无缝克隆,同源重组克隆

合集下载

一种重组酶复合物及体外同源重组无缝克隆的方法[发明专利]

一种重组酶复合物及体外同源重组无缝克隆的方法[发明专利]

(10)申请公布号(43)申请公布日 (21)申请号 201510507988.5(22)申请日 2015.08.18C12N 9/12(2006.01)C12N 15/63(2006.01)(71)申请人翌圣生物科技(上海)有限公司地址201203 上海市浦东新区张江高新科技园区蔡伦路781号504室(72)发明人方筱玉(74)专利代理机构上海旭诚知识产权代理有限公司 31220代理人郑立(54)发明名称一种重组酶复合物及体外同源重组无缝克隆的方法(57)摘要本发明涉及一种重组酶复合物,该重组酶复合物来源于大肠杆菌Rec 同源重组酶,包括RecE、RecT 和Gamma 蛋白。

本发明还提供了一种体外同源重组无缝克隆的方法,只需将两端带有载体末端序列的PCR 产物和线性化克隆载体按一定比例混合,在该重组酶复合物的催化下,高效率地将目标DNA 定向克隆到任意载体的任意位点,克隆阳性率可高达95%以上。

本发明的方法尤其适用于DNA 大片段的克隆。

本发明弥补了传统克隆方法操作繁琐、费时、失败率较高等缺陷,可以为DNA体外重组提供一种快速便捷高效的克隆方法,在细胞学基础研究和工农业生产、医药保健等方面奠定重要的基础。

(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书6页序列表3页 附图1页CN 105087517 A 2015.11.25C N 105087517A1.一种重组酶复合物,其特征在于,所述重组酶复合物来源于大肠杆菌Rec同源重组酶,所述重组酶复合物包括RecE、RecT和Gamma蛋白。

2.根据权利要求1所述的重组酶复合物,其特征在于,所述RecE、所述RecT和所述Gamma蛋白三种重组酶的含量比例为1:1:2。

3.一种体外同源重组无缝克隆的方法,其特征在于,所述方法包括以下步骤:步骤一:制备线性化克隆载体;步骤二:制备插入片段PCR产物,通过在引物5’端引入所述线性化克隆载体的末端同源序列,使得所述插入片段PCR产物的5’端和3’端分别带有和所述线性化克隆载体两个末端对应的完全一致的序列;步骤三:将步骤一中获得的所述线性化克隆载体与步骤二中获得的所述插入片段PCR 产物在如权利要求1或2所述的重组酶复合物的作用下进行重组反应;步骤四:将步骤三中获得的重组产物进行细胞转化,获得转化细胞;步骤五:将步骤四中获得的所述转化细胞进行培养,并进行克隆鉴定,得到经所述克隆鉴定为阳性的重组DNA分子。

同源序列法克隆目的基因

同源序列法克隆目的基因

同源序列法克隆目的基因同源序列法克隆是一种常用的基因克隆方法,用于获取目的基因的DNA序列。

同源序列法克隆的主要步骤如下:1. 设计引物:根据已知目的基因的序列,设计一对引物(即寡核苷酸片段),其中一个引物具有与目的基因的5'端相互匹配,另一个引物具有与目的基因的3'端相互匹配。

2. 提取模板DNA:从包含目的基因的源生物体中提取总DNA 或特定组织/细胞中的DNA作为模板。

3. 聚合酶链反应(PCR)扩增:在PCR反应中使用设计的引物和模板DNA来扩增目的基因的DNA序列。

PCR反应通过多次循环加热和冷却来产生大量DNA复制品。

4. 凝胶电泳分析:将PCR扩增产物与分子量标记物一起加载在琼脂糖凝胶上进行电泳分离。

通过比较扩增产物与标记物在凝胶上的迁移距离,可以确定是否成功扩增了目的基因。

5. 纯化目的基因:从PCR反应中纯化目的基因的扩增产物,一般使用凝胶切片、DNA纯化试剂盒等方法。

6. 连接到载体:将纯化的目的基因DNA与适当的载体(如质粒)进行连接。

这通常涉及酶切目的基因和载体的DNA,然后使用连接酶将它们连接在一起。

7. 转化宿主细胞:将连接的DNA导入宿主细胞中,使其自行复制和表达。

这可以通过转染、电穿孔或热激冲等方法实现。

8. 筛选与鉴定:通过对转化后的细胞进行选择性培养或检测,筛选出带有目的基因的克隆。

常用的筛选方法包括抗生素筛选、荧光筛选等。

9. 验证目的基因:最终需要验证克隆中是否成功插入了目的基因。

这可以通过DNA测序、限制性酶切、PCR等方法来进行。

同源序列法克隆是一种有效的基因克隆技术,可用于获得感兴趣的基因序列并进一步研究其功能、表达和调控机制等。

综述:无缝克隆与基因融合(中文版)

