北京市度中考数学总复习 题型突破(四)阅读理解型问题PPT课件

合集下载

中考数学《阅读理解型问题》复习课件

中考数学《阅读理解型问题》复习课件

A O B O B b A a b a a b
(2)如图③,点A、B都在原点的左边,
A O B O B b a A b a a b
(3)如图④,点A、B在原点的两边,
A O B O A a B b a b a b
综上,数轴上A、B两点之间的距离
线l上平移时,正方形EFGH也随之平移,在平移时正方形 EFGH的形状、大小没有改变.
请回答下列问题:
(1)当中心O2在直线l上平移到两个正方形只有一个公共点 时,中心距O1O2 =______________ . (2)随着中心O2在直线l上的平移,两个正方形的公共点的
个数还有哪些变化?并求出相对应的中心距的值或取值范围 (不必写出计算过程 ).
初三总复习专题一
阅读理解型问题
阅读理解型问题是指通过阅
读材料,理解材料中所提供新的方法 或新的知识,并灵活运用这些新方法 或新知识,去分析、解决类似的或相 关的问题. zxxk
例1:阅读下面的材料:
解方程x4-6x2+5=0 . 这是一个一元四次方程,根据该方程的特点, 它的通常解法是:设x2=y,那么x4=y2, 于是原方程变为y2-6y+5=0 , 解这个方程,得y1=1,y2=5. 当y=1时,x2=1,解得x=±1; 当y=5时,x2=5,解得x=± 5 . ∴原方程的解为: x1=1,x2=-1,x3= ,x4=5 - . 5
实质:一种解一元四次方程的方法——换元法.
请用上面的方法解答下列问题:
解方程(x2-x)2-4(x2-x)-12=0. 解:设x2-x=y,
原方程化为y2-4y-12=0,
解得y1=6,y2=-2. 当y=6时,x2-x-6=0,
解得 x1=3,x2=-2; 当y=-2时,x2-x+2=0,

阅读理解题 课件(33张PPT)2024年中考人教版数学复习

阅读理解题 课件(33张PPT)2024年中考人教版数学复习
13
阅读理解题
4.(2023·常德)沈括的《梦溪笔谈》是中国古代科技
史上的杰作,其中收录了计算圆弧长度的“会圆术”,

如图2, 是以点 为圆心, 长为半径的圆弧,点

是弦 的中点,点 在 上, ⊥ .“会圆术”

给出 长 的近似值 的计算公式: = +
类型一 新定义(概念)型阅读理解题
阅读理解题
中考中新定义(概念)型阅读理解题常以两种形式出现:一是新
定义运算类题,这类问题往往会给出解题示例,解题时只需要读懂新
定义运算的规则和方法,并仿照示例进行求解即可;二是新定义一个
几何图形,并运用定义的几何图形的一些性质去解决新问题,解这类
题的关键是理解新几何图形的内涵及外延,并能够迁移运用.
断,填“存在”或“不存在”).
图1
提示:因为两个正方形是相似图形,所以当它们的周长比为 1 ∶ 2 时,面
积比必定为 1 ∶ 4 ,因此不存在“加倍”正方形.
8
类型二 新知识型阅读理解题
阅读理解题
新知识型阅读理解题是指给出一些新知识(如中点坐标公式,两
点间的距离公式,点到直线的距离公式,三角函数的和差公式,圆、
10 − .根据题意,得 10 − = 2 × 3 × 2 .解得 1 = 5 + 13 ,
2 = 5 − 13 .所以 10 − 1 = 5 − 13 , 10 − 2 = 5 + 13 ,即“加倍”
矩形的长为 5 + 13 ,宽为 5 − 13 .
7
阅读理解题
不存在
(2)边长为 的正方形存在“加倍”正方形吗?________(请直接作出判

2023年中考数学专项突破之阅读理解课件(共39张PPT)

2023年中考数学专项突破之阅读理解课件(共39张PPT)
解析:依题意,得w2=yx-5y-20=(-x+26)x-5(-x+26)-20=-x2+31x-150,

