
操作步骤
将被萃取溶液和萃取剂按照一定比例加入分液漏斗中,充 分混合后静置分层,记录各层体积及颜色等物理性质。重 复萃取操作直至达到实验要求。
数据记录、整理和分析方法
1 2
数据记录
记录每次萃取操作后的各层体积、颜色等物理性 质,以及实验过程中的温度、搅拌速度等操作参 数。
操作方便
通过调节搅拌速度和澄清 时间,可以方便地控制萃 取过程。
适用范围广
适用于多种液液萃取体系 ,特别适用于处理量大、 停留时间长的体系。
萃取塔
高效传质
萃取塔内设有填料或塔板 ,以增加相际接触面积, 提高传质效率。
连续操作
萃取塔可实现连续进料和 出料,适用于大规模生产 。
易于自动化
萃取塔易于实现自动化控 制,提高生产效率和产品 质量。
萃取过程中,通常将含有目标组分的溶液与萃取剂充分接触,使目标组分在两种液 体之间进行分配。
通过调整萃取条件(如pH值、温度、压力等),可以改变目标组分在两种液体中的 分配系数,从而实现目标组分的分离和纯化。
溶解度与分配定律
溶解度是指在一定温度和压力下,溶质 在溶剂中的最大溶解量。在液液萃取中 ,溶解度决定了目标组分在两种液体中
的分配情况。
分配定律描述了目标组分在两种不混溶 液体之间的分配关系,通常用分配系数 表示。分配系数与目标组分在两种液体 中的溶解度、温度、压力等因素有关。
通过测定分配系数,可以预测目标组分 在液液萃取过程中的分离效果,并为优
化萃取条件提供依据。
萃取剂选择与性质
萃取剂的选择对液液萃取效果至关重 要。理想的萃取剂应具有与目标组分 相似或更高的溶解度,同时与被萃取 物不混溶。
化工原理(下)第4章液液萃取

组成在等腰直角三角形坐标图上的表示方法
二、各组分量之间的关系-杠杆规则
M = MA + MB
M A OB M B OA
MA
M
O 和点
MB
A
差点
B
差点
M A OB M AB M B OA M AB
杠杆规则
A
xS zS
液相 R r kg xA、xS、xB
液相 E e kg yA、yS、yB
用质量比 计算方便
YA K A X A
分 配 系 数
萃余相中溶 质的质量比
萃取相中溶 质的质量比
三、分配曲线
以xA为横坐标,yA为纵坐标,在直角坐标图上, 每一对共轭相可得一个点,将这些点联结起来,得 到曲线称为分配曲线。
溶解度曲线 分配曲线
y yx
P P
x
分配曲线的作法
第4章 液-液萃取
一、以质量分数表示的平衡方程
气液平衡方程 液液平衡方程
萃取相中 溶质分数
yA k A xA yA k A xA
分配 系数 萃余相中 溶质分数
yA kA xA
yB kB xB
二、以质量比表示的平衡方程
若 S与 B完全不互溶
萃取相中不含 B,S 的量不变
萃余相中不含 S ,B 的量不变 液液平衡方程
三角形坐标图
组成的表示方法
液-液萃取过程也是以相际的平衡为极限 三元体系难以用直角坐标系来表示 三元体系的相平衡关系用三角坐标图来表示 在三角形坐标图中常用质量百分率或质量分 率表示混合物的组成 少数采用体积分率或摩尔分率表示的 本教程中均采用质量百分率或质量分率
化工原理下4-1液液萃取(精)

液相E(萃取相) (S + A+微量B)
液相R(萃余相) (B + 微量A、S)
示例:用苯萃取分离醋酸和水混合物
2
二、萃取操作流程
萃取操作流程示意图
3
三、萃取过程的分类
1. 按有无化学反应分类
萃取
物理萃取√
化学萃取
2. 按萃取级数分类
萃取
单级萃取
多级萃取√
多级逆流萃取 多级并流萃取
4
三、萃取过程的分类
3. 按萃取技术分类
4. 按萃取组分数目分类
萃取
单溶剂萃取√
双溶剂萃取 膜萃取 超临界萃取 凝胶萃取 反向胶团萃取
萃取
单组分萃取 √
多组分萃取
5
四、萃取操作的应用
萃取操作应用场合:
①相对挥发度 = 1 物系的分离;
②溶质浓度很低 ,且为难挥发组分物系的分离; ③恒沸物系的分离; ④热敏性物系的分离。
17
由辅助曲线求联结线
E1
R1
E2
R2
两种溶解度曲线的互换
18
三、萃取平衡相图——溶解度曲线
2. 温度对溶解度曲线的影响
~ ~ 温度 T
溶解度
不互溶区
不利于萃 取操作
19
四、萃取过程在平衡相图上的表示
将定量的
纯溶剂 S 加入
y E
到A、B两组
