高考数学专题讲解:正余弦定理解三角形

合集下载

正弦定理、余弦定理及其应用-高考数学【解析版】

正弦定理、余弦定理及其应用-高考数学【解析版】

专题24 正弦定理、余弦定理及其应用近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一)正弦、余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则 定理正弦定理余弦定理内容2sin sin sin a b cR A B C=== a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B , c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C =asin A=2R cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2. 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边、或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B C a A=3.余弦定理的变式应用:公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角 (二)三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).(三)常用结论 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.三角形中的大角对大边在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 5.海伦公式:()()()()1,2S p p a p b p c p a b c =---=++ 6.向量方法:()()2212S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==- ()()221cos 2S ab ab C ∴=-cos a b ab C ⋅=∴ ()()2212S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 7.三角形内角和A B C π++=(两角可表示另一角).()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-8.三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴= EDA DAC ∠=∠ BBEAD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=(四)测量中的几个常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是[0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡度坡面与水平面所成锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平宽度之比叫坡度(坡比),即i =hl=tan θ135°的始边是指北方向线,始边顺时针方向旋转135°得到终边;方向角南偏西30°的始边是指南方向线,向西旋转30°得到终边.【典型考题解析】热点一 利用正、余弦定理解三角形【典例1】(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1 B 2C 5D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【典例2】(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3 B .13- C .3或13-D .-3或13【答案】A 【解析】 【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得22sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.【典例3】(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ;(2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】 【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.【总结提升】1.解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解 2.解三角形的常见题型及求解方法(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.热点二 三角形面积问题【典例4】(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】5(2)22. 【解析】 【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及45a c =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积. (1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为45a c =, 由正弦定理知4sin 5A C ,则55sin A C ==(2)因为45a c =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=. 【典例5】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积; (2)若2sin sin A C =,求b .【答案】2 (2)12 【解析】 【分析】(1)先表示出123,,S S S ,再由1233S S S -+=2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.(1)由题意得222212313333,,2S a S S =⋅===,则2221233333S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则2122cos 13B ⎛⎫=- ⎪⎝⎭132cos ac B ==12sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a c B A C ==,则223294sin sin sin sin sin 42b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==. 【规律方法】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 热点三 三角形的周长问题【典例6】(2022·北京·高考真题)在ABC 中,sin 23C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为3ABC 的周长. 【答案】(1)6π(2)663 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >32sin cos C C C =, 可得3cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 6322ABCSab C a ===3a = 由余弦定理可得22232cos 4836243612c a b ab C =+-=+-⨯=,23c ∴= 所以,ABC 的周长为36a b c ++=.【典例7】(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 【规律方法】求边,就寻求与该边(或两边)有关联的角,利用已知条件列方程求解.【典例7】反映的“整体代换”思想,具有一定的技巧性. 热点四 判断三角形的形状【典例8】(2020·海南·高考真题)在①3ac ①sin 3c A =,①3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理 由sin 3sin AB 可得:3ab=()3,0a m b m m ==>, 则:22222232cos 323c a b ab C m m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2333ac m m m =⨯==1m ∴=,此时1c m ==. 若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:213sin 12A ⎛⎫=-- ⎪⎝⎭3sin 3c A m ==,则:23c m ==若选择条件③: 可得1c mb m==,c b =,与条件3=c b 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B ,得5sin 36B B π⎛⎫-= ⎪⎝⎭,即13cos 32B B B =, 得3tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得3a c =. 