人教版七年级数学(下册)第六章 平面直角坐标系教案
七年级下册数学 6.7《平面直角坐标系复习》课案(教师用)

课案(教师用)第六章平面直角坐标系复习课(复习课)【理论支持】义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体。
《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。
心理学认为:认知从感知开始,感知是认知的门户,是一切知识的来源。
在课堂教学中,让学生人人参与、积极动手动脑、合作交流的探究活动,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的。
斯滕伯格认为,成功智力包括分析性智力,创造性智力和实践性智力三个方面。
分析性智力用来解决问题和判定思维成果的质量;创造性智力用来形成好的问题和想法;实践性智力可将思想及其分析结果以一种行之有效的方式加以实施。
基于这一理论,要求教师在课堂教学中注重培养学生的分析性、创造性和实践性能力。
分析性能力的培养是以问题解决和决策能力为核心,通过问题解决的七个步骤:明确问题、界定问题、分配资源、表征信息、制定策略、问题解决的监控和评估,来发展学生的分析性能力;创造性能力是以斯滕伯格的创造力投资理论为出发点,帮助教师教会学生从问题解决到形成自己的观点,产生新想法并学会推销自己的思想等,从而提高学生的创造性能力;实践性能力的培养多与相关情境的常识应用有关,实践性思维始于具体情境下所遇到的问题,通过师生共同讨论,教师帮助学生克服困难或回避障碍,锻炼和提高学生的实践思维能力。
教师要根据不同的课型,采用不同的教学策略发展学生的分析性、创造性和实践性能力。
教师也可通过布置任务或课题,拓展学生学习的时空范围,使课前、课中、课外的学习活动成为课堂教学的延伸。
“平面直角坐标系”这一章对七年级学生来说是全新的知识。
这一部分知识很重要。
“平面直角坐标系”是图形与数量之间的桥梁。
有了它,我们即可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题,它是解决数学问题的一个重要工具,利用它可以使很多数学问题变得直观而简明。
平面直角坐标系(教学设计说明)

平面直角坐标系(教学设计说明)《平面直角坐标系》教案说明《平面直角坐标系》是人教版《数学》七年级下册第六章的内容,是本章中继《有序数对》之后的第2课时.下面我从教材分析、目标分析、问题诊断与教法特点这四方面来介绍我对这节课的教学设计.一、教材分析《平面直角坐标系》是在学生学习了“有序数对”,初步认识了用有序数对可以确定物体的位置之后,为进一步探讨是否可以用有序数对表示平面内点的位置问题而引入的.利用平面直角坐标系可以确定平面内任一点的位置;有了坐标系,就建立了点与有序实数对(坐标)的对应,于是有了函数(数量关系)与它的图象(几何图形)之间的对应,进而可以通过图象来研究和解决函数的有关问题;有了坐标系,就可以把代数问题转化成几何问题,也可以把几何问题转化成代数问题.可见,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具.在本章学习中,平面直角坐标系是学生从数的角度进一步认识平移变换的基础,也是后续学习函数、平面解析几何等必备的知识.平面直角坐标系是数轴的发展,它的建立和应用过程,实现了认识上从一维到二维的发展,体现了类比方法、渗透着数形结合等数学思想,因此学习平面直角坐标系这一内容是发展学生思维,提高能力的极好时机.二、目标分析根据《数学课程标准》中关于“平面直角坐标系”的相关教学要求,结合教材特点和学生的实际情况,从而确定了“知识与技能、过程与方法、情感态度与价值观”的三维教学目标.【目标1】初步掌握平面直角坐标系及相关概念;能由坐标描点,由点写出坐标.学习本节内容之前,学生已经具有借助数轴用一个数表示直线上点的位置的经验,了解了直线上的点与坐标之间的对应;也学习了用有序数对确定物体的位置.这些均是本节课学习新知识、完成知识目标的基础.【目标2】经历知识的形成过程,引导学生用类比的方法思考和解决问题,进一步体会数形结合的思想,认识平面内的点与坐标的对应.新课程标准指出:“展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.”