广东省广州市天河中学2017高考数学一轮复习 正弦定理与余弦定理02基础知识检测 文

合集下载

高考理科数学一轮复习(教学指导)正弦定理和余弦定理

高考理科数学一轮复习(教学指导)正弦定理和余弦定理

第6讲 正弦定理和余弦定理一、知识梳理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R (R 为△ABC 外接圆半径) a 2=b 2+c 2-2bc cos_A ; b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C变形形式a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b2R,sin C =c2R;a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab2.三角形解的判断 A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin_B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2; (4)cosA +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .二、教材衍化1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6 B .π3C.2π3D .5π6解析:选C.因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =23π.2.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 解析:因为23sin 60°=4sin B ,所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3.答案:2 3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( )(4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( ) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形利用正、余弦定理求解三角形(多维探究) 角度一 求边长(一题多解)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°.(1)求边长a ;(2)求AB 边上的高CD 的长.【解】 (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a =3或a =-2(舍去),所以a =3.(2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACB c =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求角度(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B-sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .【解】 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2020·安徽安庆二模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则ab等于 ( )A.32 B .43C. 2D . 3解析:选D.由b sin 2A =a sin B ,及正弦定理得2sin B sin A cos A =sin A sin B ,得cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab = 3.故选D.2.(2020·河南郑州一模)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc =a 2,bc =3a 2,则角C 的大小是( )A.π6或2π3 B .π3C.2π3D .π6解析:选A.由b 2+c 2-3bc =a 2,得b 2+c 2-a 2=3bc ,则cos A =b 2+c 2-a 22bc =3bc2bc =32,则A =π6, 由bc =3a 2,得sin B sin C =3sin 2A =3×14=34,即4sin(π-C -A )sin C =3,即4sin(C +A )sin C =4sin ⎝⎛⎭⎫C +π6sin C =3, 即4⎝⎛⎭⎫32sin C +12cos C sin C =23sin 2C +2sin C cos C =3,即3(1-cos 2C )+sin 2C =3-3cos 2C +sin 2C =3,则- 3 cos 2C +sin 2C =0, 则3cos 2C =sin 2C ,则tan 2C =3, 即2C =π3或4π3,即C =π6或2π3,故选A.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC 中,cos 2 B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【解析】 已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.【答案】 A【迁移探究1】 (变条件)将“cos 2B 2=a +c 2c ”改为“c -a cos B =(2a -b )cos A ”,试判断△ABC 的形状.解:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形.【迁移探究2】 (变条件)将“cos 2B 2=a +c 2c ”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解:因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系;②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2020·河南洛阳一模)在△ABC 中,已知2a cos B =c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C ,所以-12[]cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C -1)(2-cos C )=1-12cos C ,即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cos C =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.与三角形面积有关的问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解】 (1)由题设及正弦定理得 sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB .由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°, 所以30°<C <90°,故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32.求解三角形面积问题的基本思维(1)若已知一个角(角的大小或该角的正弦值,余弦值),一般结合题意求这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积; (3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.1.(2020·福建厦门一模)在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D .154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c =2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a =1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝⎛⎭⎫142=154.