解得1,3c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得3c =23b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得36a c ==. 所以,选条件②时问题中的三角形存在,此时23c =.若选择条件③:由于3c b 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.【典例9】(2020·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将3b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①, 又3b c -=②, 将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =, 所以3a c =, 故222b a c =+, 即ABC 是直角三角形. 【总结提升】1.判定三角形形状的两种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 3.确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个.由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个.其原因在于当使用正弦定理求B 时,sin sin sin sin a b b A B A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一.(判定是否唯一可利用三角形大角对大边的特点)热点五 正弦定理、余弦定理实际应用【典例10】(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A.【典例11】(2021·全国·高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-3 1.732≈)( )A .346B .373C .446D .473【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案. 【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【典例12】(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m²) 【答案】(1)23.3m(2)当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 【解析】 【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD ==,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值. (1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯ 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADEDEFS S Sθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan θ=时取得等号,此时315tan 15538.7AE θ===≈ 即当3tan θ=时,梯形AEFD 2253则此时梯形FEBC 的面积有最大值22531530255.14⨯≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 热点五 平面几何中的解三角形问题【典例13】(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =AC =___________,cos MAC ∠=___________. 【答案】 13239【解析】 【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以13AC =在AMC 中,由余弦定理得222239cos 2223213AC AM MC MAC AM AC +-∠=⋅⨯⨯. 故答案为:213239【典例14】(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C (2)2tan 11DAC ∠=.【解析】 【分析】(1)方法一:利用余弦定理求得b ,利用正弦定理求得sin C .(2)方法一:根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值. 【详解】(1)[方法一]:正余弦定理综合法由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b = 由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. [方法二]【最优解】:几何法过点A 作AE BC ⊥,垂足为E .在Rt ABE △中,由2,45c B,可得1AE BE ==,又3a =,所以2EC =.在Rt ACE 中,225AC AE EC =+5sin 5C ==(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =- 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=所以sin 2tan cos 11DAC DAC DAC ∠∠==∠. [方法二]【最优解】:几何法+两角差的正切公式法在(1)的方法二的图中,由4cos 5ADC ∠=-,可得4cos cos()cos 5ADE ADC ADC π∠=-∠=-∠=,从而4sin 4sin cos ,tan 5cos 3DAE DAE ADE DAE DAE ∠∠=∠=∠==∠.又由(1)可得tan 2EC EAC AE ∠==,所以tan tan 2tan tan()1tan tan 11EAC EAD DAC EAC EAD EAC EAD ∠-∠∠=∠-∠==+∠⋅∠.[方法三]:几何法+正弦定理法在(1)的方法二中可得1,2,5AE CE AC === 在Rt ADE △中,45,cos sin 3AE AD ED AD ADE ADE ===∠=∠,所以23CD CE DE =-=. 在ACD △中,由正弦定理可得25sin sin CD DAC C AD ∠=⋅=, 由此可得2tan 11DAC ∠=. [方法四]:构造直角三角形法如图,作AE BC ⊥,垂足为E ,作DG AC ⊥,垂足为点G .在(1)的方法二中可得1,2,5AE CE AC ===由4cos 5ADC ∠=-,可得243cos ,sin 1cos 55ADE ADE ADE ∠=∠=-∠.在Rt ADE △中,22542,,sin 333AE AD DE AD AE CD CE DE ADE ==-==-=∠.由(1)知5sin C =Rt CDG △中,222545sin DG CD C CG CD DG =⋅==-=,从而115AG AC CG =-=在Rt ADG 中,2tan 11DG DAG AG ∠==. 所以211DAC ∠=. 【整体点评】(1)方法一:使用余弦定理求得5b =sin C ;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得DAC ∠的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得DAC ∠的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有DAC ∠的直角三角形,进而求解,也是很优美的方法. 【典例15】(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC 的周长为423+ 条件③:ABC 33【答案】(1)6π;(2)答案不唯一,具体见解析. 【解析】 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 23sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得3sin 231sin 2c Cb B=== 与2c b =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin33c R R π=, 则周长23423a b c R R ++==+ 解得2R =,则2,23a c ==由余弦定理可得BC 边上的中线的长度为:()222312231cos76π+-⨯⨯⨯若选择③:由(1)可得6A π=,即a b =,则211333sin 22ABCSab C a ===,解得3a = 则由余弦定理可得BC 边上的中线的长度为:22233212cos 3322342a a b b π⎛⎫+-⨯⨯⨯++⨯= ⎪⎝⎭【总结提升】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系. 具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.【精选精练】一、单选题1.