综述:无缝克隆与基因融合(中文版)

无缝克隆与基因融合基因融合技术是基因功能研究的关键工具。

准确拼接的杂合分子,没有任何无关的序列,使我们可以对分子进行精确的研究。

本篇综述介绍了无缝融合基因和蛋白的应用,以及获得这些杂交分子的方法前言随着各种基因组测序项目的完成,人们越来越关注基因产物的功能分析。

基因融合技术在基因功能研究的许多方面具有重要的作用,包括基因和蛋白标记,报告基因的研究,结构域互换研究,突变研究和基因敲除或者插入实验。

传统的基因融合技术涉及到type II 限制酶消化和DNA连接反应(所谓的剪切/粘贴反应),曾被用来作为构建杂交基因的标准方法。

然而,这种方法常常会在接合处留下操作的序列,例如酶切位点。

这些多余的序列可以改变DNA元件的间隔,在接合处引入多余的氨基酸残基,可能对融合蛋白的结构和功能产生不需要的影响,因此影响对融合基因精确的研究。

这篇综述讨论了精确融合基因的应用之处,概括了实现无缝基因融合的方法。

无缝基因融合及其应用无缝克隆和基因融合就是将两个或者更多DNA片段精确结合在一起,在DNA片段的接合处没有任何不需要的序列。

这是获得杂交基因的理想情况。

以下强调几个例子,以表明无缝基因融合的重要性。

启动子和外显子研究基因启动子含有许多调控元件。

转录因子与它们结合并互相影响来调控转录。

启动子删除分析使我们鉴定到这些功能元件,获得关于基因调控机制的重要信息。

然而,因为不同调控元件之间的间隔常常是非常重要的,通常需要长度不变的linker来维持这些元件的间隔和螺旋面。

基因启动子的linker扫描分析需要无缝DNA融合或者序列替换技术。

分子演化方法例如外显子和DNA转移来获得具有需要生化和/或生理特征的蛋白也需要不同功能元件的无缝拼接。

在真核细胞中,通过内含子介导的RNA拼接可以构建嵌合体基因和/或蛋白。

在这些实验中RNA底物的合成和/或外显子标记核酶需要认真的设计,得到嵌合体前体基因。

只要杂合基因形成正确,无缝融合就可以通过拼接实现。

综述:无缝克隆与基因融合(中文版)

综述:无缝克隆与基因融合(中文版)