遵循新课标的这一理念,我确立本节课教学目标的第2点.为了实现这一教学目标,帮助学生真正经历知识的形成过程,我以校庆为背景,通过表示校门位置设计情境,逐一展开;并将此环节分为四个阶段:独立思考—共同讨论—类比建系—解决问题.首先,学生经过独立思考提出:可以利用两个数表示平面内点的位置.为了让学生更好地体会这一点,教师追问:只用一个数可以吗?引发学生讨论,并进一步感受只用一个数表示的点很多,具有不确定性.在此基础上,明确用有序数对描述.但由于没有约定顺序与方向,对于同一位置学生提出了用不同的有序数对描述,怎样才能用一个统一的标准表示呢?学生类比数轴的建立提出再引入一条数轴,并约定数对的顺序,至此建立了平面直角坐标系.为了体会这种表示方法具有一般性,设计表示平面内其它位置的点,在解决问题的同时,加深对平面直角坐标系的理解,实现对学生能力的培养.【目标3】通过介绍相关数学史培养学生善于观察,勤于思考的品质.数学教育的目的是促进学生的全面发展.把学生良好品质的培养和形成渗透到每一节课.为此我确立了教学目标3.在教学过程中,适时给学生介绍一些相关数学史,使他们了解概念、定理及公式的由来,了解数学家追求真理、善于观察、热爱思考的事迹,从中受到人文精神的熏陶,继而促进学生良好品格的形成.本节课的教学重点是平面内点的坐标概念以及由坐标描点和由点写出坐标.由于“对应”的概念比较抽象,所以认识点与坐标的对应是本节课教学的难点.三、问题诊断1.对于坐标概念有序性的理解也是学生的一个易错点.在辨析用不同有序数对表示同一个点的位置时,首次强调了顺序的重要性;在提炼坐标概念时,再次强调先横后纵,加深印象;在“由坐标描点”的活动中,提出问题“点(3,-3)和点(-3,3)表示同一个点吗?”学生又一次体会了坐标的有序性.这样逐一深入,落实重点.2.本节课学生不易理解点与坐标的对应,为此教师做了一番精心设计.设计了两个活动:(1)由坐标描点;(2)由点写坐标.使其先通过动手操作实现感性的认识,落实描点与写坐标;再通过利用几何知识解释,进行理性思考,深入体会点与坐标的对应.同时希望学生进一步体会实际问题抽象成数学问题,反过来利用数学问题的解决指导实际.四、教法特点1.联系实际,以学生为主体设计教学过程,符合学生的认知规律.无论是六十年校庆做志愿者,还是课间操方队表演,都是选自贴近学生生活的素材,使学生经历由实际问题抽象出数学问题及通过对数学问题的研究解决实际问题的过程,让学生充分感受到数学来源于生活、服务于生活,感受到平面直角坐标系在解决实际问题中的作用.2.揭示“平面直角坐标系”的形成过程,使学生经历了观察、思考、比较、类比、抽象、概括等一系列思维过程.这样也使得教学过程更符合学生的认知特点,有利于学生能力的培养.3.改变学生的学习方式是新课程理念的核心,交流讨论是新课标所倡导的学生学习的方式.与之相适应,我在教学中组织学生充分讨论和交流,如:在展示作业环节,在“建立模型、解决问题”环节,在“辨析概念、深入理解”环节.在讨论过程中,一方面学生用数学语言发表自己的想法和观点,倾听他人的思路,从中得到启发,进一步改进和完善自己的想法;另一方面,讨论交流针对的是教学中的重点、难点,针对学生可能碰到的疑难、单独解决有困难处展开.这样就打破了课堂模式单调的局面,使学生间有直接交流合作的机会,真正实现共同学习、共同提高.从本节课预期教学效果来看,学生的学习兴致会很高.能够初步掌握平面直角坐标系及相关概念,能由坐标描点,由点写出坐标;在轻松愉快的氛围中经历了概念的形成过程,体会几种重要的数学思想方法.。
七年级数学《平面直角坐标系》教案

“三部五环”教学模式设计《6.1.2平面直角坐标系》教学设计问题4、如图是旬阳各学校示意图。
(1)你是如何确定各个学校的位置的?(2)如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“旬阳中学”的位置吗?“旬阳一中”的位置呢?(3)平面直角坐标系如何建立,怎样确定点的坐标,在坐标系中怎样描点,象限如何划分?(1)根据学生活动进程出示问题4。
(2)根据学生口述,板书问题结果,重点关注全体学生是否能用有序数对表示。
(3)发动学生评价矫正问题4过程,引导学生将结论用文字语言表述出来,并加以板书。