(2022·贵州贵阳·高三开学考试(文))“云楼”是白云区泉湖公园的标志性建筑,也是来到这里必打卡的项目之一,它端坐于公园的礼仪之轴,建筑外形主体木质结构,造型独特精巧,是泉湖公园的“阵眼”和“灵魂”,同时也是泉湖历史与发展变化的资料展示馆.小张同学为测量云楼的高度,如图,选取了与云楼底部D 在同一水平面上的A ,B 两点,在A 点和B 点测得C 点的仰角分别为45°和30°,测得257AB =150ADB ∠=︒,则云楼的高度CD 为( )A .20米B .25米C .7D .257【答案】B【分析】设CD x =,由锐角三角函数得到AD x =,3BD x =,再在ABD △中利用余弦定理求出x ,即可得解.【详解】解:依题意45CAD ︒∠=,30CBD ︒∠=, 设CD x =,在Rt ACD △、Rt BCD 中,tan 1CD CAD AD∠==,3tan 3CD CBD BD ∠==,所以AD x =,3BD x =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB =+-⋅∠, 即()()22232573232x x x x ⎛⎫=+-⋅⋅- ⎪ ⎪⎝⎭,解得25x =或25x =-(舍去), 所以云楼的高度CD 为25米; 故选:B2.(2022·河南·郑州四中高三阶段练习(文))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos ,,cos 22B C n b p c ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭共线,则ABC 的形状为( )A .等边三角形B .钝角三角形C .有一个角是6π的直角三角形 D .等腰直角三角形【答案】A【分析】由向量共线的坐标运算可得cos cos 22B Aa b =,利用正弦定理化边为角,再展开二倍角公式整理可得sinsin 22A B=,结合角的范围求得A B =,同理可得B C =,则答案可求. 【详解】向量(,cos )2A m a =,(,cos )2B n b =共线,cos cos 22B A a b ∴=,由正弦定理得:sin cos sin cos 22B A A B =, 2sincos cos 2sin cos cos 222222A A B B B A ∴=,则sin sin 22A B=, 022A π<<,022B π<<,∴22A B =,即A B =.同理可得B C =.ABC ∴形状为等边三角形.故选:A .3.(2022·安徽蚌埠·一模)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即ABC ∠)约为33.65,夏至正午太阳高度角(即ADC ∠)约为80.51.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为( )(已知229tan33.65,tan80.5135≈≈)A .4.36米B .4.83米C .5.27米D .5.41米【答案】C【分析】由题意可求出35,229BC AC CD AC ==,再由BD 的长为7米,求出AC ,即可得出答案. 【详解】由图可知229tan33.65,tan80.5135AC AC BC CD =≈=≈, 所以35,229BC AC CD AC ==, 得3577587 5.272295811BD AC AC AC ⎛⎫=-==⇒=≈ ⎪⎝⎭. 故选:C. 二、多选题4.(2022·吉林·延边第一中学高一期中)下列命题错误的是( ) A .三角形中三边之比等于相应的三个内角之比 B .在ABC 中,若sin sin A B >,则A B >C .在ABC 的三边三角共6个量中,知道任意三个,均可求出剩余三个D .当2220b c a +->时,ABC 为锐角三角形;当2220b c a +-=时,ABC 为直角三角形;当2220b c a +-<时,ABC 为钝角三角形 【答案】ACD【分析】对于ACD ,举例判断,对于B ,利用正弦定理结果合三角形的性质判断.【详解】对于A ,等腰直角三角形的三边比为1:1:2,而三个内角的比为1:1:2,所以A 错误, 对于B ,在ABC 中,当sin sin A B >时,由正弦定理可得a b >,因为在三角形中大边对大角,所以A B >,所以B 正确,对于C ,在ABC 中,若三个角,,A B C 确定,则这样的三角形三边无法确定,这样的三角形有无数个,所以C 错误,对于D ,在ABC 中,2220b c a +->时,由余弦定理可知角A 为锐角,而角,B C 的大小无法判断,所以三角形的形状无法判断,所以D 错误, 故选:ACD5.(2021·黑龙江黑河·高二阶段练习)在ABC 中,已知2,3,AB AC AD ==是角A 的平分线,则AD 的长度可能为( ) A .2.1 B .2.2 C .2.3 D .2.4【答案】ABC【分析】过C 作//CE AB 交AD 延长线于E ,由题设可得3AC EC ==且ADB EDC ,进而有23AD ED =,令2AD x =并在ACE 中应用余弦定理求x 范围,即可得AD 范围. 【详解】过C 作//CE AB 交AD 延长线于E ,又AD 是角A 的平分线,得CAE BAE E ∠=∠=∠,故3AC EC ==, 而ADB EDC ,则23AD AB ED EC ==, 令2AD x =,则5AE x =,在ACE 中,22221825cos (1,1)218AC EC AE x ACE AC EC +--∠==∈-⋅, 可得605x <<,则122(0,)5AD x =∈,故A 、B 、C 满足要求.故选:ABC6.(2022·吉林·长春市第二实验中学高一期末)中国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦S 为三角形的面积,a 、b 、c 为三角形的三边).现有ABC 满足::2:7a b c =ABC 的面积63ABC S =△列结论正确的是( ) A .ABC 的最短边长是2 B .ABC 的三个内角满足2A B C +=C .ABC 221D .ABC 的中线CD 的长为32【答案】BC【分析】依题意设2a t =,3b t =,7c t =(0t >),利用面积公式求出t ,即可求出边长,从而判断A ,再由余弦定理求出C ,即可判断B ,利用正弦定理求出外接圆的半径,即可判断C ,最后由数量积的运算律求出中线CD ,即可判断D.【详解】解:由::2:3:7a b c =,设2a t =,3b t =,7c t =(0t >),因为63ABC S =△,所以2222221749637442t t t t t ⎡⎤⎛⎫+-=+-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,解得2t =,则4a =,6b =,27c =,故A 错误;因为2221636281cos 22462a b c C ab +-+-===⨯⨯,所以π3C =,π2ππ233A B C +=-==,故B 正确; 因为π3C =,所以3sin 2C =,由正弦定理得4212sin 3c R C ==,2213R =,故C 正确; ()12CD CA CB =+,所以()22111361624619442CD CA CB ⎛⎫=+=⨯++⨯⨯⨯= ⎪⎝⎭,故19CD =,故D 错误.故选:BC . 三、填空题7.(2022·贵州·贵阳乐湾国际实验学校高三开学考试(理))在ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且42c =B =4π,若ABC 的面积S =2,则b =___________. 【答案】5【分析】先由面积公式计算1a =,再利用余弦定理计算5b =. 【详解】由三角形面积公式,1sin 22S ac B ==, 所以,1a =.由余弦定理,2222cos 25b a c ac B =+-=.所以,5b =. 故答案为:5.8.(2022·全国·高三专题练习)在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________. 【答案】等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】由余弦定理,222222cos 2cos 2b c a A bbc a c b B aac+-==+-,化简得22222()()0a b c a b ---=, ∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形. 故答案为:等腰三角形或直角三角形 四、解答题9.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3sin cos 0a B b A -=.(1)求A ; (2)若3c =3a =ABC 的面积. 【答案】(1)6A π=(2)338【分析】(1)由正弦定理将已知式子统一成角的形式,然后化简可求出角A ; (2)利用余弦定理求出b ,再利用三角形的面积公式可求得结果. (1)因为3sin cos 0a B b A -=所以由正弦定理得3sin sin sin cos A B B A =, 因为()0,B π∈,所以sin 0B ≠, 所以3sin cos A A =,即3tan 3A =, 又因为()0,A π∈,所以6A π=.(2)。