规定第二年产品售价不超过第一年的售价,∴x≤16.
返回主目录
∵另外受产能限制,销售量无法超过12万件,∴-x+26≤12,解得x≥14,
∴w2=-x2+31x-150(14≤x≤16).
∵-1<0,对称轴为x=_x001A_31_x001B_2_x001B_,∴x=14时,w2取最小值,
题关键.
返回主目录
当堂检测2
将油箱注满k升油后,轿车行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千米)
k
之间是反比例函数关系s= (k是常数,k≠0).已知某轿车油箱注满油后,以每千米平均耗
a
油0.1升的速度行驶,可行驶500千米.
(1)求该轿车可行驶的总路程s与平均耗油量a之间的函数解析式(关系式);
时该文具店获利最大?
解:设购入甲种笔记本n本,则6n+4(60-n)≤296,解得n≤28.
返回主目录
答:购入甲种笔记本最多28本,此时获利最大.
(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种
笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每
笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
解:设甲种笔记本的进价是m元,乙种笔记本的进价是(10-m)元.
由题意得4(m+2)+3(10-m+1)=47,解得m=6.
答:甲种笔记本的进价是6元,乙种笔记本的进价是4元.
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本

中考数学总复习 题型突破(04)阅读理解型问题数学课件

中考数学总复习 题型突破(04)阅读理解型问题数学课件
(精确到 0.01).
第八页,共四十五页。
类型1
关于定义新函数的阅读理解(lǐjiě)题(针对2018 24题,2017 26题,2016 26题,2015 26题)
1
2.[2018·昌平二模] 有这样一个问题:探究函数 y= x3-2x 的图象与性质.小彤根据学习函数的经验,对函数
6
1
y= x3-2x 的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:
6
x

-4
y

-
-3.5
-3
-2
-1
0
7
3
2
8
3
11
6
0
(3)方程 x3-2x=-2 实数根的个数为
3个
1
6
8
3
-
48
1
-
2
11
-
6
8
3
3
3.5
4

m
7
48
8
3

;
(4)观察图象,写出该函数的一条性质 图象关于原点中心对称;x>2 时,y 随 x 的增大而增大等(答案不唯一) ;
1
1
1
(5)在第(2)问的平面直角坐标系中画出直线 y= x,根据图象写出方程 x3-2x= x 的一个正数根约为 3.87

(1,1)
;
②小文分析函数 y=
2
2-2
最高点的坐标为
(0,0)
的表达式发现:当 x<1 时,该函数的最大值为 0,则该函数图象在直线 x=1 左侧的
.
第十三页,共四十五页。
类型1
关于(guānyú)定义新函数的阅读理解题(针对2018 24题,2017 26题,2016 26题,2015 26题)

数学阅读理解型问题(专题4)

数学阅读理解型问题(专题4)

