自动控制原理实验报告

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自动控制原理实验报告五个实验

自动控制原理实验报告五个实验

自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

自控原理实验报告答案

自控原理实验报告答案

一、实验目的1. 理解自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其传递函数。

3. 熟悉控制系统时域性能指标的测量方法。

4. 通过实验验证理论知识,提高实际操作能力。

二、实验原理自动控制原理是研究如何利用自动控制装置对生产过程进行自动控制的一门学科。

本实验通过模拟典型环节的电路和数学模型,研究系统的动态特性和稳态特性。

三、实验内容1. 比例环节(P)的模拟实验。

2. 积分环节(I)的模拟实验。

3. 比例积分环节(PI)的模拟实验。

4. 比例微分环节(PD)的模拟实验。

5. 比例积分微分环节(PID)的模拟实验。

四、实验步骤1. 按照实验指导书的要求,搭建实验电路。

2. 调整实验参数,记录系统响应曲线。

3. 分析系统响应曲线,计算系统性能指标。

4. 根据实验结果,验证理论知识。

五、实验数据记录1. 比例环节(P)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差2. 积分环节(I)实验数据记录:- 系统阶跃响应曲线- 稳态误差3. 比例积分环节(PI)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差4. 比例微分环节(PD)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差5. 比例积分微分环节(PID)实验数据记录: - 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差六、实验结果与分析1. 比例环节(P)实验结果:- 系统响应速度快,但稳态误差较大。

- 调节时间短,超调量较小。

2. 积分环节(I)实验结果:- 系统稳态误差为零,但响应速度较慢。

3. 比例积分环节(PI)实验结果:- 系统稳态误差较小,调节时间适中,超调量适中。

4. 比例微分环节(PD)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。

5. 比例积分微分环节(PID)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。

七、实验结论1. 通过实验,验证了典型环节的数学模型及其传递函数。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告

自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。

实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。

利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。

时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。

自控实验报告实验总结

自控实验报告实验总结

一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。

为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。

本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。

二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。

三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。

通过改变电路参数,分析了参数对系统性能的影响。

2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。

3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。

4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。

四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。

在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。

在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。

在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。

2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。

在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。

3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。

通过调整校正装置的参数,可以使系统达到期望的性能指标。

4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告实验一典型系统的时域响应和稳定性分析 (3)一、实验目的 (3)二、实验原理及内容 (3)三、实验现象分析 (5)方法一:matlab程序 (5)方法二:multism仿真 (13)方法三:simulink仿真 (18)实验二线性系统的根轨迹分析 (22)一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (22)二、根据根轨迹图分析系统的闭环稳定性 (23)三、如何通过改造根轨迹来改善系统的品质? (26)实验三线性系统的频率响应分析 (34)一、绘制图1. 图3系统的奈氏图和伯德图 (34)二、分别根据奈氏图和伯德图分析系统的稳定性 (38)三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导出系统的传递函数 (39)实验四、磁盘驱动器的读取控制 (42)一、实验原理 (42)二、实验内容及步骤 (42)(一)系统的阶跃响应 (42)(二) 系统动态响应、稳态误差以及扰动能力讨论 (46)1、动态响应 (47)2、稳态误差和扰动能力 (49)(三)引入速度传感器 (52)1. 未加速度传感器时系统性能分析 (52)2、加入速度传感器后的系统性能分析 (60)五、实验总结 (65)实验一 典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益01T K K 。

(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图2),s 1T 0=, s T 2.01=,R 200K 1= R 200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ 2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。

(4) 实验内容从Routh 判据出发,为了保证系统稳定,K 和R 如何取值,可使系统稳定,系统临界稳定,系统不稳定由Routh 判断得,Routh 行列式为:S 31 20S 212 20K S 1(-5K/3)+20 0 S 020K 0为了保证系统稳定,第一列各值应为正数,所以有 ⎪⎩⎪⎨⎧>>+-0K 20020K 35得: 0 < K < 12 ⇒ R > 41.7K Ω 系统稳定;K = 12 ⇒ R = 41.7K Ω 系统临界稳定; K > 12 ⇒ R < 41.7K Ω 系统不稳定;三、实验现象分析方法一:matlab 程序1.典型二阶系统瞬态性能指标表1其中21e Mp ζ-ζπ-=,2np 1t ζ-ωπ=,n s 4t ζω=,21p e 1)t (C ζ-ζπ-+=matlab 程序:R=10; K=200/R;wn=10*sqrt(10/R); r=5/(2*wn); num=5*K; den=[1 5 5*K]; sys=tf(num,den);Mp=exp(-r*pi./sqrt(1-r*r)); tp=pi./(wn*sqrt(1-r*r)); ts=4./(r*wn); Ctp=1+Mp; t=0:0.01:3; step(sys,t);gridxlabel('t');ylabel('C(t)');title('step response'); hold offR=10R=50R=160R=2002.典型三阶系统在不同开环增益下的响应情况表2开环增益K=4程序:K1=20;R1=500/K1;num1=[K1];den1=[0.05 0.6 1 K1];roots(den1)[z1, p1, k1]=tf2zp(num1,den1)t=0:0.01:10;step(num1,den1,t)xlabel('t');ylabel('C(t)');title('step response'); grid hold offz1 = Empty matrix: 0-by-1 p1 =-10.8356 + 0.0000i-0.5822 + 2.6541i-0.5822 - 2.6541ik1 = 80开环增益K=12z1 = Empty matrix: 0-by-1 p1 = -12.0000 + 0.0000i0.0000 + 4.4721i0.0000 - 4.4721ik1 =240开环增益K=20z1 =Empty matrix: 0-by-1 p1 =-12.8628 + 0.0000i 0.4314 + 5.5598i 0.4314 - 5.5598i k1 = 400分析:在二阶系统时t s 只给出了一个公式,而在课本上,可以知道欠阻尼,临界阻尼以及过 阻尼三种情况下t s 的计算方法不相同,在欠阻尼的情况下,若取误差带为5%,则计算时常取ns t ζω3.5=,若取误差带为2%,则计算时常取ns t ζω.44=;在临界阻尼的情况下,若取误差带为5%,则计算时常取14.75T t s = ))1(1(21--=ζζωn T ;在过阻尼的情况下,也有固定的公式。