正弦定理、余弦定理及解三角形

正弦定理、余弦定理及解三角形

第15页
返回目录
结束放映
考点突破 考点四 正、余弦定理在实际问题中的应用
训练 4 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30°的方向 上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向上, 仰角为 30°,则此山的高度 CD=________m.
∴sin B= 1-cos2B
=2 3
2×79-13×4
9
2=1027
2 .
第3页
返回目录
结束放映
考点突破 考点一 利用正、余弦定理解三角形
规律方法
(1)解三角形时,如果式子中含有角的余弦或边的二次式,要 考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则 考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有 可能用到.
=sin∠6(海AB里C)=.ACsBinC120°=2×623= 22. ∴∠ABC=45°,易知 CB 方向与正北方向垂直,
从而∠CBD=90°+30°=120°.在△BCD 中,根据正弦定理,可得 sin∠BCD=BDsinC∠D CBD=10t·1s0in31t20°=12, ∴∠BCD=30°,∠BDC=30°,∴BD=BC= 6(海里),
则有 10t= 6,t=106≈0.245 小时=14.7 分钟.
故缉私船沿北偏东 60°方向,需 14.7 分钟才能追上走私船.
第14页
返回目录
结束放映
考点突破 考点三 和三角形面积有关的问题
规律方法
解三角形应用题的两种情形: (1)实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理求解; (2)实际问题经抽象概括后,已知量与未知量涉及到两个或 两个以上的三角形,这时需作出这些三角形,先解够条件的三角 形,然后逐步求解其他三角形,有时需设出未知量,从几个三角 形中列出方程(组),解方程(组)得出所要求的解.

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。

本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。

一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。

正弦定理可以从三角形的面积公式推导得出。

二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。

余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。

三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。

那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。

在计算三角形的面积时,还可以使用海伦公式。

海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。

总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。

正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。

这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。

高三数学 正余弦定理、解斜三角形 知识精讲 通用版

高三数学 正余弦定理、解斜三角形 知识精讲 通用版

高三数学 正余弦定理、解斜三角形 知识精讲 通用版【本讲主要内容】一. 本周教学内容:正余弦定理、解斜三角形【知识掌握】【知识点精析】1. 三角形面积计算公式:设△ABC 的三边为a 、b 、c ,三个内角分别为A 、B 、C ,高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r 。

(1)S △=12ah a =12bh b =12ch c(2)S △=12absinC=12acsinB=12cbsinA(3)S △=Pr (其中P 为周长之半,r 为内切圆半径)(4)S ABC =∆ 2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin (=2R )。

(其中R 为外接圆半径)利用正弦定理,可以解决以下两类有关三角形的问题。

(1)已知两角和任一边,求其两边和一角;(2)已知两边和其中一边的对角,求另一边的对角。

(从而进一步求出其的边和角)3. 余弦定理:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bccosA ;① b 2=c 2+a 2-2cacosB ;② c 2=a 2+b 2-2abcosC 。

③在余弦定理中,令C=90°,这时cosC=0,所以c 2=a 2+b 2。

由此可知余弦定理是勾股定理的推广。

由①②③可得:cosA=bc a c b 2222-+;cosB=cab ac 2222-+;cosC=abc b a 2222-+。

利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其它两个角。

4. 强调几点:(1)利用余弦定理判定△ABC 的形状:⇔+=222b a c △ABC 为直角△⇔A+B=2π2c <⇔+22b a △ABC 为钝角△⇔A+B <2π 2c >⇔+22b a △ABC 为锐角△⇔A+B >2π(2)三角形的四个“心”:重心:三角形三条中线交点。