(4)强调平面直角坐标系的概念,如何建立平面直角坐标系,并详细介绍平面直角坐标系中点的坐标如何确定。
(5)细讲平面直角坐标系中象限的划分,强调坐标轴上的点不属于任何象限。
【学生活动】(1)思考问题4的解答过程。
(2)3名学生回答问题4。
(3)讨论问题4结论,其余学生参与纠正补充。
(4)认真听教师讲解平面直角坐标系的建立方法,点的坐标的确定以及象限的划分。
(5)学生思考四个象限内的点的坐(1)出示幻灯片旬阳各学校示意图。
(2)出示幻灯片“平面直角坐标系”。
【设计意图】1、从学生比较熟悉的例子引入,容易引起学生的注意,简单的几个问题,唤起学生的共鸣,使他们能很快地投入到学习的情境中。
2、通过一个实际问题的分析,使学生更加明确在现实生活中有序数对的作用,为后面建立平面直角坐标系做铺垫。
3、平面直角坐标系的建立以及象限的划分采用教师讲解的方法,学生更容易理解。
4、通过学生自己探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解,特别是横坐标、纵坐标的符号规律。
标的符号有什么规律。
活动三变式练习,巩固新知问题1、如图,写出图中A,B,C,D,E,F各点的坐标。
2、在如图的直角坐标系中描出下列各组点A(2,1),B(0,2),C(0,0),D(4,0)并将各点用线段依次连接起来。
人教版初一数学下册《平面直角坐标系》(第一课时)的教学设计

《平面直角坐标系》(第一课时)的教学设计1.教学目标:知识目标理解平面直角坐标系的有关概念,会正确地画出直角坐标系,会根据坐标描出点的位置,由点的位置写出它的坐标.能力目标渗透数形结合、类比转化的数学思想;揭示人类认识世界是由特殊到一般、具体到抽象、一维到多维等认识规律,培养学生的思维能力和创新意识.情感目标培养学生的合作精神和积极参与、勤于思考、善于探索的习惯,增强学生的自信心,激发学生的学习热情.2.教学重点、难点:重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置.难点:构建平面直角坐标系及平面直角坐标系内的点与有序实数对的一一对应关系. 3.教学方法与教学手段:教学方法:本课主要采用探索式教学法,引导学生通过独立思考、自主探索,合作交流等活动方式经历知识的发生、发展过程,学会获取新知识的方法.另外,根据八年级学生的年龄特点,采用了游戏活动法,既激发了学生的求知欲,培养了学生学习的兴趣,又突破了本节课的难点.教学手段:采用多媒体,实物投影,练习卷,游戏纸板等.4.教学过程:4.1回顾旧知活动1:(1)什么叫数轴?(2)数轴上的点与实数有什么关系?(设计意图:通过复习旧知,为学习新知打下基础.)4.2创设情境活动2:车站正东100米处有一所学校,正西50米处是少年宫,请问能否在一条数轴上表示出这三者的位置?为什么?活动3:如果车站正南150米处有一个图书馆,你能在上述的数轴中表示出图书馆的位置吗?为什么?(设计意图:让学生体验从实际生活中发现数学问题,从而认识数学的发展是人对客观事物认识需要而产生的.)上述活动结束后,老师表扬同学们说,画两条数轴来表示不在同一直线上的点的位置的方法,直到1637年以前,才被法国数学家笛卡尔发现.4.3阅读资料早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午经为标准的,这两条线从局部上可以看成是平面内互相垂直的两条直线,所以笛卡尔的方法就是在平面内画两条原点重合、互相垂直且具有相同单位长度的数轴建立平面直角坐标系,从而解决了用一对实数表示平面内的点的位置的问题.(设计意图:从科学家探索之路可让学生体验数学是从生活中产生的,从而培养学生的探索精神,激发学生学习的兴趣.)通过上面几个活动的开展和资料的阅读,可以水到渠成地引入本课的课题《平面直角坐标系》(老师板书).4.4学习新知通过学生的回答,多媒体演示平面直角坐标系的建立.通过师生共同讨论,多媒体逐步显示的方式,学习有关概念:横轴(x轴)、纵轴(y轴),正方向、坐标原点、坐标平面、四个象限,坐标轴上的点不属于任何象限等.(设计意图:结合图形,通过老师引导、提问,多媒体逐步显示的方式,使学生更加清晰、直观地理解和掌握平面直角坐标系的有关概念.)