无缝克隆与基因融合基因融合技术是基因功能研究的关键工具。

准确拼接的杂合分子,没有任何无关的序列,使我们可以对分子进行精确的研究。

本篇综述介绍了无缝融合基因和蛋白的应用,以及获得这些杂交分子的方法前言随着各种基因组测序项目的完成,人们越来越关注基因产物的功能分析。

基因融合技术在基因功能研究的许多方面具有重要的作用,包括基因和蛋白标记,报告基因的研究,结构域互换研究,突变研究和基因敲除或者插入实验。

传统的基因融合技术涉及到type II 限制酶消化和DNA连接反应(所谓的剪切/粘贴反应),曾被用来作为构建杂交基因的标准方法。

然而,这种方法常常会在接合处留下操作的序列,例如酶切位点。

这些多余的序列可以改变DNA元件的间隔,在接合处引入多余的氨基酸残基,可能对融合蛋白的结构和功能产生不需要的影响,因此影响对融合基因精确的研究。

这篇综述讨论了精确融合基因的应用之处,概括了实现无缝基因融合的方法。

无缝基因融合及其应用无缝克隆和基因融合就是将两个或者更多DNA片段精确结合在一起,在DNA片段的接合处没有任何不需要的序列。

这是获得杂交基因的理想情况。

以下强调几个例子,以表明无缝基因融合的重要性。

启动子和外显子研究基因启动子含有许多调控元件。

转录因子与它们结合并互相影响来调控转录。

启动子删除分析使我们鉴定到这些功能元件,获得关于基因调控机制的重要信息。

然而,因为不同调控元件之间的间隔常常是非常重要的,通常需要长度不变的linker来维持这些元件的间隔和螺旋面。

基因启动子的linker扫描分析需要无缝DNA融合或者序列替换技术。

分子演化方法例如外显子和DNA转移来获得具有需要生化和/或生理特征的蛋白也需要不同功能元件的无缝拼接。

在真核细胞中,通过内含子介导的RNA拼接可以构建嵌合体基因和/或蛋白。

在这些实验中RNA底物的合成和/或外显子标记核酶需要认真的设计,得到嵌合体前体基因。

只要杂合基因形成正确,无缝融合就可以通过拼接实现。

实例分享-一步法构建同源重组载体

实例分享-一步法构建同源重组载体

汉恒生物科技(上海)有限公司 400-092-0065一步法构建同源重组载体同源重组载体构建需要分别克隆目的片段两端的同源臂(长度~1kb ),并与Marker 基因进行连接。

传统的构建方法是两段同源臂分别克隆构建到目的载体,费时费力。

在本例中,本人已经成功应用汉恒生物科技(上海)有限公司的HB-Infusion TM 无缝克隆试剂盒,将同源臂及Marker 基因一步成功构建到载体上,现将实验过程及结果分享如下:1. 目的片段引物的设计用NEB builder (https:///watch?v=8_-t5xtJ3y8),或snapgene ,genome compiler 等软件,将三个目的片段的基因序列、线性化载体的基因序列按照软件使用说明依次填入,将自动生成所需要的引物序列(如下表)。

将引物提交华大基因进行合成。

引物序列列表2. 目的片段的扩增反应体系汉恒生物科技(上海)有限公司 400-092-0065DNA(248ng/μL) 1 μL Forward Primer (10μM)2 μLReverse Primer(10μM) 2 μL ExTaq premix 25 μL DDW 20 μL Total50 μL(注:此步反应中的酶最好用高保真酶,以免产物出现错配)PCR 反应程序95℃ 4 min95℃ 30 s 65℃ 30 s 72℃ 1~2.5 min 72℃10 min将扩增到的PCR 产物,用1%琼脂糖凝胶电泳后,进行胶回收并用Nanodrop 测量核酸浓度。

图1. 三个目的片段凝胶电泳结果34cycles汉恒生物科技(上海)有限公司 400-092-00653. 载体的线性化酶切:Plasmid 2 μg SacI 2 μL XbaI2 μL 10×M bμffer 5 μL DDW 39 μL Total50 μL37℃酶切4h 后,用1%凝胶电泳进行分析,并用Axygen 凝胶回收试剂盒进行胶回收。