高考数学解三角形:正余弦定理专题(四)

高考数学解三角形:正余弦定理专题(四)

(Ⅰ)已知: a 边和 b 边的长度。
(Ⅱ)已知: A 角。 A 角的已知方法有四种:
①已知 A 角的大小;
②已知 sin A 的值;
③已知 cos A 的值;
④已知 tan A 的值。
解法设计:第一步:计算 sin A 的值。
①已知 A 角的大小,计算 sin A 的值。如下表所示:
3
A
300
450
方法三:钝角占位法。
(Ⅰ)钝角未出现时:已知正弦的角是锐角或者钝角,需要分类讨论;
(Ⅱ)钝角已经出现时:已知正弦的角是锐角。
题型使用知识点八:三角形面积公式。
S ① ABC
1 2
ab sin C
S ② ABC
1 2
ac sin
B
S ③ ABC
1 bc sin 2
A
第二部分:题型结构和解法剖析
题型:在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c 。
第三步:计算 B 的大小, cos B 的值, tan B 的值。
①通过第二步计算的 sin B 的值计算 B 角的大小。
根据大边对大角判断角 B 的锐钝角。
第一种情况: b a B A B 不是最大角 B 是锐角:如下表所示:
sin B 的值
1
2
3
2
2
2
B 角的大小:单位 0
300
450
A
300
450
600
1200
1350
sin A
1
2
2
3
3
2
2
2
2
2
cos A
3
2
2 2