概念学完后,老师设问:在平面直角坐标系中能否类似于数轴上表示点的方法来表示平面内点的位置呢?4.5探索问题活动4:(1)你到电影院看电影,假设你只记得自已的座位是第9排,能找到自已的座位吗?(2)假设你只记得自已的座位是第6座,能找到自已的座位吗?(3)你认为6排9座和9排6座是同一张座位吗?(设计意图:通过创设看电影找座位这个学生非常熟悉的情境,激发学生内在的求知欲,从而使学生认识到:确定电影院里的座位,需要用两个有序实数.)活动5:你还能举出在现实生活中需要用两个有序实数才能确定平面内物体位置的例子吗(小组讨论,全班交流)?(设计意图:通过学生的相互交流,使他们进一步认识到:确定平面内点的位置,需要用两个有序实数.)4.6指导应用举例:在平面直角坐标系内,先给出一点M,提问:如何找出表示点M的两个有序实数?请学生回答,得出:过点M作横轴的垂线,垂足对应的数是3,过点M作纵轴的垂线,垂足对应的数是2,所以这两个数是3和2(注意画垂线用虚线).接下来由老师讲解:因为3在横轴上,所以3叫点M的横坐标,2在纵轴上,所以2叫点M的纵坐标,依次写出点M的横坐标和纵坐标,得到一对有序实数(3,2),称为点M的坐标,记作:M(3,2).师生共同归纳出书写坐标的口诀:“横坐标在前,纵坐标在后,中间加逗号,两边加括号.”接下来,请学生求点N的坐标,求出点N的坐标是N(2,3)后,请学生比较点M和点N 的坐标,发现表示这两个点的坐标的两个实数完全相同,但它们的顺序不同,而它们在图中的位置也不同,即它们不是同一个点,联系前面学习的看电影找座位中6排9座和9排6座也不是同一张座位,从而进一步说明了,表示点的坐标的两个实数必须要有顺序,即点的坐标是“有序实数对”.然后请学生求出点Q和点P的坐标分别是:Q(-2,0),P(0,4).(设计意图:本题设计了求四个点的坐标,其中两个点在象限内,两个点在坐标轴上,让学生明确了求不同位置下点的坐标的方法;设计点M和点N这两个点,让学生更好地理解了点的坐标是“有序实数对”.例1、已知点在坐标平面内的位置,求点的坐标.练一练:求出右图中A、B、C、D、E、F、G、H、M各点的坐标.观察你所求出的这些点的坐标,回答下列问题:(1)这些点分别位于哪个象限或坐标轴?(2)请仔细观察你所写出的这些点的横、纵坐标的符号,回答在四个象限内和两条坐标轴上的点的横、纵坐标各有什么特征?师生互动,请学生站起来回答,老师板书.例2、已知点的坐标,在坐标平面内描出点的位置.描出A(4, 3)、B(2, - 3)、C( -4, -1)、 D( - 2, 2)、E(3, 0)、F(0, - 2).第一个点A(4, 3),由学生站起来回答描出该点的位置的方法.其余的点由学生在练习卷上完成,利用实物投影,请学生上台交流完成情况.(设计意图:“学数学而不练,犹如入空山而空返”(华罗庚语).适当的训练是学习、巩固新知识必不可少的环节.通过师生共同完成例1、例2,使学生进一步理解和掌握了平面直角坐标系中点和坐标的对应关系.例1中的第(2)问为下面的游戏活动和第二课时的学习打下了伏笔.4.7组织游戏设每位同学都表示平面内的一个点,让居中的横、纵向同学建立平面直角坐标系,举起老师发的游戏纸板,横向的同学表示x轴,纵向的同学表示y轴,纸板上的数字分别表示x 轴、y轴上的坐标.游戏活动1:请同学根据老师说的坐标站起来.游戏活动2:老师报同学的姓名,请被报到姓名的同学站起来,先说出自已表示的点所在的象限或坐标轴,再说出点的坐标.由此得出:坐标平面内的点一一对应有序实数对.(设计意图:通过游戏活动,激发了学生的学习热情,使整个课堂气氛达到了高潮;使学生体会到数学源于生活,生活中处处有数学;增进了师生间、生生间的合作和友谊,使学生在轻松和愉悦的氛围中归纳总结出了坐标平面内的点与有序实数对之间的对应关系.)4.8交流收获通过本节课的学习,说说你有哪些收获(小组讨论,全班交流)?(设计意图:通过学生之间讨论、交流,对所学内容作全面的小结,使学生的知识与技能、情感态度和价值观得到了升华.)4.9馈赠寄语同学们,每个人的人生就是一个以时间为横轴、人的价值为纵轴的平面直角坐标系,相信同学们一定能用自已的勤奋和智慧在这个坐标系中画出一个个光彩夺目的点.(设计意图:利用平面直角坐标系设计寄语,既体现了数学与生活的紧密相连,使学生感觉到学习本节内容的重要性,激发了学生学习的热情,同时表达了老师对学生的良好祝愿,充分体现了师生平等、和谐的合作伙伴关系.)5.教后反思:《平面直角坐标系》是《函数及其图象》这一章的重要内容,它是学习下一节《一次函数》的重要基础,平面直角坐标系概念的引入,标志着数学由常量数学向变量数学的迈进,这是学生数学知识的一个飞跃。