阅读理解型问题(专题4)——合情推理【考点透视】阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理, 【典型例题】例1.已知正数a 和b ,有下列命题:(1)a +b =2,ab ≤1; (2)a +b =3,ab ≤23; (3)a +b =6,ab ≤3.根据以上三个命题所提供的规律猜想:若a +b =9,ab ≤ .(2000年北京市东城区中考试题)分析:观察(1)、(2)、(3)中的数字规律:不等号右边的数都是等号右边的数的21,由此可以作出猜想.解:ab ≤29. 说明:本题要求直接通过不完全归纳,总结规律,猜想结论. 例2.例2.(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.①322322=+( );②833833=+( ); ③15441544=+( ); ④24552455=+( ). (2)你判断完以上各题之后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围: .图4—1AD nB CD 1 D 2D 3E 1 E 2 E 3 E n 图4—2(3)请用数学知识说明你所写式子的正确性.(2000年江苏省常州市中考试题)分析:判断式子①、②、③、④内在的规律时可以发现:①中3=2 2-1;②中8=3 2-1;③中15=4 2-1;④中24=5 2-1.这样就可以统一用含n 的式子表示出来.解:(1)①√;②√;③√;④√.(2)12-+n n n =n 12-n n.其中n 为大于1的自然数. (3)12-+n n n =123-n n =122-⋅n n n =n 12-n n . 说明:本题虽然需要说明所写式子的正确性,但本题主要考查学生的合情推理能力,即用含有n 的式子将规律表示出来.例3.下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .按此规律推断,S 和n 的关系式是 .(2000年山西省中考试题)分析:由正三角形每条边的花盆数n 与花盆的总数S 之间的关系,可以看出S 总是比n 的3倍少3. 解:S =3n -3.说明:本题的答案不唯一,其它形式也可以. 例4. 如图4—2所示,在△ABC 中,BC =a ,若D 1、E 1分别是AB 、AC 的中点,则D 1E 1=a 21; 若D 2、E 2分别是D 1B 、E 1C 的中点,则D 2E 2=a a a 43)2(21=+; 若D 3、E 3分别是D 2B 、E 2C 的中点,则D 3E 3=a a a 87)43(21=+;…………若D n 、E n 分别是D 1-n B 、E 1-n C 的中点,则D n E n = (n ≥1,且n 为整数).(2001年山东省济南市中考试题)分析:因为12121=;2221243-=;3321287-=;……,所以D n E n 也可以用含数字2的式子来表示.解:D n E n =11212---n n (n ≥1,且n 为整数).说明:寻找数字规律,应把已给的数写成有规律的一组数.n =2,S =3 n =3,S =6 n =4,S =9例5.问题:你能很快算出19952吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方.任意一个个位数为5的自然数可写成10•n+5,即求(10•n+5)2的值(n为自然数).你试分析n=1,n=2,n=3,…,这些简单情况,从中探索规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1(1+1)+25,252=625可写成100×2(2+1)+25,352=1225可写成100×3(3+1)+25,452=2025可写成100×4(4+1)+25,……752=5625可写成,852=7225可写成,……(2)从第(1)的结果,归纳、猜想得:(10n+5)2=.(3)根据上面的归纳、猜想,请算出:19952=.(1999年福建省三明市中考试题)分析:在对这些式子进行规律探索的时候,要找出哪些数是不变的,哪些数是随式子的序号变化而逐步变化的.然后就可以用n来表示这些逐步变化的数.解:(1)100×7(7+1)+25;100×8(8+1)+25.(2)100n2+100n+25100n(n+1)+25.(3) 100×199(199+1)+25=3980025.说明:本题不仅要求归纳猜想和探索规律,而且要运用归纳猜想得出的结论解决问题.例6.如图4—3,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P',使得OP·OP'=r 2 ,这种把点P变为点P'的变换叫做反演变换,点P与点P'叫做互为反演点.图4—3 图4—4(1) 如图4—4,⊙O 内外各一点A 和B ,它们的反演点分别为A '和B '.求证:∠A '=∠B ; (2) 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线l 与⊙O 相交,那么它关于⊙O 的反演图形是( ). (A)一个圆 (B)一条直线 (C)一条线段 (D)两条射线 ②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .(2001年江苏省南京市中考试题)分析:求解本题首先要理解“反演变换”的意义,并理解圆内的点的反演点在圆外,圆上的点的反演点在圆上,圆外的点的反演点在圆内;其次,第(2)题的第①小题,由于直线与圆的交点的反演点是它本身,因此只要在该直线的圆内、圆外部分各取几点,画出反演点,便可推测该直线的反演图形.另外,第(2)题的第②小题,由于直线与圆的切点的反演点是它本身,因此只要在该直线上取几点,画出反演点,便可推测该直线的反演图形.(1)证明:∵A 、B 的反演点分别是A’、B’,∴OA ·OA’=r 2,OB ·OB’=r 2. ∴OA ·OA’=OB ·OB’,即''OA OBOB OA . ∵∠O =∠O ,∴△ABO ∽△B’A’O . ∴∠A’=∠B .. (2)解:①A .②圆;内切.说明:本题主要考查学生通过观察、分析,从特殊的点的研究归纳、推测图形形状的合情推理能力.另外,还可以研究下列问题:如果直线⊙O’与⊙O 相切,那么它关于⊙O 的反演图形是什么?该图形与圆O 的位置关系是是什么?例7.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图4—5中的三角形被一个圆所覆盖,图4—6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为1cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (3)长为2cm ,宽为1cm 的矩形被两个半径为r 的圆所覆盖,r 的最小值是 cm , 这两个圆的圆心距是 cm.(2003年江苏省南京市中考试题)图4—5图4—6分析:本题首先要理解图形被圆所覆盖的定义,其次,可以推测正方形、等边三角形被一个半径为r 的圆所覆盖,r 取最小值时,显然这个圆就是正方形、等边三角形的外接圆.而第(3)题可把长为2cm ,宽为1cm 的矩形分割成两个边长为1 cm 的正方形,根据第(1)题,不难得到结论.解:(1)22; (2)33; (3)22,1. 说明:本题的合情推理是建立在空间想象的基础上,并把问题转化为多边形的外接圆问题.另外,还可以研究下列问题:1.如果边长为1cm ,有一个锐角是60°的菱形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?2.如果上低和腰长都是1cm ,下低长是2cm 的梯形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?【习题4】1.观察下列各式,你会发现什么规律?3×5=15,而15=42-1; 5×7=35,而35=62-1;11×13=143,而143=122-1; ……请你猜想到的规律用只含一个字母的式子表示出来: .(2000年山东省济南市中考试题)2.观察下列顺序排列的等式:9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为 .