分的原料液 F 中,该萃取过 程可在平衡相
F
ME
xR R
yE
图上表示。
xR
ቤተ መጻሕፍቲ ባይዱ20
五、萃取平衡方程
1.以质量分数表示的平衡方程
气液平衡方程 液液平衡方程
化工原理课后习题答案详解第四章.doc

第四章多组分系统热力学4.1有溶剂A与溶质B形成一定组成的溶液。
此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。
以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于和之间时,溶液的总体积。
求:(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460 ︒C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50 %,求60 ︒C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为求得甲醇的摩尔分数为根据Raoult定律4.580 ︒C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80 ︒C时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult定律4.6在18 ︒C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。
现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ︒C下的体积及其组成。
设空气为理想气体混合物。
其组成体积分数为:,解:显然问题的关键是求出O2和N2的Henry常数。
18 C,气体压力101.352 kPa下,O2和N2的质量摩尔浓度分别为这里假定了溶有气体的水的密度为(无限稀溶液)。
化工原理萃取实验

四. 萃取塔结构特征
⑴需要适度的外加能量; ⑵需要足够大的分层分离空间。
五.萃取塔的操作特点
⑴ 分散相的选择 a.流量大的一相作为分散相; b.不易润湿材质的一相作为分散相;
c.根据界面张力理论 d.粘度大的、含放射性的、成本高的选为分散相
(2)外加能量的大小 有利:a.增加液液传质面积; b.增加液液传质系数。 不利:a.返混增加,传质推动力下降; b.液滴太小,内循环消失,传质系数下降; c.容易发生液泛,通量下降。
Cf)(CR lnCfCRCf
0)
C
f
CE k
(6)C与x的换算
Cf
12 ρ油
2
CR
xR 122 ρ油
CE
xE 122 ρ水
CS 0
八.实验流程图
九.实验步骤
1.先灌满连续相; 2.再开启分散相; 3.将转速分别调至300,500,650,900,1100,1450;
4.取样分析进口苯甲酸浓度xf,随外加能量增加,分 析出口浓度xR,从而计算传质单元数,最终测得传质 单元高度HOR。
液-液萃取塔的操作 及其传质单元高度的测定
<化工原理实验室> <赵培 张秋香>
一.实验目的
⑴掌握萃取塔传质单元高度的测定方法,学会分析 外加能量对液-液萃取塔传质单元高度的影响;
⑵了解引起萃取塔液泛不正常现象出现的原因以及处 理方法;
⑶了解液-液萃取设备的结构和特点。
二.实验原理
萃取是利用液体混合物各组分在溶剂中溶解度的 差异而实现分离的一种方法。溶质A,稀释剂B,溶 剂S,当B、S不互溶时,萃取和吸收一样,均属两相 传质,因此,其传质过程的数学表达式和吸收一样。
化工原理(天大版)---(下册)第四章 萃取

选择性系数与kA、kB有关。 kA越大, kB越小,就越大, 说明:
A、B的分离也就越容易 凡是影响kA、kB的因素都影响(温度、组成) 若 =1,则萃取相和萃余相在脱除溶剂S后将具有相同的 组成,并且等于原料液的组成,故没有分离能力 萃取剂的选择性越高,对A的溶解能力就大,则一定的分离 任务,可越少萃取剂用量,降低回收溶剂操作的能耗,并且 可获得高纯度的产品A 当组分B、S完全不互溶时,则选择性系数趋于无穷大,这 是最理想的情况。
MF FN F ( xF xM ) (4 7) SF F xM y S MS NB