同源重组法分子克隆 -回复

同源重组法分子克隆 -回复

同源重组法分子克隆 -回复同源重组法是分子克隆技术中的一种重要方法,其基本原理是利用DNA的同源性重组来插入外源DNA序列到宿主DNA中。

同源重组法在基因克隆、遗传工程等领域得到了广泛应用。

本文将详细介绍同源重组法的原理、步骤及应用。

一、同源重组法的原理同源重组法的原理基于DNA分子的自身结构和功能,DNA分子在某些条件下能够进行重组、修复和重复。

同源重组是指两个DNA分子之间具有相似序列(同源)的区域进行交换而形成的DNA分子重组。

同源重组法基于此原理,通过在宿主DNA中引入重组的同源片段,将外源DNA序列插入到宿主DNA中。

同源重组法的原理可以分为两个步骤:相互间接断裂和互补配对。

两个DNA分子的同源片段同时发生间接断裂,获得可供基因重组的末端。

接下来,由于互补配对的作用,从两个DNA分子中间的同源片段在一定条件下进行配对,形成插入、缺失、互换等不同类型的重组产物。

1. 构建载体DNA:载体DNA是将外源DNA插入到宿主DNA中的重要工具,构建载体DNA 需要选择有适当限制酶切位点的载体和外源DNA。

一般来说,常用的载体包括质粒、噬菌体、噬菌体样颗粒等。

2. 制备DNA片段:外源DNA片段可以通过PCR扩增、酶切和DNA合成等技术制备。

需要注意的是,PCR扩增要确保扩增的DNA片段与宿主DNA具有一定的同源性。

3. 利用限制酶切割载体和外源DNA:根据预定的酶切位点设计限制酶切位点并进行酶切。

4. 进行杂交和拼接:将外源DNA片段与载体DNA杂交,并通过互补配对将DNA片段与载体DNA进行拼接。

5. 转化大肠杆菌:利用化学方法或电击法将构建好的载体DNA转化到大肠杆菌中,转化后得到含外源DNA的菌落。

6. 筛选阳性菌落:利用选择性培养基和荧光素酯分析方法等技术筛选阳性菌落。

7. 测序鉴定:对筛选出的阳性菌落进行测序,并鉴定插入的外源DNA序列是否正确。

同源重组法是分子克隆领域中一种非常实用的技术。

汉恒生物无缝克隆试剂盒使用说明(附原理)

汉恒生物无缝克隆试剂盒使用说明(附原理)

汉恒生物无缝克隆试剂盒使用说明(附原理)HB-infusion TM无缝克隆试剂盒使用说明(附原理说明)一、产品简介HB-infusion TM无缝克隆试剂盒是一种新型、快速并且高效的Gibson Assembly DNA定向克隆技术,可以在任意载体的任意位置一次插入多个目的基因片段。

HB-infusion TM无缝克隆试剂盒操作极其简单,仅需在载体的克隆位点进行线性化,并在插入片段PCR引物的5’端引入与载体克隆位点两端完全一致的15~25 bp同源序列(图1,图3)。

将上述线性化的克隆载体和带有同源序列的PCR片段按合适比例混合,并加入HB-infusion TM Master mix,通过反应体系中DNA外切酶、DNA聚合酶以及连接酶的在50℃反应20 min即可快速完成定向克隆,阳性率几近100%。

图1. HB-infusion TM快速克隆试剂盒原理示意图。

1. 线性化目的载体(左上);2. PCR获取目的片段。

设计的引物5’需要和线性化载体末端有15~25 bp的重叠(图中蓝色和黄色片段,细节可参考图3);3. 按照一定比例把二者混合在HB-infusion TM的2⨯预混液内,50︒C反应20 min后直接转化E.coli即可。

二、HB-infusionTM试剂盒的优点1. 相比于传统的同源重组的无缝克隆方法进行,HB-infusion TM试剂盒更高效,操作更简单,只需要一次反应即可完成定向克隆;2. 对酶切位点无要求,可以把目的片段插入到任意载体的任意位点;注:1. 为了降低载体自连背景,提高阳性率,建议采用双酶切载体质粒。

酶切最好能切出一个较大片段,这样回收的目的条带可以和没有切开的质粒明显分开。

2. 质粒单酶切容易造成载体切割不完全和自连,导致假阳性的产生。

因此,必须单酶切的时候建议延长酶切时间并脱磷处理(酶切2h-过夜,CIP处理20 min),同时做好空载的对照。

3. 请务必跑胶回收线性化的载体,否则非线性化质粒会带来极高的背景。

同源重组技术的原理和应用

同源重组技术的原理和应用

同源重组技术的原理和应用同源重组技术(Homologous recombination technology,HRT)是一种常用的基因编辑技术,它能够在特定部位改变DNA序列,用于治疗某些遗传性疾病、研究基因表达调控和蛋白质结构等方面。

本文将介绍同源重组技术的原理和应用。

1. 同源重组技术的原理同源重组技术是利用质粒、病毒等载体携带的外源基因通过靶向指向的方式将其导入到细胞或生物体中,从而达到改变生物体基因组的目的。

具体来说,同源重组技术是基于DNA的相互作用原理进行的。

DNA由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)构成,它们之间形成了氢键,使得两条互补的DNA链可以通过这些氢键相互结合。