二阶R=10(取2%)由图可知,C(tp)=1.444v,Tp=325.502ms,Ts=1.623s,并可计算得到Mp=44.4% R=50由图可知,C(tp)=1.120v,Tp=848.297ms,Ts=1.305s,并可计算得到Mp=12%R=160由图可知,Ts=2.339sR=200由图可知,Ts=3.178s三阶multisimR=30R=41.7R=100方法三:simulink仿真二阶:K=4K=1.25三阶:R=30,K=16.7时R=41.7,K=12时R=100,K=5时实验二 线性系统的根轨迹分析一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹已知图3系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R500K =),绘制系统的根轨迹 程序:clc;clear;den=conv([0.1 1 0],[0.5 1]);%den=conv([1 10 0],[1 2]); G=tf(1,den);rlocus(G);sgrid;axis([-15 5 -10 10])二、根据根轨迹图分析系统的闭环稳定性分析方法为通过rlocfind在作好的根轨迹图上,确定被选的闭环极点位置的增益值k和此时闭环极点r(向量)的值,然后再绘制该点的闭环传递函数的阶跃响应图程序:clc;clear;den=conv([0.1 1 0],[0.5 1]);G=tf(1,den);rlocus(G);sgrid;axis([-15 5 -10 10])[k,r]=rlocfind(G);G1=tf(k,den);sys=feedback(G1,1);figurestep(sys)图形:1)全部闭环极点在虚轴左侧时,闭环系统稳定2)当闭环极点存在虚轴右侧时,闭环系统不稳定3)闭环极点在虚轴上时,阶跃响应为等幅振荡,闭环系统临界稳定分析:当改变根轨迹增益K时,所有闭环极点均在左边平面,则稳定。

当在右半平面存在极点时,系统不稳定发散。

当在虚轴上时临界稳定,等幅振荡。

三、如何通过改造根轨迹来改善系统的品质?使用根轨迹设计工具SISO在系统中附加开环负实数零点或负实部的共轭零点,可使系统根轨迹向s左半平面方向弯曲。

程序:den=conv([0.1 1 0],[0.5 1]);G=tf(1,den);rltool(G)A添加实数零点s=-20B添加实数零点s=-15C添加实数零点s=-10D添加实数零点s=-5E添加共轭零点-20+20iF添加共轭零点-10+10iG添加共轭零点-5+10i结论:当开环极点位置不变,在系统中附加开环负实数零点或开环负共轭零点时,可使系统根轨迹向s左半平面方向弯曲,而且这种影响将随开环零点接近坐标原点的程度而加强。

实验三线性系统的频率响应分析一、绘制图1. 图3系统的奈氏图和伯德图图1图3程序:clc;clear;r1=10;num1=200/r1;r2=50;num2=200/r2;r3=160;num3=200/r3;r4=200;num4=200/r4;den=conv([1 0],[0.2 1]);roots(den)figure(1)subplot(2,2,1);nyquist (num1,den);title('r=10');axis([-2,1,-2,2]); subplot(2,2,2);nyquist (num2,den);title('r=50');axis([-2,1,-2,2]); subplot(2,2,3);nyquist (num3,den);title('r=160');axis([-2,1,-2,2]); subplot(2,2,4);nyquist (num4,den);title('r=200');axis([-2,1,-2,2]); figure(2)subplot(2,2,1);bode(num1,den);title('r=10')subplot(2,2,2);bode(num2,den);title('r=50')subplot(2,2,3);bode(num3,den);title('r=160')subplot(2,2,4);bode(num4,den);title('r=200')图1系统的波特图程序:r1=30;num1=500/r1;r2=41.7;num2=500/r2;r3=100;num3=500/r3;den=conv(conv([1 0],[0.1 1]),[0.5 1]);roots(den)figure(1)subplot(3,1,1);nyquist (num1,den);title('r=30');axis([-2,1,-2,2]); subplot(3,1,2);nyquist (num2,den);title('r=41.7');axis([-2,1,-2,2]); subplot(3,1,3);nyquist (num3,den);title('r=100');axis([-2,1,-2,2]); figure(2)subplot(3,1,1);bode(num1,den);title('r=30')subplot(3,1,2);bode(num2,den);title('r=41.7')subplot(3,1,3);bode(num3,den);title('r=100')图3系统的奈氏图图3系统的开环极点二、分别根据奈氏图和伯德图分析系统的稳定性根据奈氏图和伯德图分析图1系统的稳定性:由图1系统的奈氏图可以看到,不论哪种R,从0到正无穷的奈氏曲线都没有穿越-1点,而求开环极点可知,P=0,所以Z=0,由Nyquist判据可知图1系统稳定。

相关文档
最新文档