R'
B
(b)
S
EM
M ( xM x R ) 其中yE、xM、xR 由相图读出 y E xR R) 把4-6、4-7代入4-9得: E F ( xF x 其中xF、x' 'R、y''E由相图读出 y E x R R F E
表达了溶质在两个平衡液相中的分配关系。 A值愈大,萃取分离的效果 愈好 A值与联结线的斜率有关 不同的物系具有不同的分配系数 A值 同一物系, A值随温度和组成而变。 一定温度下,仅当溶质组成范围变化不大时, A值才可视为常数 Y KX 式中:Y——萃取相E中溶质A的质量比组成;
X ——萃余相R中溶质A的质量比组成; K——以质量比表示相组成时的分配系数
4.2.2 液-液相平衡关系
3、分配系数和分配曲线
分配曲线:若以xA为横坐标,以yA为纵坐标,则可在x-y直角坐标图上得到
表示互成平衡的一对共轭相组成的点N。将这些点联结起来即可得到曲线 ONP,称为分配曲线
曲线上的P点即为临界混溶点。 分配曲线表达了溶质A在互成平衡的E相与R相中的分配关系。若已知某液相组成, 则可由分配曲线求出其共轭相的组成。 若在分层区内y均大于x,即分配系数 A >1,则分配曲线位于y=x直线的上方,反 之则位于y=x直线的下方。 若随着溶质A组成的变化,联结线倾斜的方向发生改变,则分配曲线将与对角线出 现交点,这种物系称为等溶度体系
电子教案与课件:《化工原理下册》 第4章萃取

第4章 液—液萃取
❖ 萃取的基本流程
第4章 液—液萃取
❖ 下列情况下采用萃取比蒸馏更经济合理
1、组分间相对挥发度接近“1“或者形成恒沸物的混合液 2、溶质在混合液中的含量很低且为难挥发组分 。 3、有热敏性组分的混合液
第4章 液—液萃取
❖ 萃取相 萃余相
1、萃取相(E)含萃取剂(S)多;萃余相(R)含 原溶剂(B)多。
第4章 液—液萃取
4.2.2多级错流接触萃取的计算 若单级萃取所得的萃余相溶质含量较高,
未低于规定值,则需采用多级萃取。
多级错流接触萃取流程
(1)每级都加入新鲜溶剂 (2)前级的萃余相为后级的原料
第4章 液—液萃取
4.2.2多级错流接触萃取的计算
已知条件:相平衡数据、原料液F的量、组成 xF及其各级S的用量,同时规定最终萃余相要 达到的组成为xn
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
1、溶解度曲线和联结线
•实验获取溶解度曲线
•联结线的意义
●★
★ ★●
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
•临界混溶点 •临界混溶点是萃取相 与萃余相的分界点。
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
最小用量
➢ 原料一定,萃取剂S用量越
小,混合点M越靠近F点,但
不能超过溶解度线上的RC点
RC
对应RC点的萃取剂用量为 其最小用量Smin
第4章 液—液萃取
4.2.1.4单级萃取的最大萃取液组成及相应的萃取剂 用量
➢ 从S点作溶解度曲线的切线 与AB边相交,交点是单级 萃取所能得到的最大萃取 液组成。
化工原理-萃取过程的计算

中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中4南.5.林2 塔业式科萃技取大设学备化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
(3) 选择性系数β β=yA/xA/yB/xB=(27/7.2)/(1.5/91.4)=228.5 (4) 每公斤B需要的S量 组分B,S可视为完全不互溶 XF=xF/(1-xF)=0.35/0.65=0.5385 X1=(1-ψA)XF=(1-0.8)0.5385=0.1077 Ys=0 Y1与X1呈平衡关系 Y1=3.4X1=3.4×0.1077=0.3622 S/B=(XF-X1)/Y1=(0.5385-0.1077) /0.3622=1.176
例:4-5
4.4 其他萃取分离技术
中南林业科技大学化工原理
4.5 液—液萃取设备
根据两相的接触方式 :逐级接触式和微分接触式.