(2003年北京市中考试题)3.观察下列各式: 1×3=12+2×1, 2×4=22+2×2, 3×5=32+2×3,……请你将猜想到的规律用自然数n (n ≥1)表示出来: .(2003年福建省福州市中考试题)4.观察以下等式:1×2=31×1×2×3;1×2+2×3=31×2×3×4;1×2+2×3+3×4=31×3×4×5;1×2+2×3+3×4+4×5=31×4×5×6;……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n ×(n +1)= .(2001年山东省威海市中考试题)5.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …… …… 28 26根据上面的排列规律,则2000应在( ).A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列(2001年湖北省荆州市中考试题)6.细心观察图形4—7,认真分析各式,然后解答问题. 21,21)1(12==+S ; 22,31)2(22==+S ; 23,41)3(32==+S ; ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 1 2+S 2 2+S 3 2+…+S 10 2的值.(2003年山东省烟台市中考试题)7.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点, 如图4—8,|AB |=|OB |=|b |=|a -b |; 当A 、B 两点都不在原点时,①如图4—9,当点A 、B 都在原点右边时,则 |AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图4—10,当点A 、B 都在原点左边时,则O (A ) B图4—8O B A图4—9O A B 图4—10O A 2 A 4A 1 …1 A 5S 3 S 5 S 2S 1 S 41 1 1A 6 A 3…图4—7|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4—11,当点A 、B 在原点的两边时,则 |AB |=|OA |+|OB |=|a |+|b |=a +(-b )=|a -b |. 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.(2)回答相应问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 . ②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 . ③当代数式|x +1|+|x -2|取最小值时,x 相应的取值范围是 .(2002年江苏省南京市中考试题)8.如图4—12,在正方形ABCD 中,E 是AD 的中点,F 是 BA 延长线上一点, AF =21AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图4—13,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置; 如图4—14,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置; 如图4—15,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置.象这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. (3)回答下列问题:①在图4—12中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到 △ADF 的位置?答: . ②指出图4—12中线段BE 与DF 之间的关系.答: .(2000年江苏省南京市中考试题)9.在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生研究这一问题时,发现了如下事实.EDCBADCBAEDCA图4—13 图4—14 图4—15FABC D E图4—12OA B a 图4—11图4—16E A B C O D图4—17 B C A D EOB C A 图4—18 D E O C A 图4—19 D F EO①当11121+==AC AE 时,有21232+==AD AO (如图4-16); ②当21131+==AC AE 时,有22242+==AD AO (如图4-17); ③当31141+==AC AE 时,有32252+==AD AO (如图4-18). 在图4-19中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 是正整数).(2001年河北省中考试题)10.某厂要制造能装250毫升(1毫升=1厘米3 )饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部的厚度都是0.02厘米,顶部厚度是底部厚度的3倍,这是为了防止“呯”的一声打开易拉罐时把整个顶盖撕下来.设一个底面半径是x 厘米的易拉罐的用铝量是y 厘米3. (1)利用用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度)求y 与x 之间的函数关系式;(2②根据上表推测:要使用铝量y (厘米)的值尽可能小,底面半径x (厘米)的值所在范围是( ).A .1.6≤x ≤2.4B .2.4<x <3.2C .3.2≤x ≤4(2002年江苏省南京市中考试题)11.如图20,正方形ABCD 和正方形EFGH 对角线BD 、FH 都在直线l 上.O 1、O 2 分别是正方形的中心,O 1D =2,O 2F =1,线段O 1O 2的长叫做两个正方形的中心距....当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2 = . (2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).(2003年江苏省徐州市中考试题)图4—20【习题4】1.解:(2n -1)(2n +1)=(2n )2-1. 2.解:9(n -1)+n =10(n -1)+1. 3.解: n (n +2)=n 2 +2n .4.解:1×2+2×3+3×4+4×5+…+n ×(n +1)=31×n ×(n +1)×(n +2).5.解:选C .6.解:(1)2,11)(2nS n n n =+=+. (2)∵OA 1=1,OA 2=2,OA 3=3,…, ∴OA 10=10.(3)S 1 2+S 2 2+S 3 2+…+S 10 2=2)21(+2)22(+2)23(+…+2)210(=41(1+2+3+…+10) =455. 7.解:(1)3,3,4;(2)∣x +1∣,-3或1; (3)-1≤x ≤2. 8.解:(1)证明:在正方形ABCD 中, ∵ AB=AD ,AD ⊥AB , ∴∠BAE =∠DAF =90°.∵AE =21AD ,AF =21AB , ∴AE =AF .∴△ABE ≌△ADF .(3)①答:△ABE 绕点A 逆时针旋转90度到△ADF 的位置. ②答:BE =DF ,且BE ⊥DF .9.解:根据题意,可以猜想:当n AC AE +=11时,有n AD AO +=22成立. 证明:过D 作DF ∥BE 交AC 于点F .∵D 是BC 的中点, ∴F 是EC 的中点. ∵n AC AE +=11, ∴n EC AE 1=. ∴nEF AE 2=.∴nAF AE +=22. ∵DF ∥BE , ∴nAF AE AD AO +==22. 10.解:(1)解:222250202.0302.0xx x x y ππππ⋅+⋅⋅+⋅=·0.02 =xx 102522+π. (2)B .11.解:.(1)2,1. (2)3.(3)①当1<O 1O 2<3时,两个正方形有2个公共点;②当O 1O 2=1时,两个正方形有无数个公共点;③当O 1O 2 <1,或O 1O 2>3时,两个正方形没有公共点.。