在同源重组中,DNA分子的另一端则通过DNA酶和锌指核酸酶来实现切割和精准定位。

一旦发现了具备相同序列的区域,这些酶就会将外源基因定向到位点,与染色体上的同源序列组成DNA双链,从而取代了原有的序列,以达到修复或替换某些基因的效果。

2. 同源重组技术的应用同源重组技术的应用广泛,其中最重要的是对基因的编辑和修复。

以下将介绍几种常见的同源重组技术应用:(1)质粒介导同源重组质粒介导同源重组是一种常用的基因工程技术。

这种技术主要是利用菌单倍体的同源重组能力,通过转化质粒来实现有选择性地在DNA的特定区域插入新基因。

这种技术特别适用于菌类以及一些单细胞真菌和原生生物。

(2)病毒介导同源重组病毒介导同源重组则运用了病毒自身的重组机制特征,对其进行了改造,使其能够以带选择性的方式在目标细胞中整合外源基因。

这种方法目前已经广泛应用于人类基因治疗领域,尤其在修复致病基因和引入新基因方面取得了显著进展。

(3)基因组编辑基因组编辑技术可以通过同源重组来治疗遗传性疾病。

比如,在用于治疗Friedreich's ataxia(FA)的基因治疗研究中,研究团队采用基因克隆技术构建了能够靶向FA基因的重组质粒,并通过同源重组的方式将其导入细胞中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简介(INTRODUCTION)
原理:Gibson assembly是一种one step, one pot的快速基因组装方法。

它只需要将基因片段和需要的三种酶混合在同一个管内在50°C下培养15-60 min就可以得到组装好的DNA。

装配原理基于DNA片段间的重叠区域,过程依赖于三种酶:DNA 外切酶(T5 exonuclease), 高保真DNA聚合酶。

(Phusion polymerase)和耐热DNA连接酶(Taq DNA ligase)的共同作用。

首先,T5 核酸外切酶消化DNA片段的链方向是从5’到3’. 每个DNA片段分别形成一个单链的突出部分,由于着这两个相邻的突出片段有一部分具有同源性能够互补,所以DNA片段退火,互补的序列重新配对连接。

然后,在空缺的部分DNA聚合酶以另一条DNA单链为模板,沿3' 方向将对应的脱氧核苷酸连接到单链上,填补缺口。

最后,连接酶将两条DNA 单链黏合起来,密封裂缝。

这样具有重叠区域的DNA片段就组装成一整条DNA分子了。

下面是组装的示意图。

材料(MATERIALS)
试剂(REAGENTS)
NAD,H2O ,1 M MgCl2,1 M DTT,10 mM dNTP mix,1 M Tris-HCl pH ,50% PEG-8000, mg/ mL Tag ligase,μg/ mL T5_ExO,Phusion(1×)、LB培养基、抗生素(据载体而定)、LB 平板(相应抗性)
实验前准备(SETUP)
于冰水浴中配制如下反应体系。

如果不慎将液体粘在管壁,可通过短暂离心使其沉入管底。

4x isothermal assembly buffer
NAD 20 mg
H2O 300 μL
1 M MgCl2300 μL
1 M DTT 300 μL
10 mM dNTP mix 600 μL
1 M Tris-HCl pH 3 mL
50% PEG-8000 3 mL
加水到 mL,每管分500 μL存于-20°C或-80°C冰箱,够3000个反应
2× assembly mix: best combination:
100 reaction 1 mL
mg/ mL Tag ligase 10 μL
μg/ mL T5_ExO 100 μL
Phusion(1× ) 25 μL
4× . buffer 500 μL
加水365 μL,存于-20°C冰箱,有效期1年。

实验步骤(PROCEDURE)
1.设计引物通过PCR的方法在DNA片段的两端加上同源片段,NEB推荐同源片段的长度为15-40
bp,同时要求这部分对应的退火温度高于4°C。

2.进行DNA纯化:PCR产物进行琼脂糖电泳,胶回收。

或者PCR产物回收试剂盒回收。

3.进行重组反应,以20 μL反应体系为例:
组分加入量
Isothermal assembly Master Mix 10 μL
线性化载体 10-100 ng (1-2 μL)
插入片段 8-9 μL (3-5×载体)
Sterilized ddH2O 补足至20 μL
50°C反应15-60 min
4.反应产物转化、涂板及克隆鉴定同传统分子克隆方法。

针对性建议
1.在选择克隆位点时,应避免选择克隆位点上下游50 bp内有重复序列的区域。

当克隆位点上
下游20 bp区域内GC含量均在40%~60%范围之内时,重组效率将达到最大。

如这部分区域GC含量高于70%或者低于30%,重组效率会受到较大影响。

2.Gibson组装克隆法缺点之一是适用与长度超过200 bp的片段的组装;缺点之二是如果黏性
末端形成稳定的二级结构,如发夹结构或者茎环结构,那么成功率会大受影响。

相关文档
最新文档