4.5.2 混合—澄清槽
优点:传质效率高,操作方便,运转稳定可靠,结构 简单,可处理含有悬浮固体的物料. 缺点:水平排列的设备占地面积大,每级内都装有搅 拌装置,液体在基建流动需泵输送,能量消耗大,设 备费及操作费都较高
BXF +SYs =SY1+BX1 B(XF-X1)=S(Y1-Ys)
中南林业科技大学化工原理
例:在25℃下以水(S)为萃取剂从醋酸(A)与氯仿(B)的混合液中 提取醋酸,已知原料液流量为1000kg/h,其中醋酸的质量百分 率为35%,其余为氯仿。用水量为800kg/h,操作温度下,E相 和R相以质量百分率表示的平衡数据列于本题附表中。 求:(1)经单级萃取后E相和R相的组成及流量;(2)若将E相和R 相中的溶剂完全脱除,再求萃取液及萃余液的组成和流量;(3) 操作条件下的选择性系数β;(4)若组分B,S可视为完全不互溶, 且操作条件下以质量比表示相组成的分配系数K=3.4,要求原 料液中溶质A的80%进入萃取相,则每公斤稀释剂B需消耗多 少公斤萃取剂S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.3 分配系数和分配曲线
(2)分配曲线
由相律可知,温度、压力一定时,三组分体系两液相呈平
衡时,自由度为1。故只要已知任一平衡液相中的任一组分的组
成,则其它组分的组成及其共轭相的组成就为确定值。换言之,
温度、压力一定时,溶质在两平衡液相间的平衡关系可表示为
yA f (xA)
(4-5)
x A ——萃取相E中组分A的质量分数;
y A——萃余相R中组分A的质量分数。
此即分配曲线的数学表达式。
4.1.3 分配系数和分配曲线
图4-7 有一对组分部分互溶时的分配曲线
4.1.3 分配系数和分配曲线
如图4-7所示,若以为 x横A 坐标,以 y为A 纵坐标,则可
在 x ~ y直角坐标图上得到表示这一对共轭相组成的点N。每一对 共轭相可得一个点,将这些点联结起来即可得到曲线ONP,称为 分配曲线。曲线上的P点即为临界混溶点。分配曲线表达了溶质A 在互成平衡的E相与R相中的分配关系。若已知某液相组成,则可 由分配曲线求出其共轭相的组成。 若在分层区内y均大于x,即分
图4-6 辅助曲线
4.1.2 三角形相图
辅助曲线与溶解度曲线的交点为P,显然通过P点的联结线无 限短,即该点所代表的平衡液相无共轭相,相当于该系统的临界 状态,故称点P为临界混溶点。P点将溶解度曲线分为两部分:靠 原溶剂B一侧为萃余相部分,靠溶剂S一侧为萃取相部分。由于联 结线通常都有一定的斜率,因而临界混溶点一般并不在溶解度曲 线的顶点。临界混溶点由实验测得,但仅当已知的联结线很短即 共轭相接近临界混溶点时,才可用外延辅助曲线的方法确定临界 混溶点。
成的增大而降低。一定温度下,仅当溶质组成范围变化不大时,kA 值才 可视为常数。对于萃取剂S与原溶剂B互不相溶的物系,溶质在两液相中
的分配关系与吸收中的类似,即
Y KX
(4-4)
式中
Y ——萃取相E中溶质A的质量比组成;
X ——萃余相R中溶质A的质量比组成; K ——相组成以质量比表示时的分配系数。
称为共轭相,联结两共轭液相相点的直线称为联 结线,如图4-3中的RiEi线(i=0,1,2,……n)。显然 萃取操作只能在两相区内进行。
图4-3 溶解度曲线
4.1.2 三角形相图
溶解度曲线可通过下述实验方法得到:在一定温度下, 将组分B与组分S以适当比例相混合,使其总组成位于 两相区,设为M,则达平衡后必然得到两个互不相溶的 液中层加,入其适相量点 的为溶质R0、A并E0充。分在混恒合温,下使,之向达此到二新元的混平合衡液,