高三第一轮复习正弦定理、余弦定理与三角形面积公式

高三第一轮复习正弦定理、余弦定理与三角形面积公式

解斜三角形正弦定理、余弦定理与三角形面积公式【提纲挈领】主干知识归纳ABC ∆的6个基本元素:C B A c b a ,,,,,.其中三内角C B A ,,所对边边长分别为c b a ,,.1.正弦定理R CcB b A a 2sin sin sin ===(其中R 是ABC ∆的外接圆的半径)变式:C R c B R b A R asin 2,sin 2,sin 2===2.余弦定理A bc c b a cos 2222-+=,B ca a c b cos 2222-+=,C ab b a c cos 2222-+=. 变式:abc a b C ac b a c B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.3.三角形面积公式 (1).sin sin sin 2sin 21sin 21sin 212C B A R B ac A bc C ab S ABC====∆ (2)秦九韶—海伦公式:,))()((c p b p a p p S ABC ---=∆其中2cb a p ++=. 方法规律总结1.基本量观念:ABC ∆的6个基本元素:C B A c b a ,,,,,.已知三个基本量(至少一个为边)确定一个三角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换.2.方程观念:正余弦定理和面积公式是方程的粗坯,是解三角形的依据,从三角形6个基本元素来说是“知三求三”.有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边)的关系,归结为三角方程. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.3.转化思想:利用正余弦定理实现边角间的相互转化.4.利用正弦定理解三角形主要是以下两类:(1)已知两边和一对角;(2)已知两角和一边. 利用余弦定理解三角形主要是以下两类:(1)已知三边;(2)已知两边及其夹角. 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化.【指点迷津】【类型一】定理的推导与证明 【例1】(2011陕西理18)叙述并证明余弦定理.【解析】: 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍.或:在∆ABC 中,a,b,c 为A,B,C 的对边,有2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-证法一 如图2a BC BC =•u u u v u u u v()()AC AB AC AB =-•-u u u v u u u v u u u v u u u v222AC AC AB AB =-•+u u u v u u u v u u u v u u u v222cos b bc A c =-+即2222cos ab c bc A =+-同理可证2222cos b a c ac B =+-2222cos c a b ab C =+-证法二 已知∆ABC 中A,B,C 所对边分别为a,b,c,以A 为原点,AB 所在直线为x 轴,建立直角坐标系,则(cos ,sin),(,0)C b A b A B c ,2222(cos )(sin )a BC b A c b A ∴==-+22222cos 2cos sin b A bc A c b A =-++ 2222cos b a c ac B =+-同理可证2222222cos ,2cos .b c a ca B c a b ab C =+-=+-【类型二】解三角形【例1】【2015湖南,文17】设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(I )证明:sin cos B A =;(II) 若3sin sincos 4C A B -=,且B 为钝角,求,,A B C . 【解析】:(I )由题根据正弦定理结合所给已知条件可得sin sin cos sin A AA B=,所以sin cos B A = ;(II)222AC AC AB COSA AB=-•+u u u v u u u v u u u v u u u v根据两角和公式化简所给条件可得3sin sin cos cos sin 4C A B A B -==,可得23sin 4B =,结合所给角B 的范围可得角B,进而可得角A,由三角形内角和可得角C.【答案】(I )略;(II)30,120,30.A B C ===o o o【例2】[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值; (2)cos(B -C )的值.[解析]:(1)由BA →·BC →=2得c ·a ·cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B ,又b =3,所以a 2+c 2=9+2×2=13. 解⎩⎨⎧ac =6,a 2+c 2=13,得⎩⎨⎧a =2,c =3或⎩⎨⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-()132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.[答案](1)a =3,c =2.(2)2327. 【例3】【2015安徽,理16】在ABC ∆中,3,6,324A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.【答案】10【类型三】三角形的面积【例1】(2013年课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为 ( )A .2+2B .+1C .2-2D .-1【解析】:由正弦定理有224sin6sin2=⇒=c c ππ,又462)]46(sin[sin +=+-=πππA ,所以1346222221sin 21+=+⨯⨯⨯==∆A bc S ABC . 答案:B【例2】【2015天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【例3】[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sinA -sinB )=(c -b )sinC ,则△ABC 面积的最大值为________.[解析]: 根据正弦定理和a =2可得(a +b )(a -b )=(c -b )c ,故得b 2+c 2-a 2=bc ,根据余弦定理得cos A =b 2+c 2-a 22bc =12,所以A =π3.根据b 2+c 2-a 2=bc 及基本不等式得bc ≥2bc -a 2,即bc ≤4,所以△ABC 面积的最大值为12×4×32= 3.答案:3【同步训练】【一级目标】基础巩固组 一、选择题1设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos A =b c <,则b =( )A 3B .2C .22D .3【解析】由余弦定理得:2222cos a b c bc =+-A ,所以(2223223223b b =+-⨯⨯即2680bb -+=,解得:2b =或4b =,因为bc <,所以2b =,故选B .【答案】B2.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A .3 B.9 32 C.3 32D .3 3【解析】:由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC =12ab sin C =3 32.答案:C3. 在△ABC 中,角A 、B 、C 所对应的边为c b a ,,,若c b A3,31cos ==,则C sin 的值为( )A .31 B .32C .322 D.33【解析】:由.,cos 23,31cos 222222c b a A bc c b a c b A -=-+===得及 故△ABC 是直角三角形,且,2π=B 所以31cos sin ==A C .答案:A4.[2014·新课标全国卷Ⅱ] 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1【解析】:根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =1+2-2×1×2×22=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =1+2-2×1×2×⎝⎛⎭⎫-22= 5. 答案:B5.在OAB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅OB OA ,则OAB∆的面积为( )A .3 B .23C .35 D.235【解析】:由条件知,21cos ,5,2-=∠==AOB OB OA 所以235235221=⨯⨯⨯=∆OAB S .答案:D 二、填空题6.【2015福建,理12】若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________.【答案】77.【2015北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】18.[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【解析】:因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S=12|AB →|·|AC →|sin A =12×23×sin π6=16. 答案:16三、解答题9.【2015新课标1,文17】已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若ab =,求cos ;B(II )若90B=o ,且a = 求ABC ∆的面积.【解析】:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积. 试题解析:(I )由题设及正弦定理可得22b ac =.又ab =,可得2bc =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222ac ac +=,得c a ==所以D ABC 的面积为1. 【答案】(I )14(II )1 10. 【2015浙江,文16】在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.【解析】(1)利用两角和与差的正切公式,得到1tan3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin CA B A B A B =+=+=,所以11sin 3922ABCS ab C ∆==⨯⨯=. 【答案】(1)25;(2)9【二级目标】能力提升题组一、选择题1.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22ab -=,sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150【解析】由由正弦定理得2c c R =⇒=,所以cosA=222+c -a 2b bc ==A=300答案:A2.[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤24[解析]: 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sinA sinB sinC ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sin A sin B sin C =R 3≥8.答案:A 二、填空题3.【2015广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,1sin 2B =,6C =π,则b = .【答案】1. 三、解答题4. 【2015山东,文17】ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知36cos ()23B A B ac =+==求sin A 和c 的值. 【解析】在ABC ∆中,由3cos B =6sin B =因为A B C π++=,所以6sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,3cos 9C =, 因此sin sin()sin cos cos sin A B C B C B C =+=+65336223=+=.由,sin sin a cA C =可得22sin 323sin 6cc A a c C ===,又23ac =1c =. 22【高考链接】1. (2016年全国II 理13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若135cos ,54cos ==C A ,a =1,则b = .【解析】:由余弦定理有⎪⎪⎩⎪⎪⎨⎧-+=-+=b c b bcc b 2113521542222,解得1321=b . 【答案】1321=b2. 【2015浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值.【答案】(1)2;(2)3b=.3.【2015江苏,15】在ABC ∆中,已知ο60,3,2===A AC AB.(1)求BC 的长; (2)求C 2sin 的值.因此212743sin 2C 2sin Ccos C 27==⨯⨯=. 【答案】(1)7;(2)43 4. 【2015新课标2,理17】ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin B C∠∠; (Ⅱ)若1AD =,2DC =,求BD 和AC 的长.【答案】(Ⅰ)12;(Ⅱ)1,2==AC BD .。

