矩阵的基本运算

合集下载

矩阵的运算

矩阵的运算

矩阵的运算矩阵的运算是线性代数中的基本概念之一,广泛应用于各个领域,例如物理学、工程学和计算机科学等。

矩阵是一个二维的数学对象,由行和列组成。

矩阵运算包括加法、减法、乘法和转置等常见操作。

一、矩阵的定义矩阵是由m行n列元素排列而成的一个矩形数组。

记作A=[a_ij],其中a_ij表示矩阵A的第i行第j列的元素。

行数m表示矩阵的行数,列数n表示矩阵的列数。

例如,一个3行2列的矩阵可以表示为:A = |a_11 a_12||a_21 a_22||a_31 a_32|二、矩阵的加法矩阵的加法是指对应位置元素相加的操作。

两个相同大小的矩阵A和B可以相加得到一个新的矩阵C,记作C=A+B。

具体操作为将A和B对应位置的元素相加得到C的对应位置元素。

例如:A = |a_11 a_12|B = |b_11 b_12||a_21 a_22| |b_21 b_22||a_31 a_32| |b_31 b_32|C = A + B = |a_11+b_11 a_12+b_12||a_21+b_21 a_22+b_22||a_31+b_31 a_32+b_32|三、矩阵的减法矩阵的减法是指对应位置元素相减的操作。

两个相同大小的矩阵A和B可以相减得到一个新的矩阵C,记作C=A-B。

具体操作为将A和B对应位置的元素相减得到C的对应位置元素。

例如:A = |a_11 a_12|B = |b_11 b_12||a_21 a_22| |b_21 b_22||a_31 a_32| |b_31 b_32|C = A - B = |a_11-b_11 a_12-b_12||a_21-b_21 a_22-b_22||a_31-b_31 a_32-b_32|四、矩阵的乘法矩阵的乘法是指根据一定的规则将两个矩阵相乘得到一个新的矩阵。

矩阵乘法的规则是:若矩阵A为m行n列,矩阵B为n 行p列,则A和B的乘积矩阵C为m行p列,其中C的第i行第j列元素为矩阵A第i行与矩阵B第j列对应元素的乘积之和。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。

它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。

一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。

例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。

矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。

二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。

矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。

即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。

例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。

结果仍为同一维度的矩阵。

记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。

矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。

矩阵的基本运算

矩阵的基本运算

例如
1 3 5
2 2 8
19316
6 0
8 不存在. 1
乘积AB 维的关系
A
B
m n
n s
C ms
=
A
8
注 两个矩阵相乘, 乘积有可能是一个数.
1
2
3
3 2
1 3 2 2 3 1 10.
1
练习 计算下列矩阵的乘积,并观察结果.
1
1 2 1 4 1 2 1 4
1
5
8
0
2
5
8
0
2
13310 1 3 734 10 1 3 7 34
1
1 2 1 4
5
10
8 1
0 3
2 734
1
1
A
1
144
5 10
2 8
1
1 0 3
4
2
7
9
34
1
2
a11 a12 L a1s
a21
a22
L
a2s
O M M M M
nnnan1
an2
L
2an2
L na1n
L
na2n
M M
L
nann
nn
A
11
a1
b1
a2
b2
O
O
an nn
bn nn
a1b1
a2b2 O
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵A之积仍为n阶上(下)三角阵12 .
❖矩阵乘法的运算规律 (1 )结 合 律 :(A B )C A (B C )

矩阵的计算方法总结

矩阵的计算方法总结

矩阵的计算方法总结矩阵是线性代数中的重要概念,广泛应用于各个科学领域。

矩阵的计算方法主要包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。

本文将对这些计算方法进行详细的总结。

首先,矩阵的基本运算包括矩阵的加法和减法。

矩阵的加法和减法都是对应位置上的元素进行相加或相减的操作。

具体而言,对于两个相同大小的矩阵A和B,矩阵的加法计算公式为C = A + B,其中C的第i行第j列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。