点,R点与E点称为差点。
如图4-2
4.1 液液相平衡
和点M与差点E、R之间的关系可用杠杆规则描述,即
(I)几何关系:和点M与差点E、R共线。即:和点在两差点的连线
上;一个差点在另一差点与和点连线的延长线上。
(ii)数量关系:和点与差点ra的r e量b m、r、e与线段长 a 、b 之间的关
系符合杠杆原理,即,
4.2.1 萃取操作过程及术语
由上可知,萃取操作并未有得到纯净的组分,而 是新的混合液:萃取相E和萃余相R。为了得到产品A, 并回收溶剂以供循环使用,尚需对这两相分别进行分 离。通常采用蒸馏或蒸发的方法,有时也可采用结晶 等其它方法。脱除溶剂后的萃取相和萃余相分别称为 萃取液和萃余液,以 E 和 R 表示。对于一种液体混合 物,究竟是采用蒸馏还是萃取加以分离,主要取决于 技术上的可行性和经济上的合理性。
(4-3a) (4-3b)
y A 、yB ——萃取相E中组分A、B的质量分数;
x A 、xB ——萃余相R中组分A、B的质量分数。
4.1.3 分配系数和分配曲线
分配系数 kA表达了溶质在两个平衡液相中的分配关系。显然,kA 值
愈大,萃取分离的效果愈好。kA 值与联结线的斜率有关。同一物系,其
值随温度和组成而变。如第Ⅰ类物系,一般kA 值随温度的升高或溶质组
配系数 kA >1,则分配曲线位于y x直线的上方,反之则位
于 y x直线的下方。若随着溶质A组成的变化,联结线倾斜的
方向发生改变,则分配曲线将与对角线出现交点,这种物系称为 等溶度体系。
4.1.3 分配系数和分配曲线
图4-8 有两对组分部分互溶时的分配曲线
采用同样方法可作出有两对组分部分互溶时的分配曲线, 如图4-8所示。
4.1.2 三角形相图
辅助曲线的作法如图4-6所示,通过已知
点R1、R2、… 分别作BS边的平行线,再通过相 应联结线的另一端点E1、E2分别作AB边的平行线, 各线分别相交于点F、G、… ,联接这些交点所得 的平滑曲线即为辅助曲线。利用辅助曲线可求任何 已知平衡液相的共轭相。如图4-6所示,设R为已 知平衡液相,自点R作BS边的平行线交辅助曲线于 点J,自点J作AB边的平行线,交溶解度曲线于点E, 则点E即为R的共轭相点。
第四章 萃 取
4.1 液液相平衡 4.2 萃取操作的原理
4.1 液液相平衡
4.1.1 三角形坐标图及杠杆规则 (1)三角形坐标图
三角形坐标图通常有等边三角形坐标图、等腰直角三角形坐标图和非等腰直角三角 形坐标图,如图4-1所示,其中以等腰直角三角形坐标图最为常用。类物系的溶解度曲线和联结线
图4-5 连结线斜率的变化
4.1.2 三角形相图
(2)辅助曲线和临界混溶点
一定温度下,测定体系的溶解度 曲线时,实验测出的联结线的条数 (即共轭相的对数)总是有限的, 此时为了得到任何已知平衡液相的 共轭相的数据,常借助辅助曲线 (亦称共轭曲线) 。
图4-6 辅助曲线
4.1.4 温度对相平衡的影响
通常物系的温度升高,溶质在溶剂中的 溶解度增大,反之减小。因此,温度明 显地影响溶解度曲线的形状、联结线的 斜率和两相区面积,从而也影响分配曲 线的形状。图4-9所示为温度对第类物 系溶解度曲线和联结线的影响。显然, 温度升高,分层区面积减小,不利于萃 取分离的进行。
4.2.1 萃取操作过程及术语
一般地,在下列情况下采用萃取方法更为有利。