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。

本文将对这两个定理进行详细总结与讲解。

一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。

1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。

二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。

这个过程较为繁琐,这里就不做详细讲解。

2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。

三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。

3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。

3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。

3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。

而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。

高考数学一轮复习正弦定理余弦定理及解三角形课件理

高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7

7 14 .
基础诊断 考点突破
课堂总结

Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题讲解:正余弦定理解三角形【训练一】:【2019年高考理科数学新课标Ⅰ卷第17题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

设C B A C B sin sin sin )sin (sin 22-=-。

(Ⅰ)求A ;(Ⅱ)若c b a 22=+,求C sin 。

【本题解析】:(Ⅰ)-=-+⇒-=-A C B C B C B A C B 22222sin sin sin 2sin sin sin sin sin )sin (sin32122cos 2sin sin 222222222π=⇒==-+=⇒=-+⇒-=-+⇒A bc bc bc a c b A bc a c b bc a bc c b C B 。

(Ⅱ)C C A C B C B A c b a sin )sin(26sin sin 232sin 2sin sin 222=++⇒=+⨯⇒=+⇒=+ C C C C C C A C C A cos 23sin 2326sin 2sin 21cos 2326sin 2cos sin cos sin 26-=⇒=++⇒=++⇒22)6sin()cos 6sin sin 6(cos 326)cos 21sin 23(326=-⇒-=⇒-=⇒πππC C C C C 第一种情况:41256446πππππππ=--=⇒=+=⇒=-C A B C C 426222123224cos 6sin 6cos 4sin )64sin(125sinsin +=⨯+⨯=+=+==πππππππC ; 第二种情况:41211643436πππππππ-=--=⇒=+=⇒=-C A B c C 这种情况不成立。

【训练二】:【2019年高考文科数学新课标Ⅰ卷第11题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

已知:C c B b A a sin 4sin sin =-,41cos -=A ,则=cb( )A 、6B 、5C 、4D 、3 【本题解析】:2224sin 4sin sin c b a C c B b A a =-⇒=-;根据余弦定理得到:bc c b bc c b A bc c b a 21)41(2cos 22222222++=-⨯-+=-+=,2224c b a =-666321421222222=⇒=⇒=⇒=⇒=-++⇒cbc b c bc c bc c b bc c b 。

【训练三】:【2019年高考理科数学新课标Ⅱ卷第15题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

若6=b ,c a 2=,3π=B 。

则ABC ∆的面积为 。

【本题解析】:根据余弦定理得到:2222223362122436cos 2c c c c c B ac c a b =⇒⨯⨯⨯-+=⇒-+=3623323421sin 2134232122=⨯⨯⨯==⇒==⇒=⇒=⇒∆B ac S c a c c ABC 。

【训练四】:【2019年高考文科数学新课标Ⅱ卷第15题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

已知:0cos sin =+B a A b ,则=B 。

【本题解析】:B B B B B A A B B a A b cos sin 0cos sin 0cos sin sin sin 0cos sin -=⇒=+⇒=+⇒=+431tan 1cos sin π=⇒-=⇒-=⇒B B B B 。

【训练五】:【2019年高考数学新课标Ⅲ卷理科第18题文科第18题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

已知:A b CA a sin 2sin =+。

(Ⅰ)求B ;(Ⅱ)若ABC ∆为锐角三角形,且1=c 。

求ABC ∆面积的取值范围。

【本题解析】:(Ⅰ)B CA ABC A A A b C A a sin 2sin sin sin 2sin sin sin 2sin=+⇒=+⇒=+ 362212sin 2sin 212cos 2sin 22cos )22sin()22sin(πππ=⇒=⇒=⇒=⇒=⇒⋅=-⇒B B B B B B B B B 。

(Ⅱ)根据正弦定理得到:CBC C B C C B C A C A c a C c A a sin cos sin cos sin sin )sin(sin sin sin sin sin sin +=+===⇒= 21tan 23cos tan sin +=+=C B C B 。

C A C A B -=⇒=+⇒=32323πππ,锐角三角形 )2,0(32)2,0(πππ∈-⇒∈⇒C A )32,6(ππ∈⇒C ,),33(tan )2,6()2,0(+∞∈⇒∈⇒∈C C C πππ)2,21()2,21(21tan 23)23,0(tan 23∈⇒∈+⇒∈⇒a C C 。

a a B ac S ABC 4323121sin 21=⨯⨯==∆; )23,83()23,83(43)2,21(∈⇒∈∈∈∆ABC S a a 。

【训练六】:【2019年高考数学北京卷理科第15题文科第15题】在ABC ∆中,3=a ,2=-c b ,21cos -=B .(Ⅰ)求b ,c 的值; 理科(Ⅱ)求)sin(C B -的值; 文科(Ⅱ)求)sin(C B +的值。