矩阵的减法同样遵循相同的规则。

接下来,矩阵的乘法是比较复杂的计算方法。

矩阵的乘法不遵循交换律,即AB不一定等于BA。

矩阵的乘法计算公式为C= AB,其中A是m×n矩阵,B是n×p矩阵,C是m×p矩阵。

具体来说,在矩阵乘法中,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素进行内积运算得到的结果。

在进行矩阵乘法计算时,需要注意两个矩阵的维度是否满足相乘的条件。

若A的列数不等于B的行数,则无法进行矩阵乘法运算。

矩阵的逆是指对于一个n阶方阵A,通过运算求解另一个方阵B,使得AB = BA = I,其中I为单位矩阵。

矩阵的逆是在求解线性方程组和矩阵方程时经常使用的工具。

具体来说,对于一个n阶非奇异矩阵A,如果存在一个矩阵B,使得AB = BA = I,那么矩阵B就是矩阵A的逆矩阵,记作A^-1。

逆矩阵的计算可以使用高斯-约旦消元法、伴随矩阵法等多种方法,其中伴随矩阵法是逆矩阵计算的一种常用方法。

此外,还有一些特殊矩阵的计算方法。

例如,对称矩阵是指矩阵的转置等于它本身的矩阵。

对称矩阵的特殊性质使得其在计算中有着很多便利,例如,对称矩阵一定可以对角化,即可以通过相似变换变为对角矩阵。

对角矩阵是指非对角线上的元素都为0的矩阵,对角线上的元素可以相同也可以不同。

对角矩阵的计算相对简单,只需要对角线上的元素进行相应的运算即可。

综上所述,矩阵的计算方法包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。

矩阵的基本运算

矩阵的基本运算
证 因 为 H T ( E 2 X X T )T E T 2( X X T )T
E 2XX T H 所以H是对称矩阵.
HH T H 2 (E 2 XX T )2 E 4 XX T 4( XX T )( XX T ) E 4XX T 4X (X T X )X T E 4XX T 4XX T E
坐标分别为 和 , 它们有如 y′
yA x′
下关系:
x x 'cos y 'sin
y x 'sin y 'cos
α
O
x
写成矩阵形式,记为
过渡矩阵
x cos
y
s
i
n
sin x '
cos
y
'
例 (线性代数方程组)一般形式的线性方程组,即
a11 x1 a12 x 2 a1n x n b1
C
2
2
2
2

A
B
0
0
0 ,
AC
0
0
0
0
0
则 A B A C , 但是
BC
注 该例也说明 A B 0 不 能 推 出 A 0 或 B 0
定义 (方阵的幂次) 若A是n 阶方阵, 则Ak为A的
的k次幂,即
Ak
A 14
A 2
L43A
,
并且
k个
A m A k A m k , A m k A m k ( m , k 为 正 整 数 )
例 对 于 任 意 的 n阶 矩 阵 A .证 明 :
(1) A AT 是 对 称 矩 阵 , A AT 是 反 对 称 矩 阵 .
(2) A可 表 示 为 对 称 矩 阵 和 反 对 称 矩 阵 之 和 .

矩阵的简单运算公式

矩阵的简单运算公式

矩阵的简单运算公式矩阵是数学中一个非常重要的概念,它在众多领域都有着广泛的应用,比如物理学、计算机科学、统计学等等。

要理解和运用矩阵,掌握其基本的运算公式是必不可少的。

接下来,让我们一起来了解一下矩阵的一些简单运算公式。

首先,矩阵的加法和减法相对来说比较直观。

如果有两个矩阵 A 和B,它们的行数和列数都相同,那么矩阵 A 与矩阵 B 的和(差)就是将它们对应位置的元素相加(减)得到的新矩阵。

例如,如果矩阵 A= a₁₁ a₁₂; a₂₁ a₂₂,矩阵 B = b₁₁ b₁₂; b₂₁ b₂₂,那么 A+ B = a₁₁+ b₁₁ a₁₂+ b₁₂; a₂₁+ b₂₁ a₂₂+ b₂₂,A B= a₁₁ b₁₁ a₁₂ b₁₂; a₂₁ b₂₁ a₂₂ b₂₂。

接下来是矩阵的数乘运算。

如果有一个矩阵 A 和一个实数 k,那么数 k 与矩阵 A 的乘积,就是将矩阵 A 中的每一个元素都乘以 k。

比如,矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂,kA = ka₁₁ ka₁₂; ka₂₁ ka₂₂。

矩阵的乘法运算相对复杂一些。

当矩阵 A 的列数等于矩阵 B 的行数时,矩阵 A 和矩阵 B 才能相乘。

假设矩阵 A 是 m×n 的矩阵,矩阵B 是 n×p 的矩阵,那么它们的乘积C = AB 是一个 m×p 的矩阵。

C 中的元素 cᵢⱼ等于矩阵 A 的第 i 行与矩阵 B 的第 j 列对应元素乘积的和。

例如,矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂,矩阵 B = b₁₁ b₁₂; b₂₁b₂₂,那么 AB = a₁₁b₁₁+ a₁₂b₂₁ a₁₁b₁₂+ a₁₂b₂₂;a₂₁b₁₁+ a₂₂b₂₁ a₂₁b₁₂+ a₂₂b₂₂。

需要注意的是,矩阵的乘法一般不满足交换律,也就是说 AB 不一定等于 BA。

但是矩阵的乘法满足结合律和分配律。

结合律:(AB)C = A(BC);分配律:A(B + C) = AB + AC。

矩阵常见运算

矩阵常见运算

矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。

1、矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。

在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。

A+B+C=A+C+B。

加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。

2、把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即a(i,j)=b (j,i)(B的第i行第j列元素是A的第j 行第i列元素),记A'=B。