故选D.2.(2020·陕西汉中一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cos B ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角三角形△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ), 因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B , 所以2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π), 所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD=12×2×4sin ∠ACD =15, 解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14,在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =ADsin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =ACsin B, 所以BC =AC sin Asin B= 5.三角形中最值问题一、求角的三角函数的最值若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 【解析】 由sin A +2sin B =2sin C ,结合正弦定理可得a +2b =2c ,所以cos C =a 2+b 2-c 22ab =3a 2+2b 28ab -24≥6-24( 3 a = 2 b 时取等号),故cos C 的最小值是6-24. 【答案】6-24在△ABC 中,a 2+c 2=b 2+2ac . (1)求B 的大小;(2)求2cos A +cos C 的最大值. 【解】 (1)由余弦定理和已知条件可得 cos B =a 2+c 2-b 22ac =2ac 2ac =22,又因为0<B <π,所以B =π4.(2)由(1)知A +C =3π4,所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A =2cos A -22cos A +22sin A =22cos A +22sin A =cos ⎝⎛⎭⎫A -π4. 因为0<A <3π4,所以当A =π4时,2cos A +cos C 取得最大值1.此类问题主要考查余弦定理、三角形内角和定理、辅助角公式以及三角函数的最值和基本不等式;解此类问题的关键是熟练地运用余弦定理、两角差的正余弦公式以及辅助角公式.二、求边的最值(1)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. (2)如图,四边形ABCD 的对角线交点位于四边形的内部,AB =BC =1,AC =CD ,AC ⊥CD ,当∠ABC 变化时,BD 的最大值为________.【解析】 (1)因为BC sin A =AB sin C =AC sin B =3sin 60°,所以AB =2sin C ,BC =2sin A ,因此AB +2BC =2sin C +4sin A =2sin ⎝⎛⎭⎫2π3-A +4sin A =5sin A +3cos A =27sin(A +φ),因为φ∈(0,2π),A ∈⎝⎛⎭⎫0,2π3,所以AB +2BC 的最大值为27. (2)设∠ACB =θ⎝⎛⎭⎫0<θ<π2,则∠ABC =π-2θ,∠DCB =θ+π2,由余弦定理可知,AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC ,即AC =DC =2+2cos 2θ=2cos θ⎝⎛⎭⎫0<θ<π2,由余弦定理知,BD 2=BC 2+DC 2-2BC ·DC cos ∠DCB ,即BD 2=4cos 2θ+1-2×1×2cos θ·cos ⎝⎛⎭⎫θ+π2=2cos 2θ+2sin 2θ+3=22sin ⎝⎛⎭⎫2θ+π4+3.由0<θ<π2,可得π4<2θ+π4<5π4,则()BD 2max =22+3,此时θ=π8,因此(BD )max =2+1. 【答案】 (1)27 (2)2+1边的最值一般通过三角形中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解.有时也可利用均值不等式求解.三、求三角形面积的最值在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC的面积S =3c ,则ab 的最小值为________.【解析】 在△ABC 中,2c cos B =2a +b ,由正弦定理,得2sin C cos B =2sin A +sinB .又A =π-(B +C ),所以sin A =sin[π-(B +C )]=sin(B +C ),所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,又0<C <π,所以C =23π.由S=3c =12ab sin C =12ab ×32,得c =ab4.由余弦定理得,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号),所以⎝⎛⎭⎫ab 42≥3ab ,得ab ≥48,所以ab 的最小值为48.【答案】 48利用三角函数的有关公式,结合三角形的面积公式及正、余弦定理,将问题转化为边或角的关系,利用函数或不等式是解决此类问题的一种常规方法.[基础题组练]1.(2020·湖北武汉调研测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( )A.π12 B .π6C.π4D .π3解析:选B.因为在△ABC 中,A -B =π2,所以A =B +π2,所以sin A =sin ⎝⎛⎭⎫B +π2=cos B ,因为a =3b ,所以由正弦定理得sin A =3sin B ,所以cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝⎛⎭⎫π6+π2-π6=π6,故选B. 2.(2020·江西上饶一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若2S =(a +b )2-c 2,则tan C 的值是( )A.43 B .34C .-43D .-34解析:选C.因为S =12ab sin C ,c 2=a 2+b 2-2ab cos C ,所以由2S =(a +b )2-c 2,可得ab sin C =(a +b )2-(a 2+b 2-2ab ·cos C ), 整理得sin C -2cos C =2,所以(sin C -2cos C )2=4,所以(sin C -2cos C )2sin 2C +cos 2C =4,sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,化简得3tan 2C +4tan C =0,因为C ∈(0,π), 所以tan C =-43,故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2,所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cosA =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·河北衡水模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且有a =1,3sin A cos C +(3sin C +b )cos A =0,则A =________.解析:由3sin A cos C +(3sin C +b )cos A =0,得3sin A cos C +3sin C cos A =-b cos A ,所以3sin (A +C )=-b cos A ,即3sin B =-b cos A ,又a sin A =b sin B ,所以3cos A =-b sin B =-a sin A ,从而sin A cos A =-13⇒tan A =-33,又因为0<A <π,所以A =5π6. 答案:5π67.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.答案:6 38.