【本题解析】:(Ⅰ)根据余弦定理得到:)21(329cos 222222-⨯⨯⨯-+=⇒-+=c c b B ac c a b72,3922=⇒=-++=⇒b c b c c b ,5=c 。

(Ⅱ)根据余弦定理得到:196751961211cos 1sin 1411732254992cos 22222=-=-=⇒=⨯⨯-+=-+=C C ab c b a C ,1435sin 0sin =⇒>C C 。

43411cos 1sin 22=-=-=B B ,23sin 0sin =⇒>B B 。

理科:734)21(1135141123cos sin cos sin )sin(=-⨯-⨯=-=-B C C B C B ; 文科:1433)21(1435141123cos sin cos sin )sin(=-⨯+⨯=+=+B C C B C B 。

【训练七】:【2019年高考数学天津卷理科第15题文科第16题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

已知a c b 2=+,C a B c sin 4sin 3=。

(Ⅰ)求B cos 的值; (Ⅱ)求)62sin(π+B 的值。

【本题解析】:(Ⅰ)a b a b ac cb C a B c 344343sin 4sin 3=⇒=⇒=⇒=,a c b 2=+a c a c a 32234=⇒=+⇒。

41322916942cos 222222-=⨯⨯-+=-+=a a aa a acbc a B 。

(Ⅱ)16151611cos 1sin 22=-=-=B B ,415sin 0sin =⇒>B B 。

815)41(4152cos sin 22sin -=-⨯⨯==B B B ;871615161sin cos 2cos 22-=-=-=B B B ; 16753)87(2123)815(2cos 6sin 6cos 2sin )62sin(+-=-⨯+⨯-=+=+B B B πππ。

【训练八】:【2019年高考数学江苏卷第15题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

(Ⅰ)若c a 3=,2=b ,32cos =B 。

求c 的值; (Ⅱ)若b B a A 2cos sin =。

求)2sin(π+B 的值。

【本题解析】:(Ⅰ)333162323292cos 22222222=⇒=⇒=⇒⨯⨯⨯-+=⇒-+=c c c c c c c B ac c a b 。

(Ⅱ)1cos sin ,cos sin 2cos sin sin sin 2cos sin 22cos sin 22=+=⇒=⇒=⇒=B B B B B A A B B a A b bBa A 51sin 1sin 51sin 4sin 2222=⇒=⇒=+⇒B B B B ,552sin 2cos 55sin 0sin ==⇒=⇒>B B B B ; 552cos )2sin(==+B B π。

【训练九】:【2019年高考数学浙江卷第14题】在ABC ∆中,090=∠ABC ,4=AB ,3=BC ,点D 在线段AC 上,若045=∠BDC ,则=BD ;=∠ABD cos 。

【本题解析】:如下图所示:525916222=⇒=+=+=AC BC AB AC 54sin ==⇒AC AB C ;BDCBCC BD ∠=sin sin 521222543sin sin =⨯=∠=⇒BDCCBC BD 。

000013545180180=-=∠-=∠BDC ADB ,53sin ==AC BC A ,A ADB A ADB A ADB ABD AC AB A sin sin cos cos )cos(cos 54cos ∠+∠-=+∠-=∠⇒==1027102310242253)22(54=+=⨯+-⨯-=。

【训练十】:【2018年高考文科数学新课标Ⅰ卷第16题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知C B a B c C b sin sin 4sin sin =+,8222=-+a c b ,则ABC ∆的面积为 。

【本题解析】:C B A B C C B C B a B c C b sin sin sin 4sin sin sin sin sin sin 4sin sin =+⇒=+21sin sin 21sin sin sin 4sin sin 2=⇒=⇒=⇒A A C B A C B 。

A bcbc bc a c b A ⇒>==-+=04282cos 222为锐角,23423cos 621sin =⇒=⇒=⇒=bc A A A π3322133821sin 213383883=⨯⨯==⇒==⇒=⇒∆A bc S bc bc ABC 。

【训练十一】:【2019年高考理科数学新课标Ⅰ卷第17题】在平面四边形ABCD 中,090=∠ADC ,045=∠A ,2=AB ,5=BD 。

(Ⅰ)求ADB ∠cos ; (Ⅱ)若22=DC ,求BC 。

【本题解析】:如下图所示:(Ⅰ)根据正弦定理得到:A AB ADB BD ABDADB AB sin sin sin sin ⨯=∠⨯⇒=∠525222sin sin =⨯=⨯=∠⇒BDAAB ADB 。

相关文档
最新文档