(人教版数学)七年级下册教案:平面直角坐标系(第2课时)-

6.1.2 平面直角坐标系(第2课时)教学目标1.能建立适当的直角坐标系,描述物体的位置;2.在给定的直角坐标系中,会根据坐标描出点的位置.3.经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识. 重点、难点重点:建立适当直角坐标系,描述物体的位置;在给定的直角坐标系中;根据坐标描出点的位置.难点:建立适当直角坐标系. 教学过程一、复习旧知,导入新课问题:1.为什么叫做直角坐标系,画出直角坐标系.2.写出图中点A 、B 、C 、D,E 的位置.二、师生共同活动例:在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).分析:先在x 轴上找出表示4的点,再在y 轴上找出表示5的点, 过这两个点分别作x 轴和y 轴的垂线,垂线的交点就是A.师生共同活动作出点A 、B 、C 、D 、E 由学生独立完成. 探究:如图,正方形ABCD 的边长为6.A(O)xDCB(1)如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系,那么y 轴是哪条线? (2)写出正方形的顶点A 、B 、C 、D 的坐标.(3)请另建立一个平面直角坐标系,此时正方形的顶点A 、B 、C 、D 的坐标又分别是多少?与同学交流一下.学生讨论、交流后,得到以下共识: ①y 轴是AD 所在直线.②A(0,0),B(0,6),C(6,6),D(6,0).③让部分学生描述,并投影作法,同学讨论.④建立的平面直角坐标系不同,则各点的坐标也不同. 三、巩固练习教科书P49、练习2 四、作业1.教科书P50.5,P51.6,7,8,10,P52.11. 2.补充作业: 一、填空题.1.若点P(x,y)满足xy=0,则点P 在___________.2.在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________.3.若线段AB 的中点为C,如果用(1,2)表示A,用(4,3) 表示B, 那么 C 点的坐标是嗯________.4.若线段AB 平行x 轴,AB 长为5,若A 的坐标为(4,5),则B 的坐标为________. 二、解答题.1.在图直角坐标系中描出下列各组点,并将各组点用线段依次连结起来,观察所得到的图形,你觉得它像什么?(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5); (2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9); (4)(3,7),(1,5)(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).2.如图长方形ABCD 的长和宽分别是6和4.以C 为坐标原点,分别以CD 、CB 所在的直线为x 轴、y 轴建立直角坐标,则长方形各顶点坐标分别是多少?C(O)xy D BA答案:一、1.x 轴或y 轴上(坐标轴上)2.正方形3.55(,)224.(-1,5)或(9,5)二、1.象一栋“房子”旁边还停着一棵树.2.(1)A(6,4) B(0,4) C(0,0) D(6,0)6.1 .2 平面直角坐标系(2)【教学目标】1、能根据坐标描出点的位置(坐标都为整数);2、能在方格纸中建立适当的平面直角坐标系描述物体的位置;3、能根据点的位置关系探索坐标之间的关系,以及根据坐标之间的关系探索点的位置关系.【重点难点】重点:根据点的坐标在直角坐标系中描出点的位置。
数学2020年春季人教版教案 7年级-6 平面直角坐标系中点的规律型问题

例4 如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称; 第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为.