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则bc=________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B2=0.因为sin C =sin(A+B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cos A =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以bc=2.答案:29.(2020·河南郑州一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长. 解:(1)因为△ABC 的面积为S =12ac sin B ,sin B =b 24S ,所以4×⎝⎛⎭⎫12ac sin B ×sin B =b 2,所以ac =b22sin 2B, 所以由正弦定理可得sin A sin C =sin 2B 2sin 2B =12.(2)因为4cos A cos C =3,sin A sin C =12,所以cos B =-cos(A +C )=sin A sin C -cos A cos C =12-34=-14,因为b =15,所以ac =b 22sin 2B =b 22(1-cos 2B )=(15)22×⎝⎛⎭⎫1-116=8,所以由余弦定理可得15=a 2+c 2+12ac =(a +c )2-32ac =()a +c 2-12,解得a +c =33,所以△ABC 的周长为a +b +c =33+15.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a 2+c 2-b 2=ab cos A +a 2cosB .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B .由正弦定理,得2sin C cos B =sin B cos A+sin A cos B =sin(A +B )=sin C ,又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈()0,π,所以B =π3.(2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277,所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114. 由正弦定理a sin A =b sin B ,得a =b sin Asin B=27×3211432=6,所以△ABC 的面积为12ab sin C=12×6×27×217=6 3. [综合题组练]1.(2020·安徽六安模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B ,b =4,则△ABC 的面积的最大值为( )A .4 3B .2 3C .2D . 3解析:选A.因为在△ABC 中,2a -c b =cos Ccos B ,所以(2a -c )cos B =b cos C ,所以(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A ,所以cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac ,所以ac ≤16,当且仅当a =c 时取等号,所以△ABC 的面积S =12ac sin B =34ac ≤4 3.故选A.2.(2020·江西抚州二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos A =b cos C +c cos B ,b +c =3,则a 的最小值为( )A .1B . 3C .2D .3解析:选B.在△ABC 中,因为3a cos A =b cos C +c cos B , 所以3sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A , 即3sin A cos A =sin A ,又A ∈(0,π),所以sin A ≠0,所以cos A =13.因为b +c =3,所以两边平方可得b 2+c 2+2bc =9,由b 2+c 2≥2bc ,可得9≥2bc +2bc =4bc ,解得bc ≤94,当且仅当b =c 时等号成立,所以由a 2=b 2+c 2-2bc cos A ,可得a 2=b 2+c 2-23bc =(b +c )2-8bc 3≥9-83×94=3,当且仅当b =c 时等号成立,所以a 的最小值为 3.故选B.3.(2020·湖北恩施2月质检)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos B =13,b =4,S △ABC =42,则△ABC 的周长为________.解析:由cos B =13,得sin B =223,由三角形面积公式可得12ac sin B =12ac ·223=42,则ac =12①,由b 2=a 2+c 2-2ac cos B ,可得16=a 2+c 2-2×12×13,则a 2+c 2=24②,联立①②可得a =c =23,所以△ABC 的周长为43+4.答案:43+44.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc .若a +b =2,则c 的取值范围为________.解析:在△ABC 中,因为(a 2+b 2-c 2)(a cos B +b cos A )=abc , 所以a 2+b 2-c 2ab(a cos B +b cos A )=c ,由正、余弦定理可得2cos C (sin A cos B +sin B cos A )=sin C ,所以2cos C sin(A +B )=sin C ,即2cos C sin C =sin C ,又sin C ≠0,所以cos C =12,因为C ∈(0,π),所以C =π3,B =2π3-A ,所以由正弦定理a sin A =b sin ⎝⎛⎭⎫2π3-A =c 32,可得a =c sin A32,b =c sin ⎝⎛⎭⎫2π3-A 32,因为a +b =2,所以c sin A32+c sin ⎝⎛⎭⎫2π3-A 32=2,整理得c =3sin A +sin ⎝⎛⎭⎫2π3-A =332sin A +32cos A =1sin ⎝⎛⎭⎫A +π6,因为A ∈⎝⎛⎭⎫0,2π3,所以A +π6∈⎝⎛⎭⎫π6,5π6,可得 sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,所以c =1sin ⎝⎛⎭⎫A +π6∈[1,2). 答案:[1,2)5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B ,又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6,即sin B =cos ⎝⎛⎭⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,A =60°. (1)若△ABC 的面积为33,a =13,求b -c ; (2)若△ABC 是锐角三角形,求sin B sin C 的取值范围. 解:(1)由S △ABC =33,得12bc sin A =33,即12bc sin 60°=33,得bc =12.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即b 2+c 2-bc =13, 所以(b -c )2=13-bc =1,所以b -c =1或b -c =-1. (2)因为A =60°,所以B +C =120°,所以C =120°-B . 所以sin B sin C =sin B sin(120°-B )=sin B ⎝⎛⎭⎫32cos B +12sin B =34sin 2B +1-cos 2B 4=12⎝⎛⎭⎫32sin 2B -12cos 2B +12=12sin ()2B -30°+14. 因为△ABC 是锐角三角形,所以C =120°-B <90°,得B >30°, 所以30°<B <90°,则30°<2B -30°<150°, 所以12<sin(2B -30°)≤1,14<12sin(2B -30°)≤12,所以12<12sin(2B -30°)+14≤34,所以sin B sin C 的取值范围是⎝⎛⎦⎤12,34.。