中考数学专题复习课件 阅读理解问题(共64张PPT)

中考数学专题复习课件 阅读理解问题(共64张PPT)

(3)已知:在“等对角四边形”ABCD中,∠DAB=60°, ∠ABC=90°,Aபைடு நூலகம்=5,AD=4.求对角线AC的长.
【分析】(1)利用“等对角四边形”这个概念来计算. (2)①利用等边对等角和等角对等边来证明; ②举例画图. (3)①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E, 利用勾股定理求解; ②当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC 于点F,求线段利用勾股定理求解.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

一、新概念学习型 新概念学习型是指在题目中先构建一个新数学概念(或
定义),然后再根据新概念提出要解决的相关问题.主要目的 是考查学生的自学能力和对新知识的理解与运用能力.解决这 类问题:要求学生准确理解题目中所构建的新概念,将学习 的新概念和已有的知识相结合,并进行运用.
∴ c b .即ac2=2ab-ac+bc. b ac
∵点M,N是线段AB的勾股分割点, ∴c2=a2+b2. ∴(a-b)2=(b-a)c. 又∵b-a≠c, ∴a=b. 在△DGH和△CAF中, ∠D=∠C,DG=CA,∠DGH=∠CAF,
∴△DGH≌△CAF. ∴S△DGH =S△CAF. ∵c2=a2+b2, ∴S△DMN =S△ACM +S△ENB. ∵S△DMN =S△DGH +S四边形MNHG, S△ACM =S△CAF +S△AMF, ∴S四边形MNHG =S△AMF +S△BEN.
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾 股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求 证:点M,N是线段FG的勾股分割点;