3、矩阵乘法是一种根据两个矩阵得到第三个矩阵的二元运算。

二元运算属于数学运算的一种。

二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。

如四则运算的加、减、乘、除均属于二元运算。

如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。

二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。

矩阵计算方法

矩阵计算方法

矩阵计算方法矩阵是线性代数中的重要概念,它在各个领域都有着广泛的应用。

矩阵的运算方法也是学习线性代数的重点之一。

本文将介绍矩阵的基本运算方法,包括矩阵的加法、减法、数乘、矩阵乘法、转置和逆矩阵等内容。

首先,我们来看矩阵的加法和减法。

对于两个相同大小的矩阵,它们的加法和减法运算都是逐个对应元素相加或相减。

例如,对于矩阵A和矩阵B,它们的加法运算为A + B = C,其中矩阵C的每个元素c_ij = a_ij + b_ij。

减法运算同理。

其次,矩阵的数乘运算也是很常见的。

对于一个矩阵A和一个标量k,它们的数乘运算为kA,即将矩阵A的每个元素都乘以k。

这在实际问题中经常用到,可以用来对矩阵进行缩放或者调整。

接下来是矩阵的乘法运算。

矩阵的乘法不同于加法和减法,它需要满足一定的条件才能进行。

具体来说,对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积AB是一个m×p的矩阵C,其中矩阵C的每个元素c_ij等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。

矩阵乘法在计算机图形学、神经网络等领域有着广泛的应用。

此外,矩阵的转置也是一个重要的运算。

对于一个m×n的矩阵A,它的转置记作A^T,即将矩阵A的行列互换得到的n×m矩阵。

转置运算在矩阵的运算和求解中经常用到。

最后,我们来谈谈矩阵的逆矩阵。

对于一个可逆的n×n矩阵A,它的逆矩阵记作A^-1,满足AA^-1 = A^-1A = I,其中I是n阶单位矩阵。

逆矩阵在线性方程组的求解和矩阵方程的求解中扮演着重要的角色。

总之,矩阵的运算方法是线性代数中的重要内容,它们在各个领域都有着广泛的应用。

通过学习矩阵的运算方法,我们可以更好地理解和应用线性代数的知识,为实际问题的求解提供有力的工具。

希望本文对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注 矩阵乘法不满足消去律,即
AB AC, A 0 不能推出 B C
例如
设A
1
1
1
,
B
1
1
1
1
,
C
2
1
2
2
2

AB
0
0
0
,
AC
0
0
0
0
0
则 AB AC, 但是
BC
注 该例也说明 AB 0 不能推出 A 0 或 B 0
定义 (方阵的幂次) 若A是n 阶方阵, 则Ak为A的 的k次幂,即 Ak A A A,并且
(1)( AT )T A; (2)( A B)T AT BT ;
(3)( A)T AT ; (4)( AB)T BT AT .
1 7 1

已知
2
A
1
求 ( AB)T .
0 3
1 2
,
B
4 2
2 0
3
,
1
解1
因为
2
AB
1
0 3
1
1 2
4 2
7 2 0
1
3 1
0
元素是实数的矩阵,称为实矩阵;元素是复数
的矩阵称为复矩阵。
行数与列数都等于 n 的矩阵称之为 n 阶方阵, 记作 An。
2.行矩阵、列矩阵与方阵 只有一行的矩阵称行矩阵,又称行向量。 只有一列的矩阵称为列矩阵,又称为列向量。 行数与列数都等于n的矩阵叫方阵,记为An。
3.同型矩阵与矩阵相等:如果两个矩阵的行数相等、列数也相 等,就称它们是同型矩阵。
(3)A= A+O = O+A
由此,规定矩阵的减法为ABA(B),例如
3 2 1 2 2 2 3 2 1 2 2 2 1 0 1
4 5 6 1 2 3 4 5 6 1 2 3 3 3
3
❖矩阵的数乘
数与矩阵A的乘积记作A或A , 规定为
a11
A
A
a21
a12
a22
a1n
n1
k k1 k
k
k
2
1
k
2
k k1 .
0
0
k
❖转置矩阵(transpose)
把矩阵A的行换成同序数的列得到的新矩阵,叫
做A的转置矩阵,记作 A或A.