高考数学一轮复习 (基础知识+高频考点+解题训练)正弦定理和余弦定理教学案

高考数学一轮复习 (基础知识+高频考点+解题训练)正弦定理和余弦定理教学案

第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理2.余弦定理3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°解析:选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B, ∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________. 解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2. 答案:25.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3.因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534.答案:1534(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sinAb sin A <a <ba ≥ba >b解的个一解两解一解一解典题导入[例1] (2012·浙江高考)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A =3a cos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B ,所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B, ∴sin A =a sin Bb =3·si nπ33=12.∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sinB +sin B cos 2A = 2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB = 2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A2,cos 2A ,∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sinA sin C -sinB -sinC =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =bc=2,即b =2c .所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b=1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cosπ3=3⇒a = 3. 3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2cb,则C =( ) A .30°B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A , 所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C 是钝角,故△ABC 是钝角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.解析:由正弦定理可知sin B =b sin A a =3sinπ33=12,所以B =π6或5π6(舍去),所以C =π-A -B =π-π3-π6=π2.答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________.解析:根据正弦定理得b sin B =c sin C ,则c =b sin C sin B =22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:2 2 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,解得b =4.答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB .(1)求B ;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6. 11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.解:(1)因为3a -2b sin A =0, 所以 3sin A -2sin B sin A =0, 因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3.(2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6. 又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r|·|AC u u u r |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tanA +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )= tan A tan C , 所以sin B ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sinC . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·n +12+n 2-n +222n n +1,化简得7n2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin2A +B2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72,2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab,ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得 (2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,② 由①②得b =c =3, ∴△ABC 为等边三角形.1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知: sin A =2sin B cos C ,又A =π-(B +C ), ∴sin A =sin(B +C )=2sin B cos C . ∴sin B cos C +cos B sin C =2sin B cos C , ∴sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab ,∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4.由cos 2C =2cos 2C-1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26, 所以⎩⎨⎧b =6,c =4或⎩⎨⎧b =26,c =4.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解:(1)因为cos B =45,所以sin B =35.21 由正弦定理asin A =bsin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B , 得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.。

2017届高三数学一轮复习课件:3-7 正弦定理和余弦定理

2017届高三数学一轮复习课件:3-7 正弦定理和余弦定理

第二十四页,编辑于星期六:点 五十七分。
[规律方法] 与三角形面积有关问题的解题策略 (1)求三角形的面积。对于面积公式 S=12absinC=12acsinB=12bcsinA,一般是 已知哪一个角就使用含哪个角的公式。 (2)已知三角形的面积解三角形。与面积有关的问题,一般要利用正弦定理 或余弦定理进行边和角的互化。
答案:C
第二十九页,编辑于星期六:点 五十七分。
2.(2016·北京东城模拟)在锐角△ABC 中,AB=3,AC=4,S△ABC=3 3, 则 BC=( )
A.5
B. 13或 37
C. 37
D. 13
解析:由 S△ABC=12AB·AC·sin∠BAC=12×3×4×sin∠BAC=3 3,得 sin∠
第十七页,编辑于星期六:点 五十七分。
【微练 1】(1)在△ABC 中,角 A,B,C 所对应的边分别为 a,b,c。已知 bcosC+ccosB=2b,则ab=__________。
(2)在△ABC 中,内角 A,B,C 所对的边分别是 a,b,c。已知 b-c=14a,2sinB =3sinC,则 cosA 的值为__________。
第三章
集合与常用逻辑用语
第一页,编辑于星期六:点 五十七分。
第七节 正弦定理和余弦定理
微知识 小题练 微考点 大课堂 微考场 新提升
第二页,编辑于星期六:点 五十七分。
微知识 小题练
教材回扣 基础自测
第三页,编辑于星期六:点 五十七分。
一、知识清单
微知识❶ 正弦定理和余弦定理
定理
正弦定理
余弦定理
A 为锐角
A 为钝角 或直角
图形
关系式 a<bsinA a=bsinA