中考数学考前热点冲刺指导《第40讲 阅读理解题》课件

中考数学考前热点冲刺指导《第40讲 阅读理解题》课件
因为①f(a,b)=(-a,b),h(a,b)=(-a,-b), 所以 f[h(5,-3)]=f[-5,3]=(5,3).故应选 B.
12/9/2021
第五页,共二十二页。
第40讲┃ 阅读(yuèdú)理 解题
4.在平面直角坐标系中,一次函数的图象与坐标轴围成的 三角形,叫做此一次函数的坐标三角形.例如图 40-2 中的一次 函数的图象与 x,y 轴分别交于点 A,B,则△OAB 为此函数的坐 标三角形.
②本题答案不唯一,下列仅供参考. 当 0<x<1 时,y 随 x 增大而减小;当 x>1 时,y 随 x 增大而增
大;当
x=1
时函数
y=x+1x(x>0)的最小值为
2.
第40讲┃
12/9/2021
阅读(yuèdú)理解

第十二页,共二十二页。
③y=x+1x
=( x)2+
12 x
=( x)2+
1x2-2 x·
12/9/2021
第九页,共二十二页。
第40讲┃ 阅读(yuèdú)理解

①填写下表,画出函数的图象:
x
…1 4
1 3
1 2
1234

y…

图 40-3 ②观察图象,写出该函数的一个性质;
12/9/2021
第十页,共二十二页。
第40讲┃ 阅读(yuèdú)理解

③在求二次函数 y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观
ห้องสมุดไป่ตู้
∴函数 y=-34x+3 的坐标三角形的三条边长分别为 3,4,5.
(2)直线 y=-34x+b 与 x 轴的交点坐标为43b,0,与 y 轴交点坐标为(0,b),

中考数学专题复习精品课件专题4 阅读理解问题(54张)

中考数学专题复习精品课件专题4 阅读理解问题(54张)
2019/4/15
19
【例2】(2010·北京中考)阅读下列材料: 小贝遇到一个有趣的问题:在矩形ABCD 中,AD=8 cm,AB=6 cm.现有一动点P按 下列方式在矩形内运动:它从A点出发,
沿着与AB边夹角为45°的方向作直线运
动,每次碰到矩形的一边,就会改变运
动方向,沿着与这条边夹角为45°的方向作直线运动,并且
2019/4/15
6
【例1】(2010·益阳中考)我们把对称中心重合,四边分别平 行的两个正方形之间的部分叫“方形环”,易知方形环四周
的宽度相等.一条直线l与方形环的边线有四个交点M、M′、
N′、N.小明在探究线段MM′与N′N的数量关系时,从点M′、
N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐
2019/4/15
3
①认真阅读材料是解决阅读理解问题的前提,通过阅读,
把握大意,留心知识情景、数据、关键词句; ②全面分析,理解材料的基本原理,理解其内容、思想 和方法,获取有价值的数学信息; ③对相关信息进行归纳,加工提炼,进而构建方程、不 等式、函数或几何模型来解答.
2019/4/15
4
2019/4/15
设水流的函数关系式为y=ax2,
由题意可知,B点坐标(-1,-1),代入y=ax2,
得-1=a(-1)2,∴a=-1.
即抛物线水流对应的二次函数关系式为y=-x2.
2019/4/15
33
5.(2010·遵义模拟)在学习扇形的面积公式时,同学们推得
nR 2 并通过比较扇形面积公式与弧长公式 l nR , S扇形 , 360 180 1 得出扇形面积的另一种计算方法 S扇形 lR. 2 接着老师让同学们解决两个问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档