二、合作探究
(一)探究类型之一 有序数对
例1 在平面直角坐标系中,对于平面内任一点P(a,b),若规定以下两种变换:
①f(a,b)=(-a,-b),如f(1,2)=(-1,-2);
②g(a,b)=(b,a),如g(1,3)=(3,1).
按照以上变换,那么f(g(a,b))等于( )
1.学生读题,理解题意.
师:题中两种变换法则分别是什么?
生:f(a,b)=(-a,-b),说明变换f是横纵坐标都取其相反数,也就是关于原点作对称变换.g(a,b)=(b,a),明变换g是横纵坐标交换位置,也就是关于直线y=x作对称变换.
(学生可能不能说出关于直线y=x对称,教师可引导学生自己在坐标系中找些g变换的对应点,然后观察发现规律)
例5 如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为___.
1.学生读题,发现规律.
师:本题规律与例2类似,但是不同,同学们如果用例2的方法解答时,注意区分.
平面直角坐标系说课稿

《平面直角坐标系》说课稿我说的是人教版数学七年级下册第六章《平面直角坐标系》的第2课时的内容。
下面我从教材分析、学情分析、教学目标、教法学法、教学设计几个方面谈谈对本节课的理解。
一、教材分析本节课是在学习了有序数对的基础上进行的,是平面直角坐标系的起始课,是数轴的发展。
平面直角坐标系是进一步学习函数及其它坐标系必备的基础知识。
它是图形与数量之间的桥梁,是解决数学问题的一个重要工具,利用它可以使许多数学问题变得直观而简明,并实现了几何问题与代数问题的互化。
二、学情分析由于本节是七年级内容,是联系代数、几何的桥梁,对学生情况我从以下几方面分析:1、知识掌握上,七年级学生年龄小,思维正处于由具体形象思维向抽象思维转变的阶段,学生接受力强,正是学习的好时机。
2、心理上,学生爱听小故事,我抓住这一点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学生进行数学文化的熏陶。
3、生理上,七年级学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我运用身边的实例,引发学生的兴趣,使他们的注意力集中在课堂上;给他们创造条件和机会,让每一个学生都参与到课堂教学中来,感受成功的快乐。
三、教学目标根据新课标要求和学生现有的知识水平,我将本节课的教学目标定为以下三个方面:知识与技能目标理解平面直角坐标系的有关概念,能正确地画出平面直角坐标系,并会由点确定坐标、由坐标描点;知道平面直角坐标系内点的坐标特征.过程与方法目标通过身边的实例,让学生经历从实际生活中的具体问题抽象出数学模型—平面直角坐标系的过程;体验数学来源于生活,并服务于生活。
情感态度与价值观目标通过对情境问题的探索、交流等数学活动,培养学生合作意识和创新意识,让不同层次的学生得到不同的收获,感受成功,建立自信。
教学重点:平面直角坐标系的概念,在坐标系内由点确定坐标、由坐标描点。
教学难点:平面直角坐标系内点的坐标特征。
四、教法与学法:1、教法:本节课采用了“241”生态课堂教学模式的设计,以小组合作探究的方式推进,引导学生从已有的知识和生活经验出发,提出问题组内共同探索,讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
人教版数学七年级下册平面直角坐标系(第二课时)教学设计

1.作业量适中,难度分层,确保每个学生都能完成基础作业,同时满足学有余力的学生。
2.作业布置要有针对性,关注学生的薄弱环节,提高作业的实效性。
3.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
4.教师应及时批改作业,给予学生反馈,指导学生改正错误,巩固所学知识。
7.课后巩固:布置适量的课后作业,巩固所学知识,提高学生的实际应用能力。
教学活动:设计具有层次性的课后作业,让学生在完成作业的过程中,进一步巩固平面直角坐标系的知识。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活实例引入新课,激发学生兴趣。
教师通过展示地图上的定位、电影院座位分布等生活场景,让学生感受到坐标系在生活中的应用,从而引出本节课的主题——平面直角坐标系。
2.提问方式:教师提出引导性问题,引导学生思考。
问题如:“我们在生活中是如何确定一个点的位置的?”“你能用自己的方法表示出教室内某个同学的位置吗?”
3.过渡语:通过学生的回答,自然过渡到本节课的学习内容。
教师总结:“今天我们要学习一种新的表示位置的方法——平面直角坐标系。通过这个工具,我们可以更准确地描述和解决实际问题。”
学生需要将探究过程和结果以书面形式提交,以提高学生的合作能力和探究精神。
5.创新题:鼓励学生发挥想象力,设计一道与坐标系相关的题目,并给出解题过程和答案。此题旨在培养学生的创新意识和数学思维能力。
6.家长评价:请家长协助学生完成作业,关注学生的学习过程,对孩子的进步给予肯定和鼓励,共同培养学生的数学兴趣。