广东省高三数学 第6章第1节 正弦定理和余弦定理复习课件 文

广东省高三数学 第6章第1节 正弦定理和余弦定理复习课件 文
考纲要求
高考展望
①掌握正弦定理、余弦 定理,并能解决一些简 单的三角形度量问题. ②能够运用正弦定理、 余弦定理等知识和方法 解决一些与测量和几何 计算有关的实际问题.
解三角形可以看成是三角恒等变换的延续和 应用,用到三角恒等变换的基本方法,同时它是 对正、余弦定理,三角形面积公式等的综合应 用.由于近年高考命题强调以能力立意,加强对 知识综合性和应用性的考查,故三角形问题常常 与其他数学知识相联系,既考查解三角形的知识 与方法,又考查运用三角公式进行恒等变换的技 能及三角函数的应用意识.预计2012年的高考, 一是在小题里考查三角形内的数值关系问题,二 是以解答题形式考查三角形中正、余弦定理和三 角恒等变形、向量等知识的综合运用,三是利用 解三角形解决测量长度、高度、角度等实际问题.
由 A B C , 有 sin B C 2sinBcosC, 展 开 得 sinB cosC cosB sinC 0, 即 sin B C 0.
因 为 B、 C 为 三 角 形 ABC的 内 角 , 则 B C , 所 以 B C 0, 即 B C . 故 可 得 ABC为 等 腰 三 角 形 .
2
32
由 余 弦 定 理 得 a2 b2 2abcos 7, 3
即 a2 b2 ab 7.

由 ② 变 形 得 a b2 3ab 7.

将 ① 代 入 ③ 得 a b 2 25, 故 a b 5.
方法2:前同方法1.
联立①②得a2
b2
ab
7
a2
b2
13,
ab 6
2
2
得 4 cos2 C cos 2C 7 ,
2
2
所 以 4 1 cos C 2 cos 2 C 1 7 ,

高考数学正弦定理和余弦定理知识点复习资料

高考数学正弦定理和余弦定理知识点复习资料

考纲要求
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
考纲研读
会解四种基本类型的斜三角形问题.
(1)已知两角和任一边,求其余两边和一角:可先求出第三角,再利用正弦定理求出其余两边;
(2)已知两边及一边的对角,求其余两角和一边(可能无解或一解或两解):可先利用正弦定理求出另一边的对角,再求出其余边角;
(3)已知两边及其夹角,求第三边和其余两角(有唯一解):可先利用余弦定理求出第三边,再求出其余两角;
(4)已知三边,求三角:可利用余弦定理求出三内角.。

2017版高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理、余弦定理及解三角形课件 理

2017版高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理、余弦定理及解三角形课件 理

(2)由余弦定理得 AC2=BC2+AB2-2AB· BCcos B,即( 7)2=22 +AB2-2×2AB· cos 60°,即 AB2-2AB-3=0,得 AB=3,故 3 3 BC 边上的高是 ABsin 60°= 2 .
5 3 3 答案 (1)7 (2) 2
考点二 利用正、余弦定理判定三角形的形状 【例2】 在△ABC中,a,b,c分别为内角A,B,C的对边,且asin C Nhomakorabeacsin A
1 1 1 abc 1 2.S△ABC= absin C= bcsin A= acsin B= = (a+b+ 2 2 2 4R 2 c)· r(r 是三角形内切圆的半径),并可由此计算 R,r.
3.实际问题中的常用角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线
解析 如图所示,易知,在△ABC 中,AB=20 海里,∠CAB= BC AB 30°,∠ACB=45°,根据正弦定理得 = ,解得 sin 30° sin 45° BC=10 2(海里).
答案 10 2
4.(2016· 淮安质检)已知△ABC 中,内角 A,B,C 所对边长分别 π 为 a,b,c,若 A= 3 ,b=2acos B,c=1,则△ABC 的面积等 于________.
3 4 解析 (1)∵cos A=5,0<A<π,∴sin A=5,又 B=45°, ∴sin C=sin(π-A-B)=sin(A+B) 7 2 b c =sin Acos B+cos Asin B= 10 ,由正弦定理得sin B=sin C, 1 5 b 即 = ,∴b=7. sin 45° 7 2 10