A
1 4
2 5
2
8
,
AT
1
2
2
4 5 ; 8
B 18
6 ,
BT
18
6
.
❖转置矩阵的运算规律
转置运算对乘积 的去括号法则
例如
12 A 6
6 8
1 0
为对称阵.
1 0 6
注 对称阵的元素以主对角线为对称轴对应相等.
如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵的对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
2、矩阵应用举例
例(坐标变换)平面解析几何中,若坐标系Oxy绕原
0 0 2 0 0 0 0 3
由此归纳出
k
Ak 0
0
k k1 k
0
k
k 2
1
k
2
k k1 k 2
k
1 0

设A
0
1
,求Ak
.
0 0
k
k k1
k
k
1
k
2

归纳出
Ak 0
k
2
k k1
k 2
0
0
k
用数学归纳法证明: 假设 k = n 时成立, 则k = n + 1 时,
cos
y
'
例 (线性代数方程组)一般形式的线性方程组,即
a11x1 a12x2 a1n xn b1 a21x1 a22x2 a2nxnb2
am1x1 am2 x2 amnxn bm
若记
a11
A
a21
am1
系数矩阵
a12 a22
a1n a2n
,
x
x1
x2
2.两个矩阵 A aij 与B bij 为同型矩阵,并且对
应的元素相等,即
aij bij i 1, 2, , m; j 1, 2, , n
则称矩阵A与矩阵B相等,记作A B
❖矩阵的加法
设有两个mn矩阵A(aij)和B(bij) 矩阵A与B的和 记为AB 规定为AB(aijbij ) 即
1
3
9 3
0
6
8 3
5 2
4
1
1 3
6 3
9 5 3 2
0
4
7
8 1 6
4 4 1 9
❖矩阵加法的运算规律 设A B C都是mn矩阵 则 (1)ABBA (2) (AB)CA(BC) 设矩阵A(aij) 记A(aij) A称为矩阵A的负矩阵; 另,把元全为零的矩阵称为零矩阵,记作O;
n
An1 An A 0
0
n n1 n
0
n
n 2
1
n
2
n n1
n
0
0
1
0
0
1
n
An1 An A 0
0
n n1 n
0
n
n 2
1
n
2
n n1
n
0
0
1
0
0
1
n1
n 1 n
n
1
2
n
n1
0
n1
n 1 n
0
0
k
所以对于任意的k都有
Ak 0
a11 b11
A
B
a21 b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
注:只有当两个矩阵是同型矩阵时,才能进行加法运算.
10 3 5 1 8 9 10 1 3 8 5 9 11 11 4
,
b
b1
b2
,
am1
amn
xn
bm
则线性方程组可被表示成等价的矩阵形式:Ax = b
定义: n 阶方阵 A 称为可逆的,如果有 n 阶方阵 B,使得
AB BA E
这里 E 是 n 阶单位矩阵.
➢根据矩阵的乘法法则,只有方阵才能满足上述等式. ➢对于任意的 n 阶方阵 A,适合上述等式的矩阵 B 是唯 一的(如果有的话).
1a21
1an1
2a12 2a22
2an2
na1n
na2n
nann
nn
n
nn
a1
a2
b1
b2
an nn
bn nn
a1b1
a2b2
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵之积仍为n阶上(下)三角阵.
❖矩阵乘法的运算规律 (1) 结合律: ( AB)C A(BC)
17
14 13
3
10
0 17

AB T
14
13
.
3 10
1 4 2 2 1 0 17
解2
ABT
BT AT
7
2
0
0
3
14
13
.
1 3 1 1 2 3 10
定义 (对称阵) 设A为n阶方阵,如果满足 A AT
即 aij a ji (i, j 1, 2, , n) ,那么A称为对称阵.
a2n
.
am1 am1 amn
❖矩阵数乘的运算规律
(1) 1A A;
(2) ()A ( A);
(3) ( )A A A;
(4) ( A B) A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
❖矩阵乘法
设 A (aij ) 是一个m×s矩阵,
B (bij ), 是一个s×n矩阵, 那么规定矩阵A与矩阵B的
7 34
1
2
a11 a12
a21
a22
n
nn
an1
an2
1a11
2a21
nan1
1a12 2a22
nan2
1a1s
2a2s
nans
ns
a1s
a2s
ans ns
a11 a12
a21
a22
an1 an2
a1n
a2
n
1
2
ann nn
1a11
补充:矩阵的基本运算
1、运算定义&运算规则 2、矩阵应用举例
一、概念:
1.定义 由m×n个数aij(i=1,2,…,m;j=1,2,…,n)
排成的m行n列的数表
a11 a12
a21
a22
am1 am2
a1n
a11 a12 ... a1n
a2n
a21 a22 ... a2n ... ... ... ...
点O经逆时针方向转过角α后成为Ox'y'(如图),
任一向量在这两个坐标系中的
坐标分别为
x y

x '
y
'
, 它们有如
y′
下关系:
x x ' cos y 'sin
y x 'sin y ' cos
相关文档
最新文档