本章节教学设计旨在帮助学生掌握平面直角坐标系的知识,提高学生的数学素养,培养学生解决问题的能力和团队协作精神,使学生能够更好地应对生活中的数学问题。在教学过程中,教师应注重启发式教学,关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章平面直角坐标系教材内容本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等。
实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。
用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。
用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。
用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。
此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。
教学目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。
〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。
重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。
课时分配6.1平面直角坐标系……………………………………… 3课时6.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时6.1.1有序实数对〔教学目标〕理解有序数对的意义,能利用有序数对表示物体的位置。
〔重点难点〕重点:有序数对的概念,用有序数对来表示物体的位置;难点:用有序数对表示平面内的点。
〔教学过程〕一、问题导入在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置?在地图上你怎样确定一个地点的位置?下象棋时,有人说“炮二平八”,你怎么走棋子?这些都说的是用两个数确定一个物体的位置,那么怎样确定一个物体的位置呢?二、有序数对〔投影1〕下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.怎样确定教室里座位的位置?可用排数和列数两个不同的数来确定位置。
排数和列数的先后顺序对位置有影响吗?举例说明。
排数和列数的先后顺序对位置有影响,如(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”,则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。
这就是说用两个数表示物体的位置是有顺序的。
假设我们约定“列数在前,排数在后”,请你在课本图6.1-1上标出被邀请参加讨论的同学的座位。
上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
生活中利用有序数对表示位置的情况是很常见的。
你能再举出一些例子吗?三、例题〔投影2〕写出表示学校里各个地点的有序数对.分析:从表示大门的有序数对你能知道前一个数的意义是什么?后一个数的意义是什么吗?答:宣传橱窗(2,2),办公楼(3,3),实验楼(3,7),运动场(6,8),教学楼(7,4),宿舍楼(8,5),食堂(9,6)。
四、课堂练习 课本40面练习。
五、课堂小结1、在生活中的许多情况下,我们可以用一对有序数对表示位置,当然表示位置的方法不止这一种,以后我们会知道还有其它的表示位置的方法。
2、用有序数对表示位置时,要注意数对的顺序,明确前一个数的意义和后一个数的意义,这样我们才不会搞错。
作业:8 1 2 345 6 7123456789 10● ● ●●● ●●● 大门 食堂 宿舍楼 宣传橱窗 实验楼 教学楼 运动场办公楼 (5,2)6.1.2平面直角坐标系 (一)[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义;3、会用坐标表示点。
[重点难点] 重点:平面直角坐标系和点的坐标;难点:根据点的位置写出点的坐标。
[教学过程] 一、复习导入数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标。
[投影1]如图,点A 的坐标是2,点B 的坐标是-3。
坐标为-4的点在数轴上的什么位置?在点C 处。
这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。
类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示。
如图,水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点。
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。
二、点的坐标如图,由点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A 的坐标,记作A(3,4)。
-3BA2C类似地,请你根据课本41面图6.1-4,写出点B 、C 、D 的坐标. B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后。