设缉私船应沿 CD 方向行驶 t 小时,才能最快截获(在 D 点)

高考数学一轮总复习 4.6 正弦定理、余弦定理精品课件 理 新人教版

高考数学一轮总复习 4.6 正弦定理、余弦定理精品课件 理 新人教版

1-sin2 A
1
10 2
3
27
= .因此 sin(A-B)=sin Acos B-cos Asin B=
.
答案
答案
(dá àn)
第十二页,共27页。
探究(tànjiū)
突破
方法提炼
(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量
关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.
)
A.直角三角形
B.锐角三角形
C.钝角三角形
D.不确定
关闭
依据题设条件的特点,边化角选用正弦定理,有 sin Bcos C+cos Bsin C=sin2A,
则 sin(B+C)=sin2A,由三角形内角和及互补角的意义,得 sin(B+C)=sin2A=1,关闭
A A=π ,选 A
所以
2
考点(kǎo diǎn)一
diǎn)三
第二十二页,共27页。
探究
(tànjiū)突

解:(1)由已知及正弦定理得
sin A=sin Bcos C+sin Csin B.①
又 A=π-(B+C),故
sin A=sin(B+C)=sin Bcos C+cos Bsin C.②
由①②和 C∈(0,π)得 sin B=cos B,
1
2
(1)S= ah(h 表示边 a 上的高).
1
2
1
2
(2)S= bcsin A= absin C
=
1
acsin
2
1
2
B .
(3)S= r(a+b+c)(r 为△ABC 内切圆半径).

高考数学一轮复习考点知识专题讲解30---正弦定理、余弦定理

高考数学一轮复习考点知识专题讲解30---正弦定理、余弦定理

所以 CD=3+ 3, 又∠ACD=180°-150°=30°,
1
1
1 3( 3+1)
所以 S△ACD=2AC·CD·sin ∠ACD=2×2 3×(3+ 3)×2=
又∠ACB>∠ADC,且∠ADC=45°,所以∠ACB=150°,
在△ABC 中,由余弦定理得 AB2=12+36-2×2 3×6cos 150°=84,所以 AB= 84=2 21.
(2)在△ACD 中,因为∠ACB=150°,∠ADC=45°,
所以∠CAD=105°,
CD
AC
由正弦定理得sin ∠CAD=sin ∠ADC,
(2)设 a=2,c=3,求 b 和 sin (2A-B)的值. ab
[解] (1)在△ABC 中,由正弦定理sin A=sin B,
可得 b sin A=a sin B, π
又由 b sin A=a cos (B-6), π
得 a sin B=a cos (B-6), π
即 sin B=cos (B-6),
所以 CD= 7,所以 AD= 3, 1
所以 S△ABD=2×4× 3×sin ∠DAB= 3.
(1)若已知一个角(角的大小或该角的正弦值、余弦值),一般结合题意求夹这个角的两边 或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公 式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可
C.
①求 A;
②若 2a+b=2c,求 sin C.
(1)A [∵a sin A-b sin B=4c sin C,
∴由正弦定理得 a2-b2=4c2,即 a2=4c2+b2.
b2+c2-a2 b2+c2-(4c2+b2) -3c2 1 b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理和余弦定理02
基础热身
1.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B.60° C.45° D.30°
2.在△ABC 中,若2sin A sin B <cos(B -A ),则△ABC 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形
3.在△ABC 中,下列关系式①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2
=2ab cos C ;④b =c sin A +a sin C 一定成立的有( )
A .1个
B .2个
C .3个
D .4个
4.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,且B 是A 与C 的等差中项,则sin A =________.
能力提升
5.在△ABC 中,a =3+1,b =3-1,c =10,则C =( ) A .150° B.120° C .60° D.30°
6.在△ABC 中,B =π
3,三边长a ,b ,c 成等差数列,且ac =6,则b 的值是( )
A. 2
B. 3
C. 5
D. 6
7.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2
)tan B =3ac ,则角B 的值为( )
A.π12
B.π6
C.π4
D.π3
8.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(3b -c )cos A =a cos C ,则cos A =( )
A.32
B.12
C.
33 D.13
9.已知△ABC 三边长分别为a ,b ,c 且a 2+b 2-c 2
=ab ,则C =________.
10.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a2-b2=3bc,sin C =23sin B,则A=________.
11.△ABC的三内角A,B,C所对边长分别是a,b,c,设向量m=(a+b,sin C),n=(3 a+c,sin B-sin A),若m∥n,则角B的大小为________.
12.(13分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cos C
=1
4
.
(1)求△ABC的周长;
(2)求cos(A-C)的值.
难点突破
13.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足c sin A=a cos C.
(1)求角C的大小;
(2)求3sin A -cos ⎝
⎛⎭⎪⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.
答案解析
【基础热身】
1.B [解析] S =12BC ·CA ·sin C ⇒33=12×4×3×sin C ⇒sin C =3
2
,注意到其是锐角
三角形,故C =60°.
2.B [解析] 依题意,sin A sin B <cos A cos B ,所以cos(A +B )>0,0<A +B <π
2
,△ABC 的形
状是钝角三角形.
3.C [解析] 由正、余弦定理知①③一定成立,对于②,由正弦定理知sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立.对于④,由正弦定理得sin B =sin C cos A +sin A cos C ,则b =c sin A +a sin C 不一定成立.
4.12 [解析] 由已知B =60°,由正弦定理得sin A =a sin B b =32×3=12
. 【能力提升】
5.B [解析] 用余弦定理,cos C =a 2+b 2-c 22ab