(1) 原料液中各组分间的沸点非常接近,也即组分间的相对挥发 度接近于1,若采用蒸馏方法很不经济; (2) 料液在蒸馏时形成恒沸物,用普通蒸馏方法不能达到所需的 纯度; (3) 原料液中需分离的组分含量很低且为难挥发组分,若采用蒸 馏方法须将大量稀释剂汽化,能耗较大; (4) 原料液中需分离的组分是热敏性物质,蒸馏时易于分解、聚 合或发生其它变化。
以R为支点可得m、e之间的关系 ma ea b
(4-1)
r
以M为支点可得 、e 之间的关系 ra eb
(4-2)
以E为支点可得 r 、m之间的关系 r a b mb
(4-3)
根据杠杆规则,若已知两个差点,则可确定和点;若已知和点和一 个差点,则可确定另一个差点。
4.1.2 三角形相图
根据萃取操作中各组分的互溶性,可将三元物系分为以下三种情况,即 ①溶质A可完全溶于B及S,但B与S不互溶; ②溶质A可完全溶于B及S,但B与S部分互溶; ③溶质A可完全溶于B,但A与S及B与S部分互溶。 习惯上,将①、②两种情况的物系称为第Ⅰ类物系,而将③情况的物系 称为第Ⅱ类物系。工业上常见的第Ⅰ类物系有丙酮(A)–水(B)–甲基异丁基 酮(S)、醋酸(A)–水(B)–苯(S)及丙酮(A)–氯仿(B)–水(S)等;第Ⅱ类物系有 甲基环己烷(A)–正庚烷(B)–苯胺(S)、苯乙烯(A)–乙苯(B)–二甘醇(S)等。在 萃取操作中,第Ⅰ类物系较为常见,以下主要讨论这类物系的相平衡关系。
4.2.1 萃取操作过程及术语
图4-4 萃取操作示意图
4.2.1 萃取操作过程及术语
萃取操作的基本过程如图4-4所示。将一定量萃取 剂加入原料液中,然后加以搅拌使原料液与萃取剂充 分混合,溶质通过相界面由原料液向萃取剂中扩散, 所以萃取操作与精馏、吸收等过程一样,也属于两相 间的传质过程。搅拌停止后,两液相因密度不同而分 层:一层以溶剂S为主,并溶有较多的溶质,称为萃取 相,以E表示;另一层以原溶剂(稀释剂)B为主,且 含有未被萃取完的溶质,称为萃余相,以R表示。若溶 剂S和B为部分互溶,则萃取相中还含有少量的B,萃余 相中亦含有少量的S。
一般而言,在萃取过程中很少遇到恒摩尔流的简化情况,故在三角形坐标图中混 合物的组成常用质量分数表示。 习惯上,在三角形坐标图中,AB边以A的质量分 率作为标度,BS边以B的质量分率作为标度,SA边以S的质量分率作为标度。 三 角形坐标图的每个顶点分别代表一个纯组分,即顶点A表示纯溶质A,顶点B表示 纯原溶剂(稀释剂)B,顶点S表示纯萃取剂S。 三角形坐标图三条边上的任一点 代表一个二元混合物系,第三组分的组成为零。例如AB边上的E点,表示由A、B 组成的二元混合物系,由图可读得:A的组成为0.40,则B的组成为(1.0–0.40) = 0.60,S的组成为零。
4.1 液液相平衡
三角形坐标图内任一点代表一个三元混合物系。例如M点即表示由A、B、S三个 组分组成的混合物系。其组成可按下法确定:过物系点M分别作对边的平行线ED、 HG、KF,则由点E、G、K可直接读得A、B、S的组成分别为: =0.4、=0.3、 =0.3;也可由点D、H、F读得A、B、S的组成。在诸三角形坐标图中,等腰直角 三角形坐标图可直接在普通直角坐标纸上进行标绘,且读数较为方便,故目前多 采用等腰直角三角形坐标图。在实际应用时,一般首先由两直角边的标度读得A、 S的组成及,再根据归一化条件求得。
4.1 液液相平衡
(2)杠杆规则
如图4-2所示,将质量为 rkg、组成为
xS 的混合物系R与质量为e kg、组成为y
x
A
A、、y
x
B
B、、y
S,
的混合物系E相混合,得到一个质量为m kg、组成
为 z A 、z B、z S 的新混合物系M,其在三角形坐标图
中分别以点R、E和M表示。M点称为R点与E点的和