三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限。
[投影2]做一做:课本43面练习1题。
思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点? 原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0。
2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数; 第二象限上的点,横坐标为负数,纵坐标为正数; 第三象限上的点,横坐标为负数,纵坐标为负数; 第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习[投影3]1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离。
2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,则a=______,b=______.3、点M(-2,3)在第 象限,则点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2, 3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、已知一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点。
作业:(6.1.2平面直角坐标系 (二)[教学目标]1、在给定的直角坐标系中,会根据坐标描出点的位置;2、能建立适当的直角坐标系,描述物体的位置。
[重点难点]重点:描出点的位置和建立坐标系; 难点:适当地建立坐标系。
[教学过程] 一、复习导入〔投影1〕写出图中点A 、B 、C 、D 、E 的坐标。
.由点的位置可以写出它的坐标,反之,已知点的坐标怎样确定点的位置呢? 二、例题〔投影2〕例 在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).分析:根据点的坐标的意义,经过A 点作x 轴的垂线,垂足的坐标是A 点横坐标,作y 轴的垂线,垂足的坐标是A 点的纵坐标。
你认为应该怎样描出点A 的坐标?先在x 轴上找出表示4的点,再在y 轴上找出表示5的点, 过这两个点分别作x 轴和y 轴的垂线,垂线的交点就是A.类似地,我们可以描出点B 、C 、D 、E. 三、建立直角坐标糸〔投影3〕 探究:如图,正方形ABCD 的边长为6.A(O)xDCB(1)如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系,那么y 轴是哪条线? y 轴是AD 所在直线.(2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.可以看到建立的直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?要尽量使更多的点落在坐标轴上。
四、课堂练习〔投影4〕1、课本43面练习2题.2、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________.五、课堂小结1、已知点的位置可以写出它的坐标,已知点的坐标可以描出点的位置。
点与有序数对(坐标)是一一对应的关系。
2、为了方便地描述物体的位置,需要建立适当的直角坐标糸。
作业:第六章复习一(6.1)一、双基回顾1、点的坐标:过平面内任意一点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的坐标a 、b 分别叫做点P 的 ,有序数对(a ,b )叫做P 点的 。
注意:平面上的点与有序实数对(坐标)一一对应。
〔1〕已知点P 的坐标是(-2,3),则点P 到x 轴的距离是 ,到y 轴的距离是 . 2、象限〔2〕如果点M 到y 轴的距离是4,到x 轴的距离是3,则M 的坐标为 .3、坐标轴上点的特征:x 轴上点的坐标的特点是 ,y 轴上点的坐标的特点是 ,原点的坐标是 .〔3〕如果点A (m ,n )的坐标满足mn=0,则点A 在( ) A. 原点上 B. x 轴上 C. y 轴上 D. 坐标轴上 4、建立直角坐标糸〔4〕如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点 . 二、例题导引例1 如果点M (a+b ,ab )在第二象限,那么点N (a ,b )在第________象限;若a =0,则M 点在 .例2已知长方形ABCD 中,AB=5,BC=3,并且AB ∥x 轴,若点A 的坐标为(-2,4),求点C 的坐标.例3 已知四边形ABCD 各顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),求四边形ABCD 的面积。
三、练习升华夯实基础1、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示_______________。