3+
2
+3-
2
-10
2
3+
3-
=-
12
. ∴C =120°.故选B.
6.D [解析] a +c =2b ,根据余弦定理cos B =a 2+c 2-b 22ac =a +c 2-2ac -b 22ac ,即1
2

3b 2
-12
12
,解得b = 6. 7.D [解析] ∵(a 2
+c 2
-b 2
)tan B =3ac ,∴a 2+c 2-b 22ac ·tan B =3
2
,即cos B ·tan B =sin B

3
2
. ∴在锐角△ABC 中,角B 的值为π
3
.
8.C [解析] 将正弦定理代入已知等式,得 (3sin B -sin C )cos A =sin A cos C , ∴3sin B cos A =sin A cos C +cos A sin C =sin(A +C )=sin B ,
∵B 为三角形内角,∴sin B ≠0,∴cos A =3
3
.故选C.
9.π3 [解析] 由条件得c 2=a 2+b 2-ab ,又c 2=a 2+b 2-2ab cos C ,∴c 2=a 2+b 2
-2ab cos C =a 2+b 2
-ab ,
∴cos C =12,C =π
3
.
10.30° [解析] 由sin C =23sin B 得c =23b ,所以cos A =b 2+c 2-a 2
2bc

b 2+
c 2-b 2+3bc 2bc =c 2-3bc 2bc =C -3b 2b =23b -3b 2b =3
2
,所以A =30°.
11.150° [解析] 由m ∥n ,∴(a +b )(sin B -sin A )-sin C (3a +c )=0,由正弦定理
有(a +b )(b -a )=c (3a +c ),即a 2
+c 2
-b 2
=-3ac ,再由余弦定理得cos B =-
32

∴B =150°.
12.[解答] (1)∵c 2=a 2+b 2
-2ab cos C =1+4-4×14
=4,
∴c =2,
∴△ABC 的周长为a +b +c =1+2+2=5.
(2)∵cos C =14,∴sin C =1-cos 2
C =1-⎝ ⎛⎭⎪⎫142=154,
∴sin A =a sin C c =15
42=15
8
.
∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2
A =
1-⎝
⎛⎭⎪⎫1582=7
8
. ∴cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=11
16
.
【难点突破】
13.[解答] (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0. 从而sin C =cos C .
又cos C ≠0,所以tan C =1,则C =π
4
.
(2)由(1)知,B =3π
4-A ,于是
3sin A -cos ⎝
⎛⎭⎪⎫B +π4=3sin A -cos(π-A )
=3sin A +cos A =2sin ⎝
⎛⎭⎪⎫A +π6.
因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝
⎛⎭⎪⎫A +π6取最大
值2.
综上所述,3sin A -cos ⎝
⎛⎭⎪⎫B +π4的最大值为2,此时A =π3,B =5π12